[go: up one dir, main page]

JPH0372136B2 - - Google Patents

Info

Publication number
JPH0372136B2
JPH0372136B2 JP12758384A JP12758384A JPH0372136B2 JP H0372136 B2 JPH0372136 B2 JP H0372136B2 JP 12758384 A JP12758384 A JP 12758384A JP 12758384 A JP12758384 A JP 12758384A JP H0372136 B2 JPH0372136 B2 JP H0372136B2
Authority
JP
Japan
Prior art keywords
powder
electrode
titanium sponge
consumable electrode
niobium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP12758384A
Other languages
Japanese (ja)
Other versions
JPS619529A (en
Inventor
Masaaki Koizumi
Nobuo Fukada
Hiroyuki Okano
Itaru Inoe
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Toho Titanium Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Toho Titanium Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd, Toho Titanium Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP12758384A priority Critical patent/JPS619529A/en
Publication of JPS619529A publication Critical patent/JPS619529A/en
Publication of JPH0372136B2 publication Critical patent/JPH0372136B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

[発明の属する技術分野] 本発明は2種以上の高融点活性金属からなる合
金溶製用消耗電極に係り、特にNb−Ti合金を、
消耗電極式真空アーク溶解法により溶製する際に
用いられる消耗電極に関するものである。 [従来の技術] Nb−Ti合金等の高融点金属を含むチタン合金
は合金成分金属との間の著しい融点の差と比重の
差から、通常の消耗電極式真空アーク溶解法によ
つて、均質な、偏析のない鋳塊を得ることは困難
である。従来、上述の問題を解決するための方法
として、Ti−5wt%Ta(以下wt%を単に%と略記
する)等の高融点金属を数パーセント程度含むチ
タン合金に対して、消耗電極に関する種々の改良
法が行なわれてきたが、高融点金属を約半量含有
する合金に対するものについては、ほとんど報告
されていないTi−5%Ta合金等について報告さ
れている消耗電極は次の通りである。 基体金属と合金成分金属をよく混合し、コン
パクト状に成型した消耗電極(特公昭49−8607
号)。 基体金属と合金成分金属の薄い板を長手方向
に平行に多数枚重ねた消耗電極(特開昭49−
120811号)。 基体金属と合金成分金属粉末をよく混合し、
この混合体を圧縮成型した後、基体金属の中心
に装入し、コンパクト状に成型した消耗電極
(特公昭46−17413号)。 しかしながら、これらの消耗電極をNb−Ti合
金に適用した場合、次の欠点を有する。 上記第1の電極を製造するには、スポンジチタ
ンの平均粒径は0.8mm〜13mm、嵩比重は約1.3であ
り、ニオブ粉末の平均粒径は0.07mm〜1.0mm、嵩
比重は約4.5なので粒径と嵩比重の差が大きく、
均一に混合することは極めて困難である。 上記第2の薄い板を多数板重ねる方法による電
極においてはその薄板自体を得ることが高価であ
り、またチヤンバー内での不活性ガス溶接が困難
である。 上記第3の電極の製造においては、チタン粉末
は酸素含有量が高く、また高価であること、さら
にニオブとチタンを約半量ずつ使用することか
ら、混合後の圧縮成型したコンパクトを基体金属
に装入するという操作ができない。 本発明はこのような欠点を克服し、組成が均一
な、偏析のない、ニオブを約半量含有するチタン
合金をも溶製できる消耗電極を提供することを目
的とする。 [発明の構成] すなわち本発明はニオブの粒または粉末をスポ
ンジチタンで包み圧縮成型したコンパクトをスポ
ンジチタン中に装入して、圧縮成型し、この成型
体から構成したことを特徴とするNb−Ti合金溶
製用消耗電極を提供するものである。 本発明におけるコンパクトは、外側のスポンジ
チタンの平均粒径を通常10mm以下、好ましくは5
mm以下とし、内側のニオブの粒または粉末の平均
粒径を通常50mm以下、好ましくは5mm以下とす
る。このスポンジチタンでニオブの粒または粉末
を包む理由は、ニオブの粒または粉末のみの圧縮
成型では、型壁に焼付きを生じてしまうからであ
り、細かいスポンジチタンを使用することによ
り、ニオブの粒または粉末が型壁に接触する面積
を減らし型壁の焼付きを防止する。このようにし
て圧縮成型したコンパクトを平均粒径50mm以下の
スポンジチタン中に数個平均的に装入し圧縮成型
した後溶接し、消耗電極とする。 [発明の実施例] 次に本発明の実施例を図面に従つて説明する。 第1図はコンパクト製造用プレス型の縦断面図
である。まずプレス型1内に中子2を入れ、その
内側にニオブ粉末3を、外側にニオブ粉末3を包
むようにスポンジチタン4を装入し、中子2を引
抜いた後適当にならして圧縮成型する。これによ
つて得られたコンパクト5の形状を斜視図で第2
図に示す。 次に第3図に示すように6個のコンパクト5を
スポンジチタン6中に装入し、圧縮成型してブリ
ケツト7を得、これらブリケツト7を複数個溶接
して消耗電極とする。第4図はこうして製作した
消耗電極8の縦断面図である。9は電源との継ぎ
手である。この消耗電極8を真空アーク3重溶解
してNb−50%Ti合金を製造した結果を第1表に
示す。第1表は1500Kg鋳塊製造の結果である。
[Technical field to which the invention pertains] The present invention relates to a consumable electrode for alloy melting consisting of two or more types of high melting point active metals, and in particular to a Nb-Ti alloy,
This invention relates to a consumable electrode used in melting by a consumable electrode type vacuum arc melting method. [Prior art] Titanium alloys containing high-melting point metals such as Nb-Ti alloys cannot be homogeneously melted using the ordinary consumable electrode vacuum arc melting method due to the significant difference in melting point and specific gravity between them and the alloy component metals. However, it is difficult to obtain an ingot without segregation. Conventionally, as a method to solve the above-mentioned problems, various methods regarding consumable electrodes have been applied to titanium alloys containing several percent of high-melting point metals, such as Ti-5wt%Ta (hereinafter wt% is simply abbreviated as %). Although improved methods have been made, there have been few reports on alloys containing about half of high melting point metals.Consumable electrodes reported on Ti-5% Ta alloys and the like are as follows. A consumable electrode made by thoroughly mixing the base metal and alloy component metal and molding it into a compact shape (Special Publication Publication No. 49-8607
issue). A consumable electrode made of a large number of thin plates of base metal and alloy component metal stacked in parallel in the longitudinal direction
No. 120811). Mix the base metal and alloy component metal powder well,
A consumable electrode (Japanese Patent Publication No. 17413/1983) is made by compression molding this mixture, inserting it into the center of a base metal, and molding it into a compact shape. However, when these consumable electrodes are applied to Nb-Ti alloys, they have the following drawbacks. In order to manufacture the first electrode, the average particle size of the titanium sponge is 0.8 mm to 13 mm and the bulk specific gravity is about 1.3, and the average particle size of the niobium powder is 0.07 mm to 1.0 mm and the bulk specific gravity is about 4.5. There is a large difference in particle size and bulk specific gravity,
It is extremely difficult to mix uniformly. In the electrode formed by the method of stacking a large number of second thin plates, it is expensive to obtain the thin plates themselves, and inert gas welding within the chamber is difficult. In the production of the third electrode, titanium powder has a high oxygen content and is expensive, and since niobium and titanium are used in approximately half each, a compression-molded compact after mixing is mounted on the base metal. I cannot do the operation of entering it. The object of the present invention is to overcome these drawbacks and provide a consumable electrode that has a uniform composition, is free from segregation, and is capable of melting titanium alloys containing about half of niobium. [Structure of the Invention] That is, the present invention is a Nb- The present invention provides a consumable electrode for melting Ti alloy. In the compact according to the present invention, the average particle size of the outer titanium sponge is usually 10 mm or less, preferably 5 mm.
mm or less, and the average particle size of the inner niobium grains or powder is usually 50 mm or less, preferably 5 mm or less. The reason why the niobium particles or powder are wrapped in this titanium sponge is that compression molding of only the niobium particles or powder would cause seizure on the mold wall, so by using fine titanium sponge, the niobium particles Alternatively, reduce the area where the powder comes into contact with the mold wall to prevent seizure of the mold wall. Several of the compacts compressed in this manner are placed in a titanium sponge with an average grain size of 50 mm or less, compression molded, and then welded to form a consumable electrode. [Embodiments of the Invention] Next, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a longitudinal cross-sectional view of a press mold for compact production. First, a core 2 is placed in a press mold 1, a niobium powder 3 is placed inside the core 2, and a titanium sponge 4 is charged to the outside so as to cover the niobium powder 3.After pulling out the core 2, the core 2 is properly smoothed and compression molded. do. The shape of the compact 5 obtained by this is shown in the second perspective view.
As shown in the figure. Next, as shown in FIG. 3, six compacts 5 are placed in a titanium sponge 6, compression molded to obtain briquettes 7, and a plurality of these briquettes 7 are welded to form a consumable electrode. FIG. 4 is a longitudinal sectional view of the consumable electrode 8 manufactured in this manner. 9 is a joint with a power source. Table 1 shows the results of producing a Nb-50% Ti alloy by triple melting the consumable electrode 8 in a vacuum arc. Table 1 shows the results of producing a 1500Kg ingot.

【表】 [発明の効果] 上記実施例の結果から明らかなように本発明の
消耗電極は組成の均一な偏析のないNb−Ti合金
を溶製するのに好適である。特に本発明の電極は
超電導材料および航空機フアスナー材料として一
般的に使用されるNb−Ti合金の溶製用として優
れたものであり、その製造において成型、溶接が
容易であり、ニオブを約半量(約40〜60%)含む
場合でも組成の均一な合金を溶製できるというす
ぐれた効果を奏する。
[Table] [Effects of the Invention] As is clear from the results of the above examples, the consumable electrode of the present invention is suitable for melting a Nb-Ti alloy with a uniform composition and no segregation. In particular, the electrode of the present invention is excellent for melting Nb-Ti alloys, which are commonly used as superconducting materials and aircraft fastener materials. It has the excellent effect of being able to produce an alloy with a uniform composition even when it contains about 40 to 60%).

【図面の簡単な説明】[Brief explanation of drawings]

図面は本発明の1実施例を示し、第1図はコン
パクト製造用プレス型の縦断面図、第2図はコン
パクトの斜視図、第3図は消耗電極用ブリケツト
の斜視図、第4図は消耗電極の縦断面図である。 1…コンパクト製造用プレス型、2…中子、3
…ニオブの粒または粉末、4…スポンジチタン、
5…コンパクト、6…スポンジチタン、7…ブリ
ケツト、8…消耗電極、9…継ぎ手。
The drawings show one embodiment of the present invention, and FIG. 1 is a longitudinal cross-sectional view of a press mold for producing a compact, FIG. 2 is a perspective view of the compact, FIG. 3 is a perspective view of a briquette for a consumable electrode, and FIG. FIG. 3 is a longitudinal cross-sectional view of a consumable electrode. 1... Press mold for compact manufacturing, 2... Core, 3
... Niobium grains or powder, 4... Sponge titanium,
5... Compact, 6... Titanium sponge, 7... Briquette, 8... Consumable electrode, 9... Joint.

Claims (1)

【特許請求の範囲】 1 Nb−Ti合金溶製用消耗電極において、ニオ
ブの粒または粉末をスポンジチタンで包み圧縮成
型したコンパクトを、スポンジチタン中に装入し
て圧縮成型し、この成型体から構成したことを特
徴とする電極。 2 ニオブの粒または粉末の平均粒径は50mm以下
である特許請求の範囲第1項記載の電極。 3 ニオブの粒または粉末を含むスポンジチタン
の平均粒径は10mm以下である特許請求の範囲第1
項記載の電極。 4 平均粒径50mm以下のスポンジチタン中にコン
パクトを装入して成る特許請求の範囲第1項記載
の電極。
[Claims] 1. In a consumable electrode for Nb-Ti alloy melting, a compact made by wrapping niobium grains or powder in titanium sponge and compression molding is inserted into titanium sponge and compression molded, and from this molded body. An electrode characterized by comprising: 2. The electrode according to claim 1, wherein the average particle size of the niobium particles or powder is 50 mm or less. 3. Claim 1, wherein the average particle size of the titanium sponge containing niobium grains or powder is 10 mm or less
Electrode as described in Section. 4. The electrode according to claim 1, comprising a compact inserted into titanium sponge having an average particle size of 50 mm or less.
JP12758384A 1984-06-22 1984-06-22 Consuming electrode for melting nb and ti alloy Granted JPS619529A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12758384A JPS619529A (en) 1984-06-22 1984-06-22 Consuming electrode for melting nb and ti alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12758384A JPS619529A (en) 1984-06-22 1984-06-22 Consuming electrode for melting nb and ti alloy

Publications (2)

Publication Number Publication Date
JPS619529A JPS619529A (en) 1986-01-17
JPH0372136B2 true JPH0372136B2 (en) 1991-11-15

Family

ID=14963654

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12758384A Granted JPS619529A (en) 1984-06-22 1984-06-22 Consuming electrode for melting nb and ti alloy

Country Status (1)

Country Link
JP (1) JPS619529A (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE60130477T2 (en) * 2000-10-02 2008-01-03 Nippon Mining & Metals Co., Ltd. High purity zirconium or hafnium, sputtering target containing the same and thin films made therewith, process for producing high purity zirconium or hafnium, and manufacturing process for high purity zirconium or hafnium powders
JP2005298855A (en) * 2004-04-07 2005-10-27 Toyota Central Res & Dev Lab Inc Titanium alloy and titanium alloy product and method for producing the same
LV13528B (en) * 2006-09-25 2007-03-20 Ervins Blumbergs Method and apparatus for continuous producing of metallic tifanium and titanium-bases alloys
CN104313363B (en) * 2014-10-08 2016-08-24 西安西工大超晶科技发展有限责任公司 A kind of method of smelting of titanium-niobium alloy ingot casting
CN105057661B (en) * 2015-08-28 2017-03-22 西北有色金属研究院 Preparation method for high-Ta-content Ti-Ta alloy consumable electrode
CN107252889B (en) * 2017-05-26 2018-11-13 西安赛特思迈钛业有限公司 A kind of preparation method of titanium alloy large-sized casting ingot consutrode

Also Published As

Publication number Publication date
JPS619529A (en) 1986-01-17

Similar Documents

Publication Publication Date Title
JPH0474419B2 (en)
US3445731A (en) Solid capacitor with a porous aluminum anode containing up to 8% magnesium
JPH0372136B2 (en)
EP2939761B1 (en) Production method for a niobium granulated product, production method for a sintered body, production method for a chemical conversion body for nobium capacitor positive electrode and production method for a capacitor
US6060017A (en) Method for sintering a metallic powder
JP6787744B2 (en) Manufacturing method of electrode for melting titanium alloy
JPS625329B2 (en)
JP2004206900A (en) Electrode for consumable electrode type arc melting
JP2689448B2 (en) Thermal battery
JP3161224B2 (en) Consumable electrode for producing nitrogen-containing titanium alloy ingot and method for producing nitrogen-containing titanium alloy ingot using this consumable electrode
JPS6173844A (en) Consumable type electrode and its production
JP3301792B2 (en) Hydrogen storage alloy electrode
JP3374629B2 (en) Flat battery manufacturing method
JPS62267433A (en) Consumable electrode for refining titanium alloy
JP3147387B2 (en) Method for manufacturing anode body for solid electrolytic capacitor
JP3583837B2 (en) Method for producing hydrogen storage alloy electrode
JPH0475294B2 (en)
JP2763934B2 (en) Manufacturing method of electrical contact material
JPS5914265A (en) Manufacture of button shaped alkali manganese cell
JPH06103857A (en) Manufacture of electrode for vacuum interrupter
JPH06111815A (en) Hydrogen storage alloy electrode
JP2000087152A (en) CONSUMABLE ELECTRODE FOR INGOT OF Ti-Al INTERMETALLIC COMPOUND AND ITS PRODUCTION
JPS63247322A (en) Molding method for Ti-Al intermetallic compound parts
JPS63177955A (en) Method for manufacturing titanium alloy ingots
JP2800214B2 (en) Manufacturing method of nickel cadmium storage battery