JPH0371650B2 - - Google Patents
Info
- Publication number
- JPH0371650B2 JPH0371650B2 JP21855482A JP21855482A JPH0371650B2 JP H0371650 B2 JPH0371650 B2 JP H0371650B2 JP 21855482 A JP21855482 A JP 21855482A JP 21855482 A JP21855482 A JP 21855482A JP H0371650 B2 JPH0371650 B2 JP H0371650B2
- Authority
- JP
- Japan
- Prior art keywords
- thermocouple
- elements
- section
- cross
- thermocouple elements
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 239000000843 powder Substances 0.000 claims description 12
- 238000009413 insulation Methods 0.000 description 8
- 238000001514 detection method Methods 0.000 description 5
- 230000001681 protective effect Effects 0.000 description 4
- CPLXHLVBOLITMK-UHFFFAOYSA-N Magnesium oxide Chemical compound [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 2
- 229910000809 Alumel Inorganic materials 0.000 description 1
- 229910001179 chromel Inorganic materials 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000012212 insulator Substances 0.000 description 1
- 239000000395 magnesium oxide Substances 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 238000003466 welding Methods 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01K—MEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
- G01K7/00—Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements
- G01K7/02—Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements using thermoelectric elements, e.g. thermocouples
- G01K7/04—Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements using thermoelectric elements, e.g. thermocouples the object to be measured not forming one of the thermoelectric materials
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Measuring Temperature Or Quantity Of Heat (AREA)
Description
【発明の詳細な説明】
〔発明の技術分野〕
本発明は熱電対素子を改良した熱電対構造体に
関する。DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a thermocouple structure with an improved thermocouple element.
一般に温度センサとして広く用いられている熱
電対構造体は、熱伝導率が異なる一対の熱電対素
子を温度検出端として一端で接続して絶縁物内に
挿通した構成をなすものである。
Generally, a thermocouple structure widely used as a temperature sensor has a configuration in which a pair of thermocouple elements having different thermal conductivities are connected at one end as a temperature detection end and inserted into an insulator.
しかして、熱電対構造体においては重要な条件
としては、外部の熱を熱電対素子の検出端に短時
間で伝え温度を迅速に検出できる優れた応答特性
を有しなければならない。この応答特性を高める
ためには、熱電対素子検出端の表面積を大きくし
て外部の熱を検出端に伝える時間を短縮すること
が必要である。 Therefore, an important condition for a thermocouple structure is that it must have excellent response characteristics that allow external heat to be transferred to the detection end of the thermocouple element in a short time and temperature can be detected quickly. In order to improve this response characteristic, it is necessary to increase the surface area of the thermocouple element detection end to shorten the time for transmitting external heat to the detection end.
従来の熱電対構造体は、第1図で示すように熱
電対素子として断面真円形をなす素線を用いてお
り、この断面真円形をなす熱電対素子1,2を保
護管3に充填された絶縁粉末4の内部に挿通した
ものである。 As shown in FIG. 1, the conventional thermocouple structure uses a wire having a perfect circular cross section as a thermocouple element, and the thermocouple elements 1 and 2 having a perfect circular cross section are filled in a protective tube 3. It is inserted into the inside of the insulating powder 4.
従来の熱電対構造体において応答特性を高める
ために熱電対素子1,2の表面積を増大するため
には、第1図破線で示すように熱電対素子1,2
の直径を拡大する必要がある。しかしながら、一
般に熱電対構造体は規格上あるいは小型化を図る
上で保護管3の外径を一定の大きさに抑えてい
る。そこで、保護管3の外径寸法を一定にした状
態で熱電対素子1,2の直径を拡大すると、第1
図破線で示すように熱電対素子1,2間の間隔お
よび熱電対素子1,2と絶縁粉末4の外周面との
間隔が縮小される。このため、熱電対素子1,2
相互間および熱電対素子1,2と外部との間の絶
縁間隔が充分に確保できず、熱電対線間にシヤン
ト回路が成立し易くなり、誤差発生となる問題が
ある。 In order to increase the surface area of the thermocouple elements 1 and 2 in order to improve the response characteristics in the conventional thermocouple structure, the thermocouple elements 1 and 2 are
It is necessary to enlarge the diameter of However, in general, the outer diameter of the protective tube 3 of the thermocouple structure is limited to a certain size due to standards or for miniaturization. Therefore, if the diameter of the thermocouple elements 1 and 2 is increased while the outer diameter of the protection tube 3 is kept constant, the first
As shown by broken lines in the figure, the distance between the thermocouple elements 1 and 2 and the distance between the thermocouple elements 1 and 2 and the outer peripheral surface of the insulating powder 4 are reduced. For this reason, thermocouple elements 1 and 2
There is a problem in that a sufficient insulation interval cannot be secured between each other and between the thermocouple elements 1 and 2 and the outside, and a shunt circuit is likely to be formed between the thermocouple wires, resulting in errors.
〔発明の目的〕
本発明は前記事情に鑑みてなされたもので、熱
電対素子の表面を増大して応答特性を高めるとと
もに、外径を大型にすることなく絶縁上の問題を
解決した熱電対構造体を提供するものである。[Object of the Invention] The present invention has been made in view of the above circumstances, and provides a thermocouple that increases the surface of the thermocouple element to improve response characteristics and solves the insulation problem without increasing the outer diameter. It provides a structure.
本発明の熱電対構造体は、断面円形をなす保護
管と、この保護管の内部に充填された絶縁粉末
と、この絶縁粉末に埋設され断面が偏平な一対の
熱電対素子とを具備してなるものである。偏平形
状としては楕円が好ましい。
The thermocouple structure of the present invention includes a protection tube having a circular cross section, an insulating powder filled inside the protection tube, and a pair of thermocouple elements embedded in the insulating powder and having a flat cross section. It is what it is. The flat shape is preferably an ellipse.
以下本発明を図面で示す実施例について説明す
る。
Embodiments of the present invention illustrated in the drawings will be described below.
第2図および第3図は本発明の熱電対構造体の
一実施例を示し、一組の熱電対素子を設けたもの
である。図中11は例えばアルメルからなる線状
の熱電対素子、12は例えばクロメルからなる線
状の熱電対素子で、これら熱電対素子11,12
は夫々断面が同一大きさの楕円形をなしている。
熱電対素子11,12は例えばステンレス鋼から
なる断面円形をなす保護管13の内部に軸方向に
沿つて平行に配置され、両者の一端部が温度検出
端として溶接により接続されている。保護管13
の内部にはマグネシアなどの絶縁粉末14が充填
され、熱電対素子11,12を絶縁保持してい
る。ここで、熱電対素子11,12は断面楕円形
の長軸側が平行となるように向き合わせ必要な絶
縁間隔を存して位置し、且つ各素子11,12の
断面楕円形における長軸側端部が絶縁粉末14の
外周に対し必要な絶縁間隔を存するように位置し
ている。 2 and 3 show an embodiment of the thermocouple structure of the present invention, which is provided with a set of thermocouple elements. In the figure, 11 is a linear thermocouple element made of, for example, alumel, and 12 is a linear thermocouple element made of, for example, chromel.
Each has an elliptical cross section with the same size.
The thermocouple elements 11 and 12 are arranged in parallel along the axial direction inside a protection tube 13 made of stainless steel and having a circular cross section, for example, and one end of the two is connected by welding as a temperature detection end. Protection tube 13
The inside is filled with an insulating powder 14 such as magnesia to keep the thermocouple elements 11 and 12 insulated. Here, the thermocouple elements 11 and 12 are positioned so that the long axis sides of the elliptical cross section are parallel to each other, with a necessary insulation interval, and the long axis side ends of the elliptical cross section of each element 11 and 12 are parallel to each other. The portions are located at a necessary insulation distance from the outer periphery of the insulating powder 14.
このように構成した熱電対構造体において、熱
電対素子11,12は断面が楕円形をなしている
ので、第1図で示す従来の電熱対構造体における
真円形をなす熱電対素子1,2に比して大きな外
周長さすなわち表面積を有しており、この熱電対
素子11,12の外周長さすなわち表面積は、第
1図にて破線で示す真円形のそれに相当する大き
さを有している。また、熱電対素子11,12が
断面楕円形の長軸が平行となるように並べられ、
熱電対素子11,12の相互間の絶縁間隔、およ
び熱電対素子11,12の断面楕円形の(絶縁粉
末14の外周に最も接近する)長軸側端部と絶縁
粉末14の外周との絶縁間隔は、第1図で示され
る熱電対素子1,2の場合と同様に充分な大きさ
をもつて確保されている。すなわち、保護管13
は第1図で示す保護管3と同じ大きさの外径を有
しているが、熱電対素子11,12の絶縁間隔が
確保されている。従つて、この熱電対構造体では
熱電対素子11,12における外部からの熱を伝
導させる表面積が大きいために熱に対する応答特
性が良く、また、保護管13の外径を大きくする
ことなく熱電対素子11,12相互間および熱電
対素子11,12と外部との絶縁も充分確保でき
る。 In the thermocouple structure constructed in this way, the thermocouple elements 11 and 12 have an elliptical cross section, so the thermocouple elements 1 and 2 are completely circular in the conventional thermocouple structure shown in FIG. The outer circumferential length or surface area of the thermocouple elements 11 and 12 is larger than that of the perfect circle shown by the broken line in FIG. ing. Further, the thermocouple elements 11 and 12 are arranged so that the long axes of the elliptical cross section are parallel to each other,
The insulation interval between the thermocouple elements 11 and 12, and the insulation between the long axis end of the thermocouple elements 11 and 12 having an oval cross section (closest to the outer periphery of the insulating powder 14) and the outer periphery of the insulating powder 14. A sufficient distance is ensured as in the case of the thermocouple elements 1 and 2 shown in FIG. That is, the protective tube 13
has the same outer diameter as the protective tube 3 shown in FIG. 1, but an insulating interval between the thermocouple elements 11 and 12 is ensured. Therefore, in this thermocouple structure, the thermocouple elements 11 and 12 have a large surface area for conducting heat from the outside, so the response characteristics to heat are good. Sufficient insulation can be ensured between the elements 11 and 12 and between the thermocouple elements 11 and 12 and the outside.
第4図は本発明の熱電対構造体の他の実施例を
示し、これは2組の熱電対素子を設けたものであ
る。各組の熱電対素子11,12は楕円形をなす
ものであるが、断面楕円形が互に直角に向き合う
ように絶縁間隔を存してT字形に配置してあり、
且つ一方の組と他方の組とは熱電対素子11,1
2のT字形の組合わせ向きを逆にしてある。この
ように2組の熱電対素子11,12を組合せる場
合には、絶縁間隔を確保する上で第4図で示す配
置が好ましい。また、この配置は熱電対構造体の
強度を高めるのに役立つ。 FIG. 4 shows another embodiment of the thermocouple structure of the present invention, which is provided with two sets of thermocouple elements. Each set of thermocouple elements 11 and 12 has an elliptical shape, and is arranged in a T-shape with an insulating interval so that the ellipses in cross section face each other at right angles.
Moreover, one set and the other set are thermocouple elements 11,1
The combination direction of the T-shape 2 is reversed. When two sets of thermocouple elements 11 and 12 are combined in this manner, the arrangement shown in FIG. 4 is preferable in order to ensure an insulating interval. This arrangement also helps increase the strength of the thermocouple structure.
なお、熱電対素子の断面形状は楕円形の他に、
長円形でもよい。 Note that the cross-sectional shape of the thermocouple element is not only elliptical but also
It may be oval.
本発明の熱電対構造体は以上説明したように、
断面が偏平形をなす熱電対素子を用いることによ
り熱応答特性を向上し、且つ外形を大きくするこ
となく絶縁間隔を充分確保できる。
As explained above, the thermocouple structure of the present invention has the following features:
By using a thermocouple element with a flat cross section, the thermal response characteristics can be improved and a sufficient insulation interval can be ensured without increasing the external size.
第1図は従来の熱電対構造体の一例を示す横断
面図、第2図および第3図は本発明の熱電対構造
体の一実施例を示す縦断面図および横断面図、第
4図は他の実施例を示す横断面図である。
1,2……熱電対素子、3……保護管、4……
絶縁粉末、11,12……熱電対素子、13……
保護管、14……絶縁粉末。
FIG. 1 is a cross-sectional view showing an example of a conventional thermocouple structure, FIGS. 2 and 3 are longitudinal and cross-sectional views showing an example of the thermocouple structure of the present invention, and FIG. FIG. 3 is a cross-sectional view showing another embodiment. 1, 2...Thermocouple element, 3...Protection tube, 4...
Insulating powder, 11, 12...Thermocouple element, 13...
Protection tube, 14...Insulating powder.
Claims (1)
に充填された絶縁粉末と、この絶縁粉末に埋設さ
れ断面が偏平な一対の熱電対素子とを具備してな
る熱電対構造体。 2 熱電対の断面が楕円形をなす特許請求の範囲
第1項記載の熱電対構造体。[Claims] 1. A thermoelectric device comprising a protection tube with a circular cross section, an insulating powder filled inside the protection tube, and a pair of thermocouple elements with a flat cross section embedded in the insulating powder. Versus struct. 2. The thermocouple structure according to claim 1, wherein the thermocouple has an elliptical cross section.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP21855482A JPS59108926A (en) | 1982-12-14 | 1982-12-14 | Structure body of thermocouple |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP21855482A JPS59108926A (en) | 1982-12-14 | 1982-12-14 | Structure body of thermocouple |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS59108926A JPS59108926A (en) | 1984-06-23 |
JPH0371650B2 true JPH0371650B2 (en) | 1991-11-14 |
Family
ID=16721753
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP21855482A Granted JPS59108926A (en) | 1982-12-14 | 1982-12-14 | Structure body of thermocouple |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS59108926A (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4752770A (en) * | 1986-03-10 | 1988-06-21 | General Electric Company | Apparatus for monitoring temperatures of implements during brazing |
ZA87623B (en) * | 1986-03-10 | 1987-11-25 | Gen Electric | Apparatus for monitoring temperatures of implements during brazing |
JP2008089494A (en) * | 2006-10-04 | 2008-04-17 | Yamari Sangyo Kk | Sheathed thermocouple and its manufacturing method |
US9972762B2 (en) | 2012-08-31 | 2018-05-15 | Te Wire & Cable Llc | Thermocouple ribbon and assembly |
-
1982
- 1982-12-14 JP JP21855482A patent/JPS59108926A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS59108926A (en) | 1984-06-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3740587B2 (en) | thermocouple | |
JPS6073424A (en) | Temperature probe | |
JPH11183264A (en) | Temperature measuring instrument with thermocouple | |
KR101630452B1 (en) | Temperature sensor | |
JPS59136630A (en) | Temperature sensor | |
JP2012042238A (en) | Temperature sensor | |
JP2018100965A (en) | High-temperature exhaust sensor | |
KR960023643A (en) | Conductor connection for fluid heater | |
JPH0371650B2 (en) | ||
JPS632455B2 (en) | ||
US3485101A (en) | Continuously supported sensor | |
US3479489A (en) | Heat exchanger construction | |
JP2991712B1 (en) | High temperature signal cable | |
JP2006522927A (en) | Overheat detection sensor | |
JPS6136909Y2 (en) | ||
JPS6111622Y2 (en) | ||
JPH0572049A (en) | Temperature detecting sensor | |
CN216414607U (en) | A tubular heater with internal wire | |
CN219087722U (en) | Thermocouple | |
JPS5982824U (en) | High temperature measuring device | |
JP3015146U (en) | Proximity sensor for high temperature | |
GB2107516A (en) | Thermocouple | |
JPH0328353Y2 (en) | ||
CN216303617U (en) | Platinum channel heating device and heating wire connecting structure thereof | |
JP2540548B2 (en) | Resistance thermometer |