[go: up one dir, main page]

JPH0374804B2 - - Google Patents

Info

Publication number
JPH0374804B2
JPH0374804B2 JP5210084A JP5210084A JPH0374804B2 JP H0374804 B2 JPH0374804 B2 JP H0374804B2 JP 5210084 A JP5210084 A JP 5210084A JP 5210084 A JP5210084 A JP 5210084A JP H0374804 B2 JPH0374804 B2 JP H0374804B2
Authority
JP
Japan
Prior art keywords
photoresist film
type photoresist
film
region
positive type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP5210084A
Other languages
Japanese (ja)
Other versions
JPS60196701A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP5210084A priority Critical patent/JPS60196701A/en
Priority to US06/710,984 priority patent/US4660934A/en
Priority to GB08507413A priority patent/GB2157849B/en
Publication of JPS60196701A publication Critical patent/JPS60196701A/en
Publication of JPH0374804B2 publication Critical patent/JPH0374804B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/09Photosensitive materials characterised by structural details, e.g. supports, auxiliary layers
    • G03F7/095Photosensitive materials characterised by structural details, e.g. supports, auxiliary layers having more than one photosensitive layer
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/18Diffraction gratings
    • G02B5/1847Manufacturing methods
    • G02B5/1857Manufacturing methods using exposure or etching means, e.g. holography, photolithography, exposure to electron or ion beams
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/0005Production of optical devices or components in so far as characterised by the lithographic processes or materials used therefor
    • G03F7/001Phase modulating patterns, e.g. refractive index patterns

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Optics & Photonics (AREA)
  • Architecture (AREA)
  • Structural Engineering (AREA)
  • Optical Integrated Circuits (AREA)
  • Diffracting Gratings Or Hologram Optical Elements (AREA)

Description

【発明の詳細な説明】 (発明の技術分野) 本発明は、2光束干渉露光を用いて周期的な凹
凸から成る回折格子を製造する方法に係わり、特
に、隣接する二つの領域において回析格子の凹凸
の位相が反転する構造を有する回折格子の製造方
法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Technical Field of the Invention) The present invention relates to a method for manufacturing a diffraction grating consisting of periodic irregularities using two-beam interference exposure. The present invention relates to a method of manufacturing a diffraction grating having a structure in which the phase of the concaves and convexes is inverted.

(従来技術) 周期的な凹凸から成る回折格子は、所望の波長
の光のみを反射あるいは通過させるため、光通信
の分野においてはフイルタとしてあるいは分布帰
還形半導体レーザ(以下、「DFBレーザ」と略
す)の内部等に用いられている。
(Prior art) Diffraction gratings consisting of periodic unevenness reflect or pass only light of a desired wavelength, so they are used as filters or distributed feedback semiconductor lasers (hereinafter abbreviated as "DFB lasers") in the field of optical communications. ) is used inside etc.

その中で、発光領域またはその近傍に回折格子
を有するDFBレーザは、単一軸モードの光を発
することから、光通信の光源として脚光を浴び、
従来から種々の提案がある。特に最近では、回折
格子の中央部付近で凹凸の位相を反転した方がさ
らに安定な単一モード動作を行うものとして注目
されている。
Among these, DFB lasers, which have a diffraction grating in or near the light emitting region, have attracted attention as a light source for optical communications because they emit light in a single-axis mode.
There have been various proposals in the past. Particularly recently, inverting the phase of the unevenness near the center of the diffraction grating has attracted attention as a way to achieve more stable single mode operation.

このようなDFBレーザの発振波長は回折格子
の凹凸の周期Λで決定され、さらに安定な動作は
回折格子の製作精度に依存する。従つて、回折格
子の製作精度がDFBレーザの特性を左右するこ
とになる。
The oscillation wavelength of such a DFB laser is determined by the period Λ of the unevenness of the diffraction grating, and stable operation also depends on the manufacturing precision of the diffraction grating. Therefore, the manufacturing precision of the diffraction grating influences the characteristics of the DFB laser.

凹凸の位相が反転した構造を有する回折格子の
従来の製造方法を述べる前に、まず凹凸の位相が
反転しない構造の回折格子の製造方法について説
明する。
Before describing a conventional method for manufacturing a diffraction grating having a structure in which the phase of the concave and convex portions is inverted, a method for manufacturing a diffraction grating having a structure in which the phase of the concave and convex portions is not inverted will be described first.

第1図は従来の2光束干渉露光法による一様な
回折格子の構造の原理図である。波長λ0なる例え
ばHe−Cdレーザ光3をハーフミラー4で2つに
分波し、各々の分波光3はミラー5で反射させ、
その分波光3の合成波を図示のように基板1の上
に例えばポジタイプのフオトレジスト膜2を塗布
した結晶表面に照射したときに生じる干渉光によ
り露光し、エツチングを行えば回折格子を形成す
ることができる。ここで、凹凸の周期Λはレーザ
光3の入射角をαとすれば Λ=λ0/2sinα ……(1) で求められる。
FIG. 1 is a diagram showing the principle of the structure of a uniform diffraction grating formed by a conventional two-beam interference exposure method. For example, a He-Cd laser beam 3 with a wavelength λ 0 is split into two by a half mirror 4, and each split beam 3 is reflected by a mirror 5.
A diffraction grating is formed by exposing and etching the synthesized wave of the split light 3 to the interference light generated when the surface of the crystal coated with, for example, a positive type photoresist film 2 on the substrate 1 is irradiated as shown in the figure. be able to. Here, the period Λ of the unevenness is determined by Λ=λ 0 /2sinα (1), where α is the incident angle of the laser beam 3.

一方、レーザの中央で回折格子の位相が反転し
た構造を有する回折格子を製造する方法として、
コンピユータ制御を用いた電子ビーム走査露光が
ある。この方法は、回折格子の溝に相当する部分
に順次電子ビームを走査して照射することにより
露光するものであるが、回折格子の周期Λが大き
い場合には適用できるが、凹凸の周期Λが結晶中
の光の波長λの半分である1次の回折格子のよう
に周期Λが小さい場合(約2000Å)には、解像度
の限界に達し、構造が実質上困難となつてしま
う。また、電子ビーム露光法は個別順次走査であ
るから、回折格子パターンの全面を走査し終るま
でにかなりの時間を必要とし、これを大量生産工
程に適用することは困難である。
On the other hand, as a method for manufacturing a diffraction grating having a structure in which the phase of the diffraction grating is inverted at the center of the laser,
There is electron beam scanning exposure using computer control. This method exposes the portions corresponding to the grooves of the diffraction grating by sequentially scanning and irradiating them with an electron beam. This method can be applied when the period Λ of the diffraction grating is large, but when the period Λ of the asperities is When the period Λ is small (approximately 2000 Å), such as in a first-order diffraction grating, which is half the wavelength λ of light in the crystal, the limit of resolution is reached and the structure becomes practically difficult. Furthermore, since the electron beam exposure method involves individual sequential scanning, it takes a considerable amount of time to scan the entire surface of the diffraction grating pattern, making it difficult to apply this method to mass production processes.

次に、2光束干渉露光を用いて凹凸の位相が隣
接領域で互いに反転する構造を有する回折格子を
製造する場合の問題点について説明する。
Next, problems when manufacturing a diffraction grating having a structure in which the phases of concavities and convexities are reversed in adjacent regions using two-beam interference exposure will be described.

(1) 第2図は前述した2光束干渉露光により位相
反転の構造を有する回折格子を製造した場合の
模式図である。同図は領域Aに周期的な凹凸を
製造する場合を示しており、この時領域Bは厚
さt(約50μm)のメタルマスク6によりおおわ
れている。なお通常フオトレジスト膜2上に隙
間d(約数μm)を設けている。干渉パターンが
最も領域Bに近いところを示しているが、同図
から明らかなようにレーザ光3はメタルマスク
6の厚さの影響により照射されない部分、すな
わち凹凸が全く製造されない領域Cができる。
同様に領域Aにメタルマスク6を施して領域B
に2光束干渉露光を行つても、凹凸が製造され
ない領域Cができ、全体としては領域Cの2倍
に亘つて凹凸が形成されない。
(1) FIG. 2 is a schematic diagram of a diffraction grating having a phase inversion structure manufactured by the above-mentioned two-beam interference exposure. This figure shows a case where periodic irregularities are manufactured in region A, and at this time region B is covered with a metal mask 6 having a thickness t (approximately 50 μm). Note that a gap d (about several μm) is usually provided on the photoresist film 2. The interference pattern is shown closest to region B, but as is clear from the figure, a region C is created where the laser beam 3 is not irradiated due to the influence of the thickness of the metal mask 6, that is, a region C where no unevenness is formed.
Similarly, a metal mask 6 is applied to area A, and area B is
Even if two-beam interference exposure is performed, there is a region C in which no unevenness is formed, and as a whole, no unevenness is formed in an area twice as large as the area C.

例えば、回折格子の凹凸の周期Λを2400Åと
し、He−Cdレーザの波長λ0を3250Åとすれ
ば、入射角αは α=sin-1(λ0/2Λ)=sin-1(3250/480043〔度
〕 となり、マスクの厚さtを50μmとし隙間をd
とすれば、周期的な凹凸が製造されない領域C
は C=(t+d)tanαt・tanα=47
〔μm〕 となる。
For example, if the period Λ of the unevenness of the diffraction grating is 2400 Å and the wavelength λ 0 of the He-Cd laser is 3250 Å, the incident angle α is α = sin -10 /2Λ) = sin -1 (3250/480043 [degrees], and the mask thickness t is 50 μm and the gap is d.
Then, the region C where periodic irregularities are not produced
is C=(t+d)tanαt・tanα=47
[μm].

従つて、2回の2光束干渉露光により、凹凸
が形成されない領域Cの2倍の領域は94〔μm〕
となり、発光領域の全体長が通常数百〔μm〕
程度であることから、DFBレーザの動作電流
が大きくなり、また単一波長動作も不安定とな
る。この解決策として、メタルマスク6の厚さ
tを薄くしたり、メタルマスク6の内側端の上
面エツジに傾斜を設ければ若干改善できるが、
やはり凹凸が形成されない領域Cができる。
Therefore, by two times of two-beam interference exposure, the area twice the area C where no unevenness is formed is 94 [μm].
The total length of the light-emitting region is usually several hundred [μm].
Because of this, the operating current of the DFB laser becomes large and single wavelength operation becomes unstable. As a solution to this problem, it can be slightly improved by reducing the thickness t of the metal mask 6 or by providing a slope on the upper surface edge of the inner end of the metal mask 6.
After all, there is a region C where no unevenness is formed.

(2) 最初に領域Aを露光し、次に領域Bを露光す
る時に凹凸の位相を180度反転させるため、基
板1を凹凸の周期Λの半分だけ(約1000Å)正
確に移動しなければならない。しかし、約1000
Å(0.1μm)だけ正確に基板1を移動させるこ
とは極めて難しく、再現性の面からも非常に困
難である。
(2) In order to reverse the phase of the unevenness by 180 degrees when first exposing area A and then exposing area B, the substrate 1 must be accurately moved by half the period Λ of the unevenness (approximately 1000 Å). . But about 1000
It is extremely difficult to move the substrate 1 accurately by Å (0.1 μm), and it is also extremely difficult in terms of reproducibility.

以上のように、周期的な凹凸の位相が反転する
構造を有する回折格子を従来の2光束干渉露光で
製造するのは困難であつた。
As described above, it has been difficult to manufacture a diffraction grating having a structure in which the phase of periodic asperities is inverted using conventional two-beam interference exposure.

(発明の目的と特徴) 本発明は、上述した従来の欠点を解消するため
になされたもので、電子ビーム露光に比べて簡便
でかつ量産性に優れた2光束干渉露光を用いて、
周期的な凹凸の位相が反転する構造の回折格子を
実現することのできる回折格子の製造方法を提供
することを目的とする。
(Objectives and Features of the Invention) The present invention has been made to solve the above-mentioned conventional drawbacks, and uses two-beam interference exposure, which is simpler and easier to mass-produce than electron beam exposure.
It is an object of the present invention to provide a method for manufacturing a diffraction grating that can realize a diffraction grating having a structure in which the phase of periodic irregularities is inverted.

本発明の特徴は、基板上にネガタイプのフオト
レジスト膜(N膜)とポジタイプのフオトレジス
ト膜(P膜)の一方が第1の領域Aに形成され該
第1の領域とは別の第2の領域Bには前記ネガタ
イプのフオトレジスト膜とポジタイプのフオトレ
ジスト膜の他方又はネガタイプのフオトレジスト
膜上にポジタイプのフオトレジスト膜が形成され
た状態を形成した後、前記基板の第1の領域と第
2の領域に2光束干渉露光を行い、前記フオトレ
ジスト膜のネガタイプとポジタイプの現像特性が
互いに反転していることを利用して前記第1の領
域と第2の領域とに各領域で凹凸の位相が互いに
反転した回折格子を形成することにある。
A feature of the present invention is that one of a negative type photoresist film (N film) and a positive type photoresist film (P film) is formed on the substrate in a first region A, and a second region separate from the first region is formed on the substrate. After forming a state in which a positive type photoresist film is formed on the other of the negative type photoresist film and the positive type photoresist film or on the negative type photoresist film in the region B, the first region of the substrate and Two-beam interference exposure is performed on the second area, and by utilizing the fact that the negative type and positive type development characteristics of the photoresist film are reversed, unevenness is created in each area in the first area and the second area. The purpose is to form a diffraction grating in which the phases of the two are reversed.

(発明の構成および作用) 以下に図面を用いて本発明を詳細に説明する。(Structure and operation of the invention) The present invention will be explained in detail below using the drawings.

第3図は本発明による実施例であり、凹凸の位
相が反転する構造を有する回折格子の製造工程を
概略的に示したものである。
FIG. 3 is an embodiment according to the present invention, which schematically shows the manufacturing process of a diffraction grating having a structure in which the phase of the concave and convex portions is inverted.

(a) 基板1の上に従来の塗布方法によりN膜7を
形成する。
(a) N film 7 is formed on substrate 1 by a conventional coating method.

(b) N膜7に光を当てないでB領域のN膜7を除
去するために、N膜7の上に補助P膜2aを積
層する。
(b) In order to remove the N film 7 in the B region without exposing the N film 7 to light, an auxiliary P film 2a is laminated on the N film 7.

(c) 通常のマスク露光により、回折格子の第1の
領域Aの補助P膜2aを取り除き更に回折格子
の第2の領域BのP膜2をエツチングマスクと
して領域AのN膜7も取り除く。
(c) By normal mask exposure, the auxiliary P film 2a in the first region A of the diffraction grating is removed, and the N film 7 in the region A is also removed using the P film 2 in the second region B of the diffraction grating as an etching mask.

(d) 有機溶剤等により領域Bの補助P膜2aを除
去する。
(d) The auxiliary P film 2a in region B is removed using an organic solvent or the like.

(e) 次に、領域A及び領域Bの全面にP膜2を形
成する。この工程は、次に述べる1回の一様な
2光束干渉露光で凹凸の位相が反転する構造を
有する回折格子を製造する上で基本となるもの
である。すなわち、従来のように基板の移動が
不要となる。また、領域Aと領域Bとの境界部
分で段差ができるが、N膜7の厚さが非常に薄
い(通常0.1μm程度)ため、従来のように領域
Cができることはほとんどなくなる。
(e) Next, a P film 2 is formed on the entire surface of region A and region B. This step is the basis for manufacturing a diffraction grating having a structure in which the phase of the concave and convex portions is reversed by one uniform two-beam interference exposure, which will be described below. That is, there is no need to move the substrate as in the conventional case. Further, although a step is formed at the boundary between region A and region B, since the thickness of the N film 7 is very thin (usually about 0.1 μm), region C is almost never formed as in the conventional case.

(f) 一様な2光束干渉露光を行うことにより、干
渉光が強め合い露光された部分のP膜2には凹
部、逆に露光されない部分のP膜2には凸部が
でき、全体的に見た場合、f図のように周期的
な凹凸が形成される。しかし、この段階では領
域Aと領域Bとで凹凸の位相が反転しない。
(f) By performing uniform two-beam interference exposure, concave portions are formed in the exposed portions of the P film 2 where the interference light is reinforced, and convex portions are formed in the unexposed portions of the P film 2, resulting in the overall When viewed from above, periodic unevenness is formed as shown in figure f. However, at this stage, the phase of the unevenness between region A and region B is not reversed.

(g) P膜2の凹凸をマスクとして、化学エツチン
グにより領域Aの基板1に凹凸を形成する。
(g) Using the unevenness of the P film 2 as a mask, unevenness is formed on the substrate 1 in area A by chemical etching.

(h) 領域BのN膜7にP膜2の凹凸をマスクとし
て通常の全面露光を行つた後、領域A及びBの
P膜2を通常の現像処理により取り除き、さら
にN膜の現像を行う。尚、N膜7は露光された
部分が残り凸部となるので、この段階で領域A
と領域Bとでは位相が反転した凹凸が形成され
る。
(h) After normal full-surface exposure is performed on the N film 7 in area B using the unevenness of the P film 2 as a mask, the P film 2 in areas A and B is removed by normal development processing, and the N film is further developed. . Note that the exposed portion of the N film 7 remains as a convex portion, so at this stage, the area A
In region B and region B, irregularities with inverted phases are formed.

(i) 領域Aにのみ、マスク露光により付加のP膜
のマスク2bを施し、領域BでN膜7の凹凸を
マスクとして化学エツチングにより領域Bの基
板1に凹凸を形成する。
(i) An additional P film mask 2b is applied only to region A by mask exposure, and in region B, irregularities are formed on the substrate 1 in region B by chemical etching using the irregularities of the N film 7 as a mask.

(j) 領域BのN膜7の凹凸および領域AのP膜2
を取り除くことによつて、基板1の中央付近で
凹凸の位相が反転した構造を有する回折格子が
得られる。
(j) Unevenness of N film 7 in region B and P film 2 in region A
By removing , a diffraction grating having a structure in which the phase of the concaves and convexes is reversed near the center of the substrate 1 can be obtained.

第4図は本発明による他の実施例であり、凹凸
の位相が反転する構造を有する回折格子の製造工
程を概略的に示したものである。
FIG. 4 shows another embodiment of the present invention, which schematically shows the manufacturing process of a diffraction grating having a structure in which the phase of the concave and convex portions is inverted.

(a) 基板1の全面に従来の塗布方法でN膜7を形
成する。
(a) N film 7 is formed on the entire surface of substrate 1 using a conventional coating method.

(b) N膜7の上にP膜2を積層する。(b) P film 2 is laminated on N film 7.

(c) 領域AのP膜2を取り除く。これにより、本
願の特徴である、領域Aと領域Bの表面Fは互
いに異なるタイプのフオトレジスト膜が積層さ
れたことになる。
(c) Remove the P film 2 in area A. As a result, different types of photoresist films are laminated on the surface F of the region A and region B, which is a feature of the present application.

(d) 1回の2光束干渉露光を行う。領域AはN膜
7であるから、感光されたところは凸部にな
り、感光されないところは凹部となる。一方、
領域BはP膜2であるので、ネガタイプとはま
つたく逆の凹凸が形成される。従つて、領域A
と領域Bとでは凹凸の位相が反転した構造とな
る。また、領域Aと領域BとにP膜2の厚さだ
け段差ができるが、P膜2が非常に薄いため
(約0.1μm)、従来のように凹凸が形成されない
領域Cができることはほとんどなくなる。
(d) Perform one two-beam interference exposure. Since the area A is the N film 7, the exposed areas become convex parts, and the unexposed areas become concave parts. on the other hand,
Since region B is the P film 2, unevenness is formed that is exactly opposite to that of the negative type. Therefore, area A
and region B have a structure in which the phase of the unevenness is reversed. In addition, although a step is created between region A and region B by the thickness of P film 2, since P film 2 is very thin (approximately 0.1 μm), region C where unevenness is not formed as in the conventional method is almost never created. .

(e) 前記の(d)において、領域BでP膜2の凹部に
位置するN膜7を通常のN膜現像処理により除
去し、その後P膜2の凹凸を取り除く。よつ
て、領域Aおよび領域Bには位相が反転したN
膜7の凹凸が(e)のように形成される。(ただし、
P膜2の凹凸は取り除かなくてもよい) (f) N膜7の凹凸をマスクとして、化学エツチン
グで基板1に凹凸を形成した後、N膜7を取り
除くことによつて所望の回折格子が形成され
る。
(e) In the above (d), the N film 7 located in the concave portion of the P film 2 in region B is removed by normal N film development processing, and then the unevenness of the P film 2 is removed. Therefore, in region A and region B, N
The unevenness of the film 7 is formed as shown in (e). (however,
(f) Using the unevenness of the N film 7 as a mask, form unevenness on the substrate 1 by chemical etching, and then remove the N film 7 to form the desired diffraction grating. It is formed.

以上の工程から明らかなように、本発明によれ
ば、領域Aと領域Bとの表面に異なるタイプのフ
オトレジスト膜を積層することによつて、1回の
2光束干渉露光で精度の良い凹凸の位相が反転し
た構造を有する回折格子が製造される。
As is clear from the above steps, according to the present invention, by laminating different types of photoresist films on the surfaces of area A and area B, highly accurate unevenness can be achieved with one two-beam interference exposure. A diffraction grating having a structure in which the phase of the diffraction grating is inverted is manufactured.

第5図は本発明による他の実施例であり、領域
Aと領域Bに異なるタイプのフオトレジスト膜を
積層する他の工程方法である。
FIG. 5 shows another embodiment of the present invention, which is another process method for laminating different types of photoresist films in areas A and B.

(a) 基板1に従来の塗布方法によりN膜7を積層
する。
(a) N film 7 is laminated on substrate 1 by a conventional coating method.

(b) N膜7に光を当てないでB領域のN膜7を除
去するために付加P膜2aを積層する。
(b) An additional P film 2a is laminated in order to remove the N film 7 in the B region without exposing the N film 7 to light.

(c) 通常のマスク露光により、回折格子の第1の
領域Aの付加P膜2aを取り除き、更に回折格
子の第2の領域Bの付加P膜2aをエツチング
マスクとして領域AのN膜7も取り除く。
(c) The additional P film 2a in the first area A of the diffraction grating is removed by normal mask exposure, and the N film 7 in area A is also etched using the additional P film 2a in the second area B of the diffraction grating as an etching mask. remove.

(d) 領域Bの付加P膜2aを除去する。(d) Remove the additional P film 2a in region B.

(e) 領域Aおよび領域BにP膜2を形成する。(e) P film 2 is formed in region A and region B.

(f) 領域AのP膜2をマスク露光により取り除く
ことにより、領域Aと領域Bとでは異なるタイ
プのフオトレジスト膜が形成される。
(f) By removing the P film 2 in region A by mask exposure, different types of photoresist films are formed in region A and region B.

(g) 一様な2光束干渉露光を行えば、領域Bには
N膜7の凹凸、領域AにはP膜2の凹凸が形成
され、各々の領域の凹凸は位相が反転したもの
となる。
(g) If uniform two-beam interference exposure is performed, the unevenness of the N film 7 will be formed in area B, and the unevenness of the P film 2 will be formed in area A, and the unevenness in each area will be inverted in phase. .

(h) 次に、N膜7およびP膜2の凹凸を各々マス
クとして基板1のエツチングを行い、N膜7お
よびP膜2を取り除けば所望の回折格子が形成
される。
(h) Next, the substrate 1 is etched using the unevenness of the N film 7 and the P film 2 as masks, and the desired diffraction grating is formed by removing the N film 7 and the P film 2.

以上のように、本発明のこの実施例により基板
上に異なるタイプのフオトレジスト膜を積層する
工程を行えば、従来の一様な2光束干渉露光およ
びエツチングにより凹凸の位相が反転した構造を
有する回折格子が製造できる。第3図〜第5図で
は、P膜2および補助P膜2aを露光する際に、
露光条件(光の波長、強度、露光時間など)ある
いはP膜の光の吸収特性により、光が実質的にN
膜7まで到達しない場合について説明したもので
ある。次に第6図を参照して露光条件(光の波
長、強度、露光時間など)あるいはP膜の光の吸
収特性により、P膜に露光した光が実質的にN膜
7の一部まで到達するような場合の実施例につい
て説明したものである。
As described above, by carrying out the process of laminating different types of photoresist films on a substrate according to this embodiment of the present invention, a structure in which the phase of the concave and convex portions is reversed due to the conventional uniform two-beam interference exposure and etching can be obtained. Diffraction gratings can be manufactured. In FIGS. 3 to 5, when exposing the P film 2 and the auxiliary P film 2a,
Depending on the exposure conditions (light wavelength, intensity, exposure time, etc.) or the light absorption characteristics of the P film, the light may become substantially N.
The case where the film 7 is not reached is explained. Next, referring to FIG. 6, depending on the exposure conditions (light wavelength, intensity, exposure time, etc.) or the light absorption characteristics of the P film, the light exposed to the P film substantially reaches a part of the N film 7. This is an example of a case where the following is the case.

(a) 基板1上の全面にN膜7を形成する。(a) An N film 7 is formed over the entire surface of the substrate 1.

(b) 第2の領域のN膜7に光を当てないで第1の
領域AのN膜7を取除くために、N膜7の上に
紫外線吸収膜あるいは金の薄膜等から成る反射
膜8を積層する。
(b) In order to remove the N film 7 in the first area A without exposing the N film 7 in the second area to light, a reflective film made of an ultraviolet absorbing film or a thin gold film, etc. is placed on the N film 7. Layer 8.

(c) 更に補助P膜2aを積層する。(c) Furthermore, an auxiliary P film 2a is laminated.

(d) 通常のマスク露光により、回折格子の第1の
領域Aの補助P膜2aを取り除き、更に回折格
子の第2の領域Bの補助P膜2aをエツチング
マスクとして領域Aの反射膜8、N膜7も取り
除く。
(d) The auxiliary P film 2a in the first region A of the diffraction grating is removed by normal mask exposure, and the reflective film 8 in the region A is further etched using the auxiliary P film 2a in the second region B of the diffraction grating as an etching mask. The N film 7 is also removed.

(e) 次に、領域Bの補助P膜2aを有機溶剤等で
取り除き、反射膜8とN膜7を領域Aの部分に
のみ形成する。
(e) Next, the auxiliary P film 2a in region B is removed using an organic solvent or the like, and the reflective film 8 and N film 7 are formed only in region A.

(f) 領域A及び領域Bの全面にP膜2を形成す
る。
(f) P film 2 is formed on the entire surface of region A and region B.

(g) 2光束干渉露光を行うことにより、P膜2に
より周期的な凹凸が形成される。
(g) Periodic irregularities are formed by the P film 2 by performing two-beam interference exposure.

(h) P膜2の凹凸をマスクとして、化学エツチン
グにより領域Aの基板1に凹凸を形成する。次
に、領域Bにおいて、P膜2の凹部の反射膜8
を取り除く。
(h) Using the unevenness of the P film 2 as a mask, unevenness is formed on the substrate 1 in area A by chemical etching. Next, in region B, the reflective film 8 in the concave portion of the P film 2
remove.

(i) 更に、領域BのN膜7に通常の全面露光を行
い、P膜2および反射膜8を除去する。また、
領域AのP膜2も除去する。N膜7は露光され
た部分が残る(P膜は反対)ので、この段階で
領域Aと領域Bとで位相反転した凹凸ができ
る。
(i) Further, the N film 7 in the region B is exposed to normal light over the entire surface, and the P film 2 and the reflective film 8 are removed. Also,
The P film 2 in area A is also removed. Since the exposed portion of the N film 7 remains (the opposite is the case for the P film), at this stage unevenness with phase inversion is formed in the region A and region B.

(j) 領域Aのみに付加P膜2bを施し、領域Bで
はN膜7の凹凸をマスクとして、化学エツチン
グにより領域Bの基板1に凹凸を形成する。
(j) Apply the additional P film 2b only to region A, and in region B, use the irregularities of the N film 7 as a mask to form irregularities on the substrate 1 in region B by chemical etching.

(k)領域BのN膜7および領域Aの付加P膜2bを
取り除くことによつて、領域Aと領域Bで位相
の異なる回折格子が得られる。
(k) By removing the N film 7 in region B and the additional P film 2b in region A, a diffraction grating having different phases in region A and region B can be obtained.

第7図を参照して本発明のさらに他の実施例に
ついて説明する。この実施例は、P膜に露光した
光が実質的にN膜7を透過する露光条件等を有効
的に利用し、P膜およびN膜の積層膜を一度に露
光したものである。
Still another embodiment of the present invention will be described with reference to FIG. In this example, the laminated film of the P film and the N film is exposed at the same time by effectively utilizing the exposure conditions such that the light exposed to the P film is substantially transmitted through the N film 7.

(a) 基板1の上に一様に補助P膜2aを塗布した
後マスク露光により第2の領域Bの補助P膜2
aを除去する。
(a) After uniformly coating the auxiliary P film 2a on the substrate 1, the auxiliary P film 2 in the second region B is formed by mask exposure.
Remove a.

(b) 第2の領域Bの補助P膜2aを除去した基板
1上の全面にN膜7を塗布する。
(b) Apply the N film 7 to the entire surface of the substrate 1 from which the auxiliary P film 2a in the second region B has been removed.

(c) 補助P膜2aのリフトオフにより第2領域B
のみにN膜7を残す。
(c) Second area B due to lift-off of the auxiliary P film 2a
Only the N film 7 is left.

(d) (c)の工程を経た基板1上の全面にP膜2を塗
布する。
(d) A P film 2 is applied to the entire surface of the substrate 1 which has undergone the step (c).

(e) 2光束露光を行う。黒の部分が露光された部
分である。
(e) Perform two-beam exposure. The black part is the exposed part.

(f) P膜2について現像し、P膜2の凹凸を作成
する。
(f) The P film 2 is developed to create irregularities on the P film 2.

(g) 第1の領域Aの基板1のエツチングを行う。(g) Etching the substrate 1 in the first area A.

(h) P膜2を除去し、N膜7を現像し、第2の領
域BにN膜7の凹凸を作成する。
(h) The P film 2 is removed, the N film 7 is developed, and unevenness of the N film 7 is created in the second region B.

(i) マスク露光により、第1の領域Aに付加P膜
2bを形成し、第2の領域Bの基板1のエツチ
ングを行う。
(i) By mask exposure, the additional P film 2b is formed in the first region A, and the substrate 1 in the second region B is etched.

(j) 付加P膜2bとN膜7を除去する。(j) Remove additional P film 2b and N film 7.

(発明の効果) 以上の工程から明らかなように、本発明では1
回の2光束干渉露光しか用いないため、基板1の
移動が不要となりかつ2光束干渉露光時におい
て、メタルマスク6などをする必要がないので凹
凸が形成されない部分(領域C)もなくなるた
め、精密な位相反転を有した回折格子を製造でき
る。従つて、安定でかつ特性の良いDFBレーザ
等に応用ができその効果は極めて大である。尚、
第3図、第4図、第5図の実施例の説明ではP膜
2の赤外線吸収が良いことを前提に述べたが、も
しP膜2の紫外線吸収が充分でない場合には、第
6図のごとくP膜2とN膜7の間に紫外線吸収膜
あるいは金の薄膜等から成る反射膜を積層すれば
良く、また、第7図eに示した如く、P膜、N膜
を同時に露光する方法が有効である。また、マス
ク露光および露光後の現像工程やフオトレジスト
の塗布等については詳しい具体的な説明を省いた
が、通常のフオトレジストの技術が用いられる。
(Effect of the invention) As is clear from the above steps, the present invention provides 1
Since only one two-beam interference exposure is used, there is no need to move the substrate 1, and there is no need to use a metal mask 6 during the two-beam interference exposure, so there is no part (region C) where no unevenness is formed. Diffraction gratings with phase inversion can be manufactured. Therefore, it can be applied to DFB lasers, etc., which are stable and have good characteristics, and the effect is extremely large. still,
In the explanation of the embodiments shown in FIGS. 3, 4, and 5, it is assumed that the P film 2 has good infrared absorption. However, if the P film 2 does not have sufficient ultraviolet absorption, as shown in FIG. It is sufficient to laminate a reflective film made of an ultraviolet absorbing film or a thin gold film between the P film 2 and the N film 7 as shown in FIG. The method is valid. Further, although detailed specific explanations regarding mask exposure, post-exposure development steps, photoresist coating, etc. are omitted, ordinary photoresist techniques are used.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の2光束干渉露光法の原理図、第
2図は従来の2光束干渉露光により部分的に凹凸
の位相が反転する回折格子製造の模式図、第3図
は本発明による回折格子の製造工程図、第4図、
第5図、第6図、第7図は本発明による他の実施
例の製造工程図である。 1……基板、2……ポジタイプのフオトレジス
ト膜、2a……補助のポジタイプのフオトレジス
ト膜、2b……付加のポジタイプのフオトレジス
ト膜、3……He−Cdレーザ光、4……ハーフミ
ラー、5……ミラー、6……メタルマスク、7…
…ネガタイプのフオトレジスト膜、8……紫外線
の吸収膜または反射膜(介在薄膜)。
Fig. 1 is a principle diagram of the conventional two-beam interference exposure method, Fig. 2 is a schematic diagram of manufacturing a diffraction grating in which the phase of the concave and convex portions is partially reversed by conventional two-beam interference exposure, and Fig. 3 is a diffraction grating according to the present invention. Manufacturing process diagram of the lattice, Figure 4,
FIG. 5, FIG. 6, and FIG. 7 are manufacturing process diagrams of other embodiments of the present invention. 1...Substrate, 2...Positive type photoresist film, 2a...Auxiliary positive type photoresist film, 2b...Additional positive type photoresist film, 3...He-Cd laser beam, 4...Half mirror , 5...mirror, 6...metal mask, 7...
...Negative photoresist film, 8... Ultraviolet absorbing film or reflecting film (intervening thin film).

Claims (1)

【特許請求の範囲】 1 基板上にネガタイプのフオトレジスト膜とポ
ジタイプのフオトレジスト膜の一方が第1の領域
に形成され該第1の領域とは別の第2の領域には
前記ネガタイプのフオトレジスト膜とポジタイプ
のフオトレジスト膜の他方又はネガタイプのフオ
トレジスト膜上にポジタイプのフオトレジスト膜
が形成された状態を形成する第1の工程と、前記
基板の第1の領域と第2の領域に2光束干渉露光
を行う第2の工程と、前記フオトレジスト膜のネ
ガタイプとポジタイプの現像特性が互いに反転し
ていることを利用して前記第1の領域と第2の領
域とに各領域で凹凸の位相が互いに反転した回折
格子を形成する第3の工程とを含む回折格子の製
造方法。 2 前記第1の工程において、基板の全面上にネ
ガタイプフオトレジスト膜と補助のポジタイプフ
オトレジスト膜とを順次積層した後前記第1の領
域の該積層膜をマスク露光および現像処理により
除去し、さらに前記第2の領域の補助のポジタイ
プフオトレジスト膜を除去した後全面にポジタイ
プのフオトレジスト膜を形成することにより、前
記第2の領域では前記ネガタイプのフオトレジス
ト膜上に前記ポジタイプのフオトレジスト膜が形
成され、前記第1の領域では前記ポジタイプのフ
オトレジスト膜が形成されることを特徴とする特
許請求の範囲第1項記載の回折格子の製造方法。 3 前記第1の工程において、基板の全面にネガ
タイプのフオトレジスト膜とポジタイプのフオト
レジスト膜とを順次形成し、前記第1の領域のポ
ジタイプのフオトレジスト膜をマスク露光及び現
像処理により除去することにより、前記第1の領
域には前記ネガタイプのフオトレジスト膜が形成
され、前記第2の領域には前記ネガタイプのフオ
トレジスト膜上に前記ポジタイプのフオトレジス
ト膜が形成されることを特徴とする特許請求の範
囲第1項記載の回折格子の製造方法。 4 前記第1の工程において、基板の全面上にネ
ガタイプフオトレジスト膜と補助のポジタイプフ
オトレジスト膜とを積層した後前記第1の領域の
該積層膜をマスク露光および現像処理により除去
し、さらに前記第2の領域の補助のポジタイプフ
オトレジスト膜を除去した後全面にポジタイプの
フオトレジスト膜を形成しさらに前記第1の領域
の前記ポジタイプフオトレジスト膜をマスク露光
及び現像処理により除去することにより、前記第
2の領域では前記ネガタイプのフオトレジスト膜
が形成され、前記第1の領域では前記ポジタイプ
のフオトレジスト膜が形成されることを特徴とす
る特許請求の範囲第1項記載の回折格子の製造方
法。 5 前記第1の工程において、基板の全面上にネ
ガタイプフオトレジスト膜と紫外線を吸収又は反
射する介在薄膜と補助のポジタイプフオトレジス
ト膜とを順次積層した後前記第1の領域の該積層
膜をマスク露光及び現像処理により除去し、さら
に前記第2の領域の補助のポジタイプフオトレジ
スト膜を除去した後全面にポジタイプのフオトレ
ジスト膜を形成することにより、前記第2の領域
では前記ネガタイプのフオトレジスト膜上に前記
介在薄膜を介して前記ポジタイプのフオトレジス
ト膜が形成され、前記第1の領域では前記ポジタ
イプのフオトレジスト膜が形成されることを特徴
とする特許請求の範囲第1項記載の回折格子の製
造方法。 6 前記第1の工程において、基板全面に補助の
ポジタイプのフオトレジスト膜が形成された後前
記第2の領域の該補助のポジタイプのフオトレジ
スト膜がマスク露光及び現像処理により除去さ
れ、さらに全面にネガタイプのフオトレジスト膜
を形成してリフトオフにより前記第1の領域の前
記補助のポジタイプのフオトレジスト膜と前記ネ
ガタイプのフオトレジスト膜を除去した後さらに
全面にホジタイプのフオトレジスト膜を形成する
ことにより、前記第1の領域ではポジタイプのフ
オトレジスト膜が形成され前記第2の領域では前
記ネガタイプのフオトレジスト膜上に前記ポジタ
イプのフオトレジスト膜が形成されることを特徴
とする特許請求の範囲第1項記載の回折格子の製
造方法。
[Scope of Claims] 1. On a substrate, one of a negative type photoresist film and a positive type photoresist film is formed in a first region, and the negative type photoresist film is formed in a second region different from the first region. a first step of forming a positive type photoresist film on the other of the resist film and the positive type photoresist film or on the negative type photoresist film; A second step of performing two-beam interference exposure and utilizing the fact that the negative type and positive type development characteristics of the photoresist film are reversed to form unevenness in each area in the first area and the second area. a third step of forming diffraction gratings whose phases are mutually inverted. 2. In the first step, after sequentially laminating a negative type photoresist film and an auxiliary positive type photoresist film on the entire surface of the substrate, removing the laminated film in the first region by mask exposure and development treatment, Further, by forming a positive type photoresist film on the entire surface after removing the auxiliary positive type photoresist film in the second region, the positive type photoresist film is formed on the negative type photoresist film in the second region. 2. The method of manufacturing a diffraction grating according to claim 1, wherein a film is formed, and the positive type photoresist film is formed in the first region. 3. In the first step, a negative type photoresist film and a positive type photoresist film are sequentially formed on the entire surface of the substrate, and the positive type photoresist film in the first area is removed by mask exposure and development treatment. According to the patent, the negative type photoresist film is formed in the first region, and the positive type photoresist film is formed on the negative type photoresist film in the second region. A method for manufacturing a diffraction grating according to claim 1. 4. In the first step, after laminating a negative type photoresist film and an auxiliary positive type photoresist film on the entire surface of the substrate, the laminated film in the first region is removed by mask exposure and development treatment, and After removing the auxiliary positive type photoresist film in the second region, forming a positive type photoresist film on the entire surface, and further removing the positive type photoresist film in the first region by mask exposure and development treatment. The diffraction grating according to claim 1, wherein the negative type photoresist film is formed in the second region, and the positive type photoresist film is formed in the first region. manufacturing method. 5 In the first step, after sequentially laminating a negative type photoresist film, an intervening thin film that absorbs or reflects ultraviolet rays, and an auxiliary positive type photoresist film on the entire surface of the substrate, the laminated film in the first region is laminated. By removing the auxiliary positive type photoresist film in the second area by mask exposure and development processing and forming a positive type photoresist film on the entire surface, the negative type photoresist film is removed in the second area. Claim 1, wherein the positive type photoresist film is formed on the resist film via the intervening thin film, and the positive type photoresist film is formed in the first region. A method of manufacturing a diffraction grating. 6. In the first step, after the auxiliary positive type photoresist film is formed on the entire surface of the substrate, the auxiliary positive type photoresist film in the second region is removed by mask exposure and development treatment, and then the entire surface is further covered with the auxiliary positive type photoresist film. After forming a negative type photoresist film and removing the auxiliary positive type photoresist film and the negative type photoresist film in the first region by lift-off, further forming a positive type photoresist film on the entire surface, Claim 1, wherein a positive type photoresist film is formed in the first region, and the positive type photoresist film is formed on the negative type photoresist film in the second region. A method of manufacturing the described diffraction grating.
JP5210084A 1984-03-21 1984-03-21 Production of diffraction grating Granted JPS60196701A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP5210084A JPS60196701A (en) 1984-03-21 1984-03-21 Production of diffraction grating
US06/710,984 US4660934A (en) 1984-03-21 1985-03-12 Method for manufacturing diffraction grating
GB08507413A GB2157849B (en) 1984-03-21 1985-03-21 Method for manufacturing a diffraction grating

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5210084A JPS60196701A (en) 1984-03-21 1984-03-21 Production of diffraction grating

Publications (2)

Publication Number Publication Date
JPS60196701A JPS60196701A (en) 1985-10-05
JPH0374804B2 true JPH0374804B2 (en) 1991-11-28

Family

ID=12905424

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5210084A Granted JPS60196701A (en) 1984-03-21 1984-03-21 Production of diffraction grating

Country Status (1)

Country Link
JP (1) JPS60196701A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2625036B1 (en) * 1987-12-18 1990-10-26 Thomson Csf METHOD FOR PRODUCING A DIFFRACTION NETWORK ON A SEMICONDUCTOR MATERIAL, AND OPTOELECTRONIC DEVICE COMPRISING A DIFFRACTION NETWORK PRODUCED ACCORDING TO THIS METHOD
SE516194C2 (en) * 2000-04-18 2001-12-03 Obducat Ab Substrate for and process of fabrication of structures

Also Published As

Publication number Publication date
JPS60196701A (en) 1985-10-05

Similar Documents

Publication Publication Date Title
US4660934A (en) Method for manufacturing diffraction grating
US4517280A (en) Process for fabricating integrated optics
JP3442004B2 (en) Optical element manufacturing method
JP2936187B2 (en) Method of forming resist pattern
US4826291A (en) Method for manufacturing diffraction grating
JPH0374804B2 (en)
US5221429A (en) Method of manufacturing phase-shifted diffraction grating
JPH0461331B2 (en)
JPH0374805B2 (en)
US6727046B1 (en) Process for making a periodic profile
EP0490320B1 (en) A method for producing a diffraction grating
JPH0323884B2 (en)
US20030144599A1 (en) Device and method for carrying out spatially directed detection of an electroencephalogram
JP3130335B2 (en) Method of forming resist pattern
JPH05343806A (en) Manufacture of phase-shifting diffraction
JPH052201B2 (en)
JPS627001A (en) Production of diffraction grating
JPH0456284B2 (en)
JPH01224767A (en) Formation of resist pattern
JPH05234851A (en) Formation method of resist pattern
JPH02213182A (en) Manufacture of diffraction grating
JPH01225189A (en) Manufacture of diffraction grating
JPS5966117A (en) Pattern forming method
JPH02220489A (en) Manufacture of phase-shift diffraction grating
JPH04333001A (en) Formation of lambda/4 phase shift diffraction grating

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees