[go: up one dir, main page]

JPH0374323B2 - - Google Patents

Info

Publication number
JPH0374323B2
JPH0374323B2 JP57224562A JP22456282A JPH0374323B2 JP H0374323 B2 JPH0374323 B2 JP H0374323B2 JP 57224562 A JP57224562 A JP 57224562A JP 22456282 A JP22456282 A JP 22456282A JP H0374323 B2 JPH0374323 B2 JP H0374323B2
Authority
JP
Japan
Prior art keywords
sensor
steel pipe
straight
shape
measurement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57224562A
Other languages
Japanese (ja)
Other versions
JPS59114406A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP22456282A priority Critical patent/JPS59114406A/en
Publication of JPS59114406A publication Critical patent/JPS59114406A/en
Publication of JPH0374323B2 publication Critical patent/JPH0374323B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Description

【発明の詳細な説明】 本発明は、産業用ロボツトによる鋼管々端形状
の自動計測方法特に該ロボツトに装着した光ギヤ
ツプセンサの走査軌跡に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for automatically measuring the shape of each end of a steel pipe using an industrial robot, and particularly to a scanning locus of an optical gap sensor mounted on the robot.

鋼管の外、内径、真円度、肉厚などは鋼管品質
を決定する重要な項目であり、鋼管相互の突合せ
溶接を想定して管端を開先加工したものはその開
先形状も重要な品質評価項目である。従来これら
の測定は測定用治具、計器を用いて人手により行
なつているが時間がかゝる、測定結果にバラつき
がある、単調な作業であるから人手確保に難があ
る、等の問題がある。
The outer diameter, inner diameter, roundness, wall thickness, etc. of a steel pipe are important items that determine the quality of the steel pipe, and the shape of the groove is also important when the pipe end is beveled with the assumption that the pipes will be butt welded together. This is a quality evaluation item. Conventionally, these measurements have been performed manually using measuring jigs and instruments, but there are problems such as time-consuming, uneven measurement results, and monotonous work that makes it difficult to secure manpower. There is.

本発明はかゝる測定をロボツトにやらせること
により上記問題を解決し、そしてロボツトに取付
けたセンサの移動軌跡を適切に選択することによ
り、高精度かつ迅速な鋼管端面形状計測を可能に
しようとするものである。本発明の管端形状自動
計測方法は、多関節ロボツトの先端に光ギヤツプ
センサを取付け、該先端の位置を制御して該セン
サを、管の中心線を通る垂直面および水平面に対
して所定角をなす2つの直線に沿つて鋼管管端部
前方を径方向に横切る4つの短い第1の直線部
と、該直線部の内、外端を結んで1つの連続した
パスとする経路と、該直線部の外端から鋼管外周
面に沿つて鋼管長さ方向に延びる短い第2の直線
部からなる軌跡に沿つて移動させ、この移動中に
前記第1、第2の直線部で前記センサを動作させ
て該センサと鋼管とのギヤツプ長を測定し、その
測定結果と該直線部の既知の座標位置情報とから
鋼管内、外径、真円度および開先形状等の管端形
状を求めることを特徴とするが、次に実施例を参
照しながらこれを詳細に説明する。
The present invention solves the above problems by having a robot perform such measurements, and by appropriately selecting the movement trajectory of the sensor attached to the robot, it is possible to measure the end face shape of steel pipes with high precision and quickly. That is. The method for automatically measuring the shape of a pipe end according to the present invention involves attaching an optical gap sensor to the tip of an articulated robot, controlling the position of the tip, and moving the sensor at a predetermined angle with respect to a vertical plane and a horizontal plane passing through the center line of the tube. four short first straight sections that radially cross the front end of the steel pipe along the two straight lines formed, a path that connects the inner and outer ends of the straight sections to form one continuous path, and the straight line. moving the sensor along a locus consisting of a short second linear section extending in the longitudinal direction of the steel pipe along the outer peripheral surface of the steel pipe from the outer end of the section, and operating the sensor on the first and second linear sections during this movement. The gap length between the sensor and the steel pipe is measured, and the pipe end shape such as the inner diameter, outer diameter, roundness, and groove shape of the steel pipe is determined from the measurement result and the known coordinate position information of the straight section. Next, this will be explained in detail with reference to examples.

第1図は本発明の管端形状計測法の概要を説明
する図で、10は多関節ロボツトで先端にセンサ
20を取付けられる。ロボツト10は台座部1
2、この台座部に回動自在に取付けられた第1腕
部14、該腕部14に枢着された第2腕部16、
該腕部16に枢着された第3腕部18などからな
り、センサ20に後述の軌跡に沿つた移動をさせ
ることができる。センサ20は光ギヤツプセンサ
で第2図に示すようにレーザ光源22、レンズ2
4,26,P−N−P半導体素子などからなるポ
ジシヨンセンサ28、および信号処理回路30な
どからなる。34はUO鋼管で、36はその溶接
部である。38はターニングローラで、鋼管34
を、その管中心線を中心として回転させる。
FIG. 1 is a diagram illustrating the outline of the tube end shape measurement method of the present invention, and 10 is an articulated robot to which a sensor 20 is attached to the tip. The robot 10 has a pedestal part 1
2. A first arm 14 rotatably attached to the pedestal, a second arm 16 pivotally attached to the arm 14,
It consists of a third arm part 18 pivotally attached to the arm part 16, and can move the sensor 20 along a trajectory to be described later. The sensor 20 is an optical gap sensor that includes a laser light source 22 and a lens 2 as shown in FIG.
4, 26, a position sensor 28 made of a PNP semiconductor element, and a signal processing circuit 30. 34 is a UO steel pipe, and 36 is its welded part. 38 is a turning roller, a steel pipe 34
is rotated around its tube centerline.

ギヤツプセンサ20の動作を説明すると、レー
ザ光源22より細く絞られたレーザ光32がレン
ズ24を介して鋼管34の表面に投射されると、
レーザ光32は該表面で乱反射する。点線の橢円
様ループ32aはこの乱反射光の強度分布曲線を
略示するものである。レンズ26はこの乱反射光
の一部を集めてポジシヨンセンサ28上に結像さ
せる。鋼管34が点線で示すように後退すると乱
反射光発生位置もそれに伴なつて後退し、このと
きレンズ26が該乱反射光を集束してポジション
センサ26上に結像させる位置は点線で示すよう
にずれる。かゝる機能があるのでセンサ28上の
結像位置と、センサ20および対象物34間距離
との関係を予め求めておけば、該結像位置から該
距離を知ることができる。結像位置が、センサ2
8の中心であれば左右に流れる電流値が等しく、
センサ28中心からずれた位置に結像すると左右
に流れる電流値に差を生ずる。信号処理回路30
はその左右の電流値の差を検出し、ギヤツプ距離
に換算することにより該距離を求める。
To explain the operation of the gap sensor 20, when a narrowly focused laser beam 32 from the laser light source 22 is projected onto the surface of the steel pipe 34 via the lens 24,
The laser beam 32 is diffusely reflected on the surface. A dotted circle-like loop 32a schematically represents the intensity distribution curve of this diffusely reflected light. The lens 26 collects a portion of this diffusely reflected light and forms an image on the position sensor 28. When the steel pipe 34 retreats as shown by the dotted line, the position where the diffusely reflected light is generated also moves backwards, and at this time, the position where the lens 26 focuses the diffusely reflected light and forms an image on the position sensor 26 shifts as shown by the dotted line. . Because of this function, if the relationship between the image formation position on the sensor 28 and the distance between the sensor 20 and the object 34 is determined in advance, the distance can be determined from the image formation position. The imaging position is sensor 2
If it is at the center of 8, the current value flowing to the left and right is equal,
If the image is formed at a position shifted from the center of the sensor 28, a difference will occur in the current values flowing to the left and right. Signal processing circuit 30
detects the difference between the left and right current values, and calculates the distance by converting it into a gap distance.

第3図はギヤツプセンサ20の出力の一例を示
す。鋼管34は突合せ溶接のため管端を開先加工
されており、かゝる鋼管端に同図aに示すように
ギヤツプセンサ20が配置され矢印方向に移動し
てセンサ、鋼管間ギヤツプの測定を行なう。同図
bは測定出力を示し、縦軸にはセンサ移動距離
を、横軸にはセンサ・被検体間距離をとつてい
る。図示のようにかゝる測定結果は、管端形状を
表示してもいる。開先形状のうち寸法dはルート
フエース巾、θはベベル角度と呼ばれこの第3図
bの測定出力から計測される。なおギヤツプセン
サ20の測定可能なギヤツプ長はそれ程大ではな
いので、センサ詳しくはレーザビームの投射先が
管端を外れたりしてギヤツプ過大となると測定不
能になる。
FIG. 3 shows an example of the output of the gap sensor 20. The steel pipe 34 has a beveled end for butt welding, and a gap sensor 20 is disposed at the end of the steel pipe as shown in FIG. . Figure b shows the measurement output, with the vertical axis representing the sensor movement distance and the horizontal axis representing the distance between the sensor and the subject. As shown in the figure, such measurement results also indicate the shape of the tube end. Of the groove shape, the dimension d is called the root face width, and θ is called the bevel angle, which are measured from the measurement output shown in FIG. 3b. Note that the measurable gap length of the gap sensor 20 is not very large, so if the laser beam projection target of the sensor deviates from the pipe end and the gap becomes too large, measurement becomes impossible.

本発明はかゝるセンサおよびロボツトを用いて
管端形状を測定しようとするもので、第4図にセ
ンサの移動軌跡を示す。第4図aは斜視図で、3
4は前記鋼管、40が軌跡である。第4図bは管
端から見た軌跡40を示す。これらの図に示され
たように軌跡40は第1の直線部分AE,BF,
CG,DHと、これらの直線部分の内、外端を接
続して連続したパスとする部分AF,BG,CH,
ED(これはなくてもよい)と、第1の直線部分の
外端から鋼管34の外周面に沿つてその長さ方向
に延びる第2の直線部分AI,BJ,CK,DL(K,
Lの位置は図面では隠れてしまうがI,J相当位
置にある)からなる。第4図bで鎖線42は管中
心線を通る水平面をまた鎖線44は同垂直面を示
し、点線46,48はこれらに45°をなす直線
で、軌跡40の第1の直線部分とは該点線直線4
6,48上にある。第1の直線部分管端との管に
は若干の間隙があるようにし、第2の直線部分と
管外表面との間も同様である。また第1の直線部
分にはAEで代表して示すように、該直線部分の
内端から鋼管内面まで部分hi、鋼管厚みに対応す
る部分ti、該直線部分の外端から鋼管外面までの
部分li(いずれも長さを示し、本例ではi=1)
からなる。
The present invention attempts to measure the tube end shape using such a sensor and robot, and FIG. 4 shows the movement locus of the sensor. Figure 4a is a perspective view, 3
4 is the steel pipe, and 40 is the locus. FIG. 4b shows the trajectory 40 seen from the tube end. As shown in these figures, the locus 40 has first straight line portions AE, BF,
CG, DH, and the parts AF, BG, CH, which connect the inner and outer ends of these straight parts to form a continuous path.
ED (this may be omitted), and second straight parts AI, BJ, CK, DL (K,
Although the position of L is hidden in the drawing, it is located at a position corresponding to I and J). In FIG. 4b, a chain line 42 indicates a horizontal plane passing through the center line of the tube, a chain line 44 indicates the same vertical plane, and dotted lines 46 and 48 are straight lines making an angle of 45° to these, and the first straight line portion of the locus 40 is the same. Dotted straight line 4
It's on 6,48. There is a slight gap between the tube end of the first straight section and the same between the second straight section and the outer surface of the tube. In addition, the first straight section includes a section hi from the inner end of the straight section to the inner surface of the steel pipe, a section ti corresponding to the thickness of the steel pipe, and a section from the outer end of the straight section to the outer surface of the steel pipe, as represented by AE. li (both indicate length; in this example, i=1)
Consisting of

本発明ではロボツト10に位置指令信号を与え
てセンサ20をかゝる軌跡40に沿つて移動さ
せ、即ち矢印で示すようにE,A,I,A,F,
B,J,B,G……の経路で移動させ、第1、第
2の直線部分で測定を行なわせる。センサ20は
その投受光面が被検体に対抗している必要がある
からロボツトはセンサを第1の直線部分に沿つて
移動させているときと第2の直線部分に沿つて移
動させているときではセンサを90°回動させる。
かゝる測定を行なうと、鋼管端面が第3図aのよ
うに開先加工されている場合は同図bのような測
定結果が得られ(但しこの場合は鋼管外表面も測
定結果として表示され表面形状測定、外径測定な
どに有効)、一方軌跡40の位置座標はロボツト
10側で把握されている。(各点E,A,F……
の座標位置はロボツト位置指令信号または帰還信
号などにより既知)ので、センサ20の出力信号
により鋼管内径、外径等を次のようにして求める
ことができる。即ち、BF,CG,DHのhiをh2
h3,h4,tiをt2,t3,t4,liをl2,l3,l4として直線
46方向での内、外径は 内径=BG+h1+h3または外径−t1−t3 外径=AC−l13 同様に直線48方向での内、外径は 内径=FH+h2+h4または外径−t2−t4 外径=BD−l24 tiは鋼管厚みを示すから直線46,48方向で
の鋼管厚みの平均値は(t1+t2+t3+t4)/4で
ある。大径鋼管は水平に置くと撓んで垂直面44
での内、外径は水平面42での内、外径より小に
なる。この点、45。線46,48上での管内、
外径は中立点における内、外径に相当し、正しい
値を示す。内、外径測定は上記の如く45°線上で
行なつたら鋼管を45°回転し、上下部及び左右両
側にあつた点を45°線上に移動させてこの状態で
再び軌跡40に沿つてセンサ20を移動させて行
ない(測定し)、8等分断面での上記諸定数を求
める。これらの測定結果はバラつきをみたり平均
値をとつたりする。該測定結果から長径と短径を
求めると、真円度が分る。
In the present invention, a position command signal is given to the robot 10 to move the sensor 20 along such a trajectory 40, that is, as shown by the arrows E, A, I, A, F,
It is moved along the path B, J, B, G, etc., and the measurement is performed on the first and second straight line portions. Since the light emitting/receiving surface of the sensor 20 must be opposed to the subject, the robot can move the sensor along the first straight line and when moving the sensor along the second straight line. Now rotate the sensor 90°.
When such a measurement is performed, if the end face of the steel pipe is beveled as shown in Fig. 3a, the measurement result as shown in Fig. 3b will be obtained (however, in this case, the outer surface of the steel pipe will also be displayed as the measurement result). (effective for surface shape measurement, outer diameter measurement, etc.), while the position coordinates of the trajectory 40 are known on the robot 10 side. (Each point E, A, F...
Since the coordinate position of the robot is known from the robot position command signal or feedback signal, etc., the inner diameter, outer diameter, etc. of the steel pipe can be determined from the output signal of the sensor 20 as follows. That is, hi of BF, CG, DH is h 2 ,
Assuming that h 3 , h 4 , and ti are t 2 , t 3 , t 4 , and li are l 2 , l 3 , and l 4 , the inner and outer diameters in the straight 46 directions are: Inner diameter = BG + h 1 + h 3 or outer diameter - t 1 -t 3 Outer diameter = AC-l 1 - 3 Similarly, the inner and outer diameters in the straight line 48 direction are Inner diameter = FH + h 2 + h 4 or outer diameter -t 2 -t 4 Outer diameter = BD-l 2 - 4 ti is The average value of the steel pipe thickness in the directions of straight lines 46 and 48 is (t 1 +t 2 +t 3 +t 4 )/4. If a large diameter steel pipe is placed horizontally, it will bend and the vertical surface 44
The inner and outer diameters are smaller than the inner and outer diameters at the horizontal plane 42. On this point, 45. In the pipe on lines 46, 48,
The outer diameter corresponds to the inner and outer diameters at the neutral point and shows the correct value. After measuring the inner and outer diameters on the 45° line as described above, rotate the steel pipe 45°, move the points on the top and bottom and on both left and right sides to the 45° line, and in this state reposition the sensor along the trajectory 40. 20 is moved (measured), and the above-mentioned constants are determined in 8 equal sections. These measurement results may vary or be averaged. By determining the major axis and minor axis from the measurement results, the roundness can be determined.

管端が開先加工されていると第3図bの如き結
果が得られ、これよりルートフエース幅dおよび
ベベル角度θが簡単に求まる。なお開先形状は図
示のものに限らないが、他の形状の場合もその形
状測定が可能である。
If the tube end is beveled, a result as shown in FIG. 3b is obtained, from which the root face width d and bevel angle θ can be easily determined. Note that the shape of the groove is not limited to that shown in the figure, but it is also possible to measure the shape of other shapes.

センサを図示の如き形状の軌跡40を沿つて移
動させながら測定すると、センサを鋼管端に沿つ
てほゞ一周させるだけで形状測定でき、センサを
例えば45°線46,48に沿つて移動させて測定する
場合のようにEG,HFで無駄なパスが入ることな
く測定を迅速に行なうことができ、ロボツトから
みた走査スパンが小で済む。またこの軌跡40は
同形状のもの4つ(その1つはEAIF)からなる
ので、制御も単なる繰り返しで済む。
When measuring while moving the sensor along a trajectory 40 having a shape as shown in the figure, the shape can be measured by simply moving the sensor around the end of the steel pipe approximately once, and by moving the sensor along, for example, 45° lines 46 and 48. Measurements can be performed quickly without unnecessary passes in EG and HF, and the scanning span required from the robot's perspective is small. Furthermore, since this locus 40 consists of four pieces of the same shape (one of which is EAIF), the control can be simply repeated.

鋼管溶接部はその管端面開先形状の把握が重要
である。第4図cはこの管端面開先形状把握のた
めの軌跡を加えた他の実施例を示す。軌跡40の
部分40aが溶接部開先形状測定のための軌跡
で、第1の直線部分を所定ピッチで複数本並べそ
れらを内、外端で連結してなる。図示しないがこ
の軌跡40にも管長さ方向に延びる第2の直線部
分がある。なお第1の直線部分を連結するパスは
本例では第1の直線部分の内端同志、外端同志を
結ぶものになつている。これでもほゞ1周する間
に45°線上4ケ所での測定を行なうことができる。
第4図cの状態での測定が終了したら鋼管34を
45°回転し、部分40aを除いた軌跡40で再び
測定を行なう。
For steel pipe welds, it is important to understand the shape of the pipe end groove. FIG. 4c shows another embodiment in which a locus is added for grasping the shape of the groove on the tube end surface. A portion 40a of the trajectory 40 is a trajectory for measuring the shape of the weld groove, and is formed by arranging a plurality of first straight portions at a predetermined pitch and connecting them at their inner and outer ends. Although not shown, this locus 40 also has a second straight portion extending in the tube length direction. In this example, the path connecting the first straight line sections connects the inner ends and the outer ends of the first straight line parts. Even with this, measurements can be taken at four locations on the 45° line during approximately one rotation.
After completing the measurement in the state shown in Figure 4c, remove the steel pipe 34.
Rotate 45 degrees and measure again on the trajectory 40 excluding the portion 40a.

軌跡部分40aでの走査の測定結果は第3図b
で得られる測定出力が7線についてそれぞれ得ら
れ、各線についてルートフエース巾dとベベル角
θが計測されることになる。尚、実施例は第1の
直線部分が管中心線を通る水平面又は垂直面に対
して45°をなす直線で説明して来たが、これは鋼
管の検査の際、鋼管のたわみ等を考慮して約45°
方向に測定することが多いためである。しかし、
本発明はこの角度に限定されるものでないことは
いうまでもない。
The measurement results of scanning at the trajectory portion 40a are shown in Fig. 3b.
The measurement outputs obtained are obtained for each of the seven lines, and the root face width d and bevel angle θ are measured for each line. In the embodiment, the first straight line has been described as a straight line that is at an angle of 45° to the horizontal or vertical plane passing through the center line of the pipe, but this is because the bending of the steel pipe is taken into consideration when inspecting the steel pipe. about 45°
This is because measurements are often made in the direction. but,
It goes without saying that the present invention is not limited to this angle.

以上説明したように本発明によればロボツト腕
端の移動量が少なく、所定パターンの単純な繰り
返しでほゞ1周するだけで鋼管の外径、内径、真
円度、厚み、ベベル形状など各種端面形状を正
確、迅速に測定でき、検査工程の省力化、測定精
度保持、サイクルタイムの減少などに大きな効果
が得られる。
As explained above, according to the present invention, the amount of movement of the robot arm end is small, and by simply repeating a predetermined pattern, it can change the outer diameter, inner diameter, roundness, thickness, bevel shape, etc. of the steel pipe by making almost one revolution. The shape of the end face can be measured accurately and quickly, resulting in significant effects such as saving labor in the inspection process, maintaining measurement accuracy, and reducing cycle time.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の測定法の概要を示す説明図、
第2図は光ギヤツプセンサの説明図、第3図aお
よびbは光ギヤツプセンサによる測定要領および
測定結果を示す説明図およびグラフ、第4図は本
発明で用いるセンサ移動軌跡の説明図である。 図面で10はロボツト、20は光ギヤツプセン
サ、40はセンサ移動軌跡、AE,BF,CG,
DHはその第1の直線部、AI,BJ,CK,DLは
第2の直線部、AF,BG,CH,DEまたはAB,
FG,CDは第1の直線部の内、外端を連結する経
路である。
FIG. 1 is an explanatory diagram showing an overview of the measurement method of the present invention;
FIG. 2 is an explanatory diagram of the optical gap sensor, FIGS. 3 a and 3 b are explanatory diagrams and graphs showing the measurement procedure and measurement results by the optical gap sensor, and FIG. 4 is an explanatory diagram of the sensor movement locus used in the present invention. In the drawing, 10 is a robot, 20 is an optical gap sensor, 40 is a sensor movement trajectory, AE, BF, CG,
DH is the first straight part, AI, BJ, CK, DL is the second straight part, AF, BG, CH, DE or AB,
FG and CD are paths connecting the inner and outer ends of the first straight section.

Claims (1)

【特許請求の範囲】[Claims] 1 多関節ロボツトの先端に光ギヤツプセンサを
取付け、該先端の位置を制御して該センサを、管
のの中心線を通る垂直面および水平面に対して所
定角をなす2つの直線に沿つて鋼管管端部前方を
径方向に横切る4つの短い第1の直線部と、該直
線部の内、外端を結んで1つの連続したパスとす
る経路と、該直線部の外端から鋼管外周面に沿つ
て鋼管長さ方向に延びる短い第2の直線部からな
る軌跡に沿つて移動させ、この移動中に前記第
1、第2の直線部で前記センサを移動させて該セ
ンサと鋼管とのギヤツプ長を測定し、その測定結
果と該直線部の既知の座標位置情報とから鋼管
内、外径、真円度および開先形状等の管端形状を
求めることを特徴とする管端形状の自動計測方
法。
1. An optical gap sensor is attached to the tip of an articulated robot, and the position of the tip is controlled to move the sensor along two straight lines that make a predetermined angle to the vertical and horizontal planes passing through the center line of the tube. four short first straight sections that radially cross the front of the end; a path that connects the inner and outer ends of the straight sections to form one continuous path; The sensor is moved along a locus consisting of a short second straight section extending in the longitudinal direction of the steel pipe, and during this movement, the sensor is moved at the first and second straight sections to form a gap between the sensor and the steel pipe. Automatic pipe end shape, characterized by measuring the length and determining the pipe end shape such as the inner diameter, outer diameter, roundness, and groove shape of the steel pipe from the measurement result and known coordinate position information of the straight section. Measurement method.
JP22456282A 1982-12-21 1982-12-21 Automatic measurement of shape of tube end Granted JPS59114406A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22456282A JPS59114406A (en) 1982-12-21 1982-12-21 Automatic measurement of shape of tube end

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22456282A JPS59114406A (en) 1982-12-21 1982-12-21 Automatic measurement of shape of tube end

Publications (2)

Publication Number Publication Date
JPS59114406A JPS59114406A (en) 1984-07-02
JPH0374323B2 true JPH0374323B2 (en) 1991-11-26

Family

ID=16815717

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22456282A Granted JPS59114406A (en) 1982-12-21 1982-12-21 Automatic measurement of shape of tube end

Country Status (1)

Country Link
JP (1) JPS59114406A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01321305A (en) * 1988-06-24 1989-12-27 Mitsubishi Heavy Ind Ltd Automatic shape detecting apparatus of re-inforcing ring of large diameter cylindrical body
JP2007010336A (en) * 2005-06-28 2007-01-18 Hoei Kogyo Kk Method and device for inspecting appearance
JP7353831B2 (en) * 2019-07-02 2023-10-02 株式会社ミツトヨ Inner diameter measuring device and inner diameter measuring method using the inner diameter measuring device
CN110281092B (en) * 2019-07-04 2021-02-09 山东工业职业学院 Product detection device for metal forming and use method thereof

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5280148A (en) * 1975-12-26 1977-07-05 Mitsubishi Motors Corp Contactless measuring method and apparatus for same

Also Published As

Publication number Publication date
JPS59114406A (en) 1984-07-02

Similar Documents

Publication Publication Date Title
US6919956B2 (en) Method of automatically repairing cracks and apparatus for use in such method
JP4705479B2 (en) Bead shape detection method and apparatus
JP5142775B2 (en) Welding quality inspection method and apparatus
JP2008302428A (en) Arc welding quality inspection method
CN110560976B (en) A kind of steel coil welding method and system
White et al. Vision-based gauge for online weld profile metrology
JP4762851B2 (en) Cross-sectional shape detection method and apparatus
JPWO2023120110A5 (en)
JPH0374323B2 (en)
CN118591433A (en) Method for determining geometrical result variables and/or quality characteristics of a weld seam on a workpiece and corresponding device
JP7170223B2 (en) Welding determination device, welding device, and welding determination method
JP2019124560A (en) Appearance evaluation method and appearance evaluation device for weld bead
JP2007307612A (en) Automatic welding method and automatic welding equipment, and reference tool used for automatic welding
JPH0711412B2 (en) Pipe shape measuring device
JP2914932B2 (en) Method of measuring processing position and shape of tube of membrane panel using three-dimensional laser sensor
JPH0374322B2 (en)
Arko et al. Automatic Calibration of the Adaptive 3D Scanner-Based Robot Welding System
JPH0665438B2 (en) Adaptive welding equipment with fill control correction function for curved weld groove
Bae et al. A study of vision-based measurement of weld joint shape incorporating the neural network
JP3382787B2 (en) Apparatus and method for detecting welding position
JPH05240844A (en) Copying method of flaw detector for ERW pipe weld
JPS59114405A (en) Automatic measurement method for the shape of steel parts
JP3025577B2 (en) Shape processing method
JP3071271B2 (en) Object shape 3D measuring device
Peng et al. Vision sensing and surface fitting for real-time detection of tight butt joints