[go: up one dir, main page]

JPH0373576A - Semiconductor photodetector - Google Patents

Semiconductor photodetector

Info

Publication number
JPH0373576A
JPH0373576A JP1210313A JP21031389A JPH0373576A JP H0373576 A JPH0373576 A JP H0373576A JP 1210313 A JP1210313 A JP 1210313A JP 21031389 A JP21031389 A JP 21031389A JP H0373576 A JPH0373576 A JP H0373576A
Authority
JP
Japan
Prior art keywords
layer
light
substrate
type
absorption layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1210313A
Other languages
Japanese (ja)
Inventor
Masaki Yamaguchi
正樹 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP1210313A priority Critical patent/JPH0373576A/en
Publication of JPH0373576A publication Critical patent/JPH0373576A/en
Pending legal-status Critical Current

Links

Landscapes

  • Light Receiving Elements (AREA)

Abstract

PURPOSE:To prevent quantum efficiency from decreasing by forming a semiconductor substrate under a photodetecting region in a convex mirror shape, forming the specific region of an electrode at the substrate side under the formed part of the substrate to reflect the light passed through a light absorption layer of an incident light, thereby converging it to the absorption layer. CONSTITUTION:A photodetector p<+> type region 7 and a guard ring 8 are formed in a laminated structure formed by continuously growing an n<-> type InGaAs light absorption layer 3, an n-type InGaAsP layer 4 and n-type InP cap layers 5, 6 on an n<+> type InP substrate 1 through an n-type InP buffer layer 2 to grown an SiNx film as a surface protective film 9, the substrate is then etched to form a convex mirror shape. Thereafter, a p-type side electrode 10 and an n-type side electrode 11 are deposited to obtain an element structure. The electrode 11 is formed in a spherical shape having a radius of curvature in which its focus is disposed in the light absorption layer to perform a role of a mirror for reflecting again the light scattered without being absorbed by the layer 3 toward the layer 3, thereby contributing to improvement in quantum efficiency.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、光通信や光情報処理等に於て用いられる半導
体受光素子に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a semiconductor light-receiving element used in optical communications, optical information processing, and the like.

〔従来の技術〕[Conventional technology]

第3図に、従来のInk/InGaAs系のヘテロ構造
アバランシェ・フォトダイオード(以下APDと記す)
の断面図を示す。n”−InP基板1上にn−InPバ
ッファ層2を介して、n−InGaAs光吸収層3 、
 H−InG a A s P層4.n−InPキャッ
プ層5,6を連続成長して形成した積層構造体に、受光
部p1領域7及びガードリング8を形成して、第3図に
示した素子構造を得ている。増倍領域な狭禁制帯幅の光
吸収層3から分離させ、広禁制帯幅のrnP層5中に形
成する事で、低暗電流・高感度特性を得ている。
Figure 3 shows a conventional Ink/InGaAs-based heterostructure avalanche photodiode (hereinafter referred to as APD).
A cross-sectional view is shown. An n-InGaAs light absorption layer 3 is formed on the n''-InP substrate 1 via the n-InP buffer layer 2.
H-InGa As P layer 4. A light-receiving portion p1 region 7 and a guard ring 8 are formed on a laminated structure formed by continuously growing n-InP cap layers 5 and 6, thereby obtaining the device structure shown in FIG. 3. By separating it from the light absorption layer 3 having a narrow bandgap in the multiplication region and forming it in the rnP layer 5 having a wide bandgap, low dark current and high sensitivity characteristics are obtained.

n−InGaAsP層4はへテロ界面での価電子帯バン
ド不連続量を緩和し、応答特性を改善する為に入れた中
間層で、またInP層がn層5. n層6と二重構造に
なっているのは、ガードリング効果を高める為である。
The n-InGaAsP layer 4 is an intermediate layer inserted to alleviate the valence band discontinuity at the hetero interface and improve response characteristics, and the InP layer is an intermediate layer added to the n-layer 5. The reason why it has a double structure with the n layer 6 is to enhance the guard ring effect.

現状のInk/InGaAs系APDは、IGb/s程
度の帯域を有しているが、さらに、高帯域化するには、
光吸収層の薄膜化により、キャリア走行時間短縮が必要
となる。
Current Ink/InGaAs APDs have a bandwidth of about IGb/s, but in order to further increase the bandwidth,
By thinning the light absorption layer, it is necessary to shorten the carrier transit time.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

一般に、吸収係数α2層層厚なる媒体に垂直に光が入射
してくる場合、光吸される光子の数は、(1−e−“X
)に比例するから、従来型のInk/InGaAs系A
PDにおいて、光吸収層を薄くすると、透過光成分が多
くなる。この透過光は、100μm〜200μm程度の
比較的厚いn+−InP基板中を若干の自由キャリアに
吸収されつつ進行し、裏面電極11で反射した後、再び
同様の過程を経る0通常光は平行ビームではなく、集光
した後、受光素子に導入されるため、反射光が受光域下
のInGaAs 3領域で吸収される確率は低くなる。
In general, when light is perpendicularly incident on a medium with absorption coefficient α2 layers thick, the number of photons absorbed is (1-e-“X
), the conventional Ink/InGaAs system A
In PD, when the light absorption layer is made thinner, the amount of transmitted light component increases. This transmitted light travels through the relatively thick n+-InP substrate of about 100 μm to 200 μm while being absorbed by some free carriers, and after being reflected by the back electrode 11, it goes through the same process again. 0 Normal light is a parallel beam Instead, the light is focused and then introduced into the light receiving element, so the probability that the reflected light is absorbed by the InGaAs 3 region below the light receiving area is low.

従って、光吸収層3の薄膜化により、量子効率が大幅に
低下するという現象が問題となる。
Therefore, a problem arises in that the quantum efficiency decreases significantly due to thinning of the light absorption layer 3.

〔課題を解決するための手段〕[Means to solve the problem]

本発明が提供する受光素子は、バンドギャップE1なる
半導体基板上に、バンドギャップE2(El<El)な
る光吸収層を含む半導体多層構造を有しており、上記光
吸収層中の受光領域たる特定領域の下に位置する前記半
導体基板が、ある曲率を持った曲面に加工されており、
且つ基板側電極の一部が、上記加工部の下面に形成され
ていることを特徴とする構成になっている。
The light receiving element provided by the present invention has a semiconductor multilayer structure including a light absorption layer having a band gap E2 (El<El) on a semiconductor substrate having a band gap E1, and a light receiving region in the light absorption layer. The semiconductor substrate located under the specific area is processed into a curved surface with a certain curvature,
Further, the structure is characterized in that a part of the substrate-side electrode is formed on the lower surface of the processed portion.

上述した従来の問題点に対し、本発明では、受光領域の
下の半導体基板を凸面鏡状に加工し、基板側電極の特定
領域を上記半導体基板の加工部の下に形成し、入射光の
うち光吸収層と透過した光を反射させ、光吸収層に集光
する。従って、従来量子効率に寄与しなかった、散乱光
を再吸収し、吸収層が厚いのと同等な効果を持たせると
いう特長を有する。
In order to solve the above-mentioned conventional problems, in the present invention, the semiconductor substrate under the light receiving area is processed into a convex mirror shape, and a specific area of the substrate side electrode is formed under the processed part of the semiconductor substrate, so that part of the incident light is processed into a convex mirror shape. The light that has passed through the light absorption layer is reflected and focused on the light absorption layer. Therefore, it has the advantage of reabsorbing scattered light, which conventionally did not contribute to quantum efficiency, and providing the same effect as a thick absorption layer.

〔実施例士〕[Example specialist]

以下、本発明の実施例について、図面を参照して詳細に
説明する。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

第1図は本発明の一実施例を示す図で、InP/ I 
n G a A s系へテロ接合APDの構造を示す断
面図である0本実施例によれば、n”−InP基板1上
に気相成長法により、順次n−InPバッファ層2r 
n−−InGaAs光吸収層3゜バンド不連続量緩和の
為のn −I n G a A s層4.2層に分かれ
たキャップ層n−InP5及びn”−−InF3を結晶
成長して形成した積層構造体にs ”B eのイオン注
入並びに活性化アニールによりガードリング8を形成し
て、更に、zn。
FIG. 1 is a diagram showing an embodiment of the present invention, in which InP/I
1 is a cross-sectional view showing the structure of an nGaAs-based heterojunction APD. According to this embodiment, an n-InP buffer layer 2r is sequentially formed on an n''-InP substrate 1 by a vapor phase growth method.
n--InGaAs light absorption layer 3. n-InGaAs layer for relaxation of band discontinuity 4. Cap layer divided into two layers formed by crystal growth of n-InP5 and n''--InF3 A guard ring 8 is formed in the laminated structure by ion implantation of s''Be and activation annealing, and then zn.

P、をソースとした封管熱拡散によって受光部p+領領
域形成している0表面保護膜9としてS i Nx膜を
成長した後、ブロム・メ謔γル系のエツチング液でn”
−InP基板をエツチング加工し、第1図に示すような
形状に加工する。その後、p側電極10及びn側電極1
1を蒸着し、第1図に示す様な素子構造を得る。
After growing a SiNx film as the surface protective film 9 forming the p+ region of the light receiving part by sealed tube thermal diffusion using P as a source, n'' is grown using a bromide-based etching solution.
- The InP substrate is etched and processed into the shape shown in FIG. After that, the p-side electrode 10 and the n-side electrode 1
1 is vapor-deposited to obtain an element structure as shown in FIG.

前述のエツチング及び、蒸着によって形成されたn側電
極11は、焦点が光吸収層中に位置する様な、曲率半径
を持つ球面となっており、n−−InGaAs光吸収層
3で吸収されずに散乱してきた光を、再び、n−−In
GaAs光吸収層3に向げて反射するミラーの役割を果
たす、従って、従来素子では散乱し再び吸収されること
のなかった透過光が、量子効率の向上に寄与することに
なる。量子効率の向上度は光吸収層3の厚さが2倍にな
ったものとほとんど等価の値を示した。又、反射光によ
る、時間的な遅れにより、立ち下がり時間の増大が懸念
されるが、n−InPバッファ層2とn”−InP基板
を足した層厚が100μmだとして、t=100X10
−”m/ (3xlO’m/s)辷3X10−”sとほ
とんど問題にならない遅れである。
The n-side electrode 11 formed by the above-mentioned etching and vapor deposition has a spherical surface with a radius of curvature such that the focal point is located in the light absorption layer, and is not absorbed by the n--InGaAs light absorption layer 3. The light scattered by the n--In
The transmitted light, which plays the role of a mirror that reflects toward the GaAs light absorption layer 3 and was therefore scattered and not absorbed again in the conventional element, contributes to improving the quantum efficiency. The degree of improvement in quantum efficiency was almost equivalent to that obtained by doubling the thickness of the light absorption layer 3. Also, there is a concern that the fall time will increase due to the time delay caused by the reflected light, but assuming that the total thickness of the n-InP buffer layer 2 and the n''-InP substrate is 100 μm, t = 100 x 10
-"m/ (3xlO'm/s) x 3x10-"s, which is a delay that is hardly a problem.

次に第2図は本発明の別の実施例であるInP/InG
aAs  pin−PDの構造を示す断面図である。p
in−PDはアバランシェ・フォト・ダイオードと異な
り、低バイアスで高速応答をする様に、pn接合の位置
はn−”−InGaAs3中に形成しており、第1図の
実施例で形成したn−InGaAsP層及びガードリン
グは無い。
Next, FIG. 2 shows another embodiment of the present invention, InP/InG.
FIG. 2 is a cross-sectional view showing the structure of aAs pin-PD. p
Unlike an avalanche photodiode, the in-PD has a pn junction formed in n-''-InGaAs3 in order to achieve high-speed response at low bias. There is no InGaAsP layer and guard ring.

また、キャップ層はn−InP層5のみの1層となって
いる。APDの場合と同様に、受光領域の下のn”−I
nP基板1を球の一部となるように第2図のように加工
し、裏面電極11をその下に形成しである。光吸収層の
薄膜化により高速応答化を図る際、光吸収層厚が実質的
に2倍あるのと等価な量子効率を得ることができる。
Further, the cap layer is a single layer consisting of only the n-InP layer 5. As in the case of APD, n”-I below the photosensitive area
The nP substrate 1 is processed to form a part of a sphere as shown in FIG. 2, and the back electrode 11 is formed thereunder. When achieving faster response by making the light absorption layer thinner, it is possible to obtain a quantum efficiency equivalent to having substantially twice the thickness of the light absorption layer.

〔発明の効果〕〔Effect of the invention〕

以上説明した様に、本発明は、吸収層からの透過光を、
適当な形状を持った、n側電極で反射して再吸収させる
ことにより、高応答速度並びに高量子効率を併せ持つ半
導体受光素子を提供できる。
As explained above, the present invention allows transmitted light from an absorption layer to be
By reflecting and reabsorbing the light with an n-side electrode having an appropriate shape, it is possible to provide a semiconductor light-receiving element that has both high response speed and high quantum efficiency.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を示す半導体素子の断面図、
第2図は本発明による別の実施例を示す半導体受光素子
の断面図、第3図は従来例を示す半導体受光素子の断面
図である。 図において、1・・・・・・n”−InP基板、2・・
・・・・n−InPバッファ層、3・・・・・・n−−
InGaAs光吸収層、4−n−’InGaAsP、5
−− n −I n P s 8・・・・・・n−−I
nP、7・・・・・・受光部p+領領域8・・・・・・
ガードリング、9・・・・・・表面保護膜、・10・・
・・・・p側電極、11・・・・・・n側電極を各々示
す。
FIG. 1 is a cross-sectional view of a semiconductor device showing an embodiment of the present invention;
FIG. 2 is a cross-sectional view of a semiconductor light-receiving device showing another embodiment of the present invention, and FIG. 3 is a cross-sectional view of a semiconductor light-receiving device showing a conventional example. In the figure, 1... n''-InP substrate, 2...
...n-InP buffer layer, 3...n--
InGaAs light absorption layer, 4-n-'InGaAsP, 5
-- n -I n P s 8...n--I
nP, 7... Light receiving part p+ region 8...
Guard ring, 9...Surface protective film, 10...
. . . p-side electrode, 11 . . . n-side electrode, respectively.

Claims (1)

【特許請求の範囲】[Claims] バンドギャップE_1なる半導体基板上に、バンドギャ
ップE_2(E_2<E_1)なる光吸収層を含む半導
体多層構造を有しており、上記光吸収層中の受光領域た
る特定領域の下に位置する前記半導体基板が、曲率を持
った曲面に加工されており、且つ基板側電極の一部が、
上記加工部の下面に形成されていることを特徴とする半
導体受光素子。
It has a semiconductor multilayer structure including a light absorption layer having a band gap E_2 (E_2<E_1) on a semiconductor substrate having a band gap E_1, and the semiconductor is located under a specific region which is a light receiving region in the light absorption layer. The substrate is processed into a curved surface with curvature, and a part of the substrate side electrode is
A semiconductor light-receiving element, characterized in that it is formed on the lower surface of the processed portion.
JP1210313A 1989-08-14 1989-08-14 Semiconductor photodetector Pending JPH0373576A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1210313A JPH0373576A (en) 1989-08-14 1989-08-14 Semiconductor photodetector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1210313A JPH0373576A (en) 1989-08-14 1989-08-14 Semiconductor photodetector

Publications (1)

Publication Number Publication Date
JPH0373576A true JPH0373576A (en) 1991-03-28

Family

ID=16587349

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1210313A Pending JPH0373576A (en) 1989-08-14 1989-08-14 Semiconductor photodetector

Country Status (1)

Country Link
JP (1) JPH0373576A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5942771A (en) * 1997-04-14 1999-08-24 Mitsubishi Denki Kabushiki Kaisha Semiconductor photodetector
US7694900B2 (en) 2003-04-25 2010-04-13 Nippon Shokubai Co., Ltd. Method for disintegrating hydrate polymer and method for production of water-absorbent resin
JP2013171920A (en) * 2012-02-20 2013-09-02 Nec Corp Semiconductor light-receiving element

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5942771A (en) * 1997-04-14 1999-08-24 Mitsubishi Denki Kabushiki Kaisha Semiconductor photodetector
US7694900B2 (en) 2003-04-25 2010-04-13 Nippon Shokubai Co., Ltd. Method for disintegrating hydrate polymer and method for production of water-absorbent resin
JP2013171920A (en) * 2012-02-20 2013-09-02 Nec Corp Semiconductor light-receiving element

Similar Documents

Publication Publication Date Title
JPH04111478A (en) Light receiving element
JP2002151731A (en) Planar photodetector reinforced by resonant cavity
US5045908A (en) Vertically and laterally illuminated p-i-n photodiode
JP2001320081A (en) Semiconductor light receiving element
JPH0373576A (en) Semiconductor photodetector
JP2002203982A (en) Semiconductor light receiving device and method of manufacturing the same
JPS6085579A (en) Light-emitting/light-receiving element
JPH04342174A (en) Semiconductor photoelectric receiving element
JPS6269687A (en) Semiconductor photodetector
JP2002344002A (en) Light-receiving element and mounting body thereof
JPH04360585A (en) Semiconductor photodetector
JP2953694B2 (en) Semiconductor light receiving element
JPH05102513A (en) Semiconductor light receiving element
JPH0480973A (en) Semiconductor photodetector
JPH04263475A (en) Semiconductor photodetector and manufacture thereof
JPS5990964A (en) Photodetector
JPH01257378A (en) Semiconductor photodetector
JP2001308366A (en) Photodiode
JPH0427171A (en) Semiconductor device
JPH0411787A (en) Semiconductor photodetector
JPH05136446A (en) Semiconductor photodetector
JPS59149070A (en) photodetector
JP2841876B2 (en) Semiconductor light receiving element
JPH01225376A (en) Semiconductor photodetector
JPH0555619A (en) Semiconductor photodetector