[go: up one dir, main page]

JPH0371453A - Method and device for recording and reproducing - Google Patents

Method and device for recording and reproducing

Info

Publication number
JPH0371453A
JPH0371453A JP20577189A JP20577189A JPH0371453A JP H0371453 A JPH0371453 A JP H0371453A JP 20577189 A JP20577189 A JP 20577189A JP 20577189 A JP20577189 A JP 20577189A JP H0371453 A JPH0371453 A JP H0371453A
Authority
JP
Japan
Prior art keywords
recording
electrode
film
reproducing
recording layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP20577189A
Other languages
Japanese (ja)
Other versions
JP2859652B2 (en
Inventor
Isaaki Kawade
一佐哲 河出
Hiroshi Matsuda
宏 松田
Yuuko Morikawa
森川 有子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP1205771A priority Critical patent/JP2859652B2/en
Priority to US07/564,080 priority patent/US5206665A/en
Priority to CA002022929A priority patent/CA2022929C/en
Priority to DE69028963T priority patent/DE69028963T2/en
Priority to EP90308803A priority patent/EP0412829B1/en
Publication of JPH0371453A publication Critical patent/JPH0371453A/en
Priority to US08/005,466 priority patent/US5264876A/en
Application granted granted Critical
Publication of JP2859652B2 publication Critical patent/JP2859652B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Optical Record Carriers And Manufacture Thereof (AREA)
  • Optical Recording Or Reproduction (AREA)

Abstract

PURPOSE:To obtain a recording and reproducing device that is superior in light resistance and stability by electrically recording and reproducing a recording medium provided with a recording layer having an electrical memory effect and an isolated microelectrode on this recording layer through the isolated microelectrode from a probe electrode. CONSTITUTION:The recording medium 1 having the recording layer 101 with the electrical memory effect and one or plural isolated microelectrode(s) 103 made of a conductive material on this layer is disposed between the probe electrode 102 and an opposite electrode 104. Then, in order to impress a voltage upon the recording medium 1 by the probe electrode 102 through the isolated microelectrode 103 on the recording layer 101, a distance Z of the electrode 102 is controlled by fine movement, and moreover a fine movement control mechanism 108 is designed to be capable of controlling fine movement in a plane X, Y direction as well. Consequently, the recording, reproducing and erasing of the isolated microelectrode in an optional position are carried out by the probe electrode 102. By this method, the recording and reproducing device that is superior in stability and light resistance is obtained.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は記録・再生方法及び記録・再生装置に関し、更
に詳しくは、一方をプローブ電極とした少なくとも一対
の電極間に、電気メモリー効果を有する記録層とその記
録層上に微小孤立電極を設けた記録媒体を用いた記録・
再生方法及びかかる記録媒体を配置した記録・再生装置
に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a recording/reproducing method and a recording/reproducing device, and more particularly, to a recording/reproducing method and a recording/reproducing device, and more specifically, an electric memory effect is produced between at least a pair of electrodes, one of which is a probe electrode. Recording using a recording medium with a recording layer and minute isolated electrodes on the recording layer.
The present invention relates to a reproducing method and a recording/reproducing apparatus equipped with such a recording medium.

[従来の技術] 近年、メモリー素子の用途はコンピュータ及びその関連
機器、ビデオディスク、ディジタルオー・ディオディス
ク等のエレクトロニクス産業の中核をなすものであり、
その開発も活発に進んでいる。メモリー素子に要求され
る性能は一般的じは(1)メモリー容量が大きい (2)記録・再生の応答速度が速い (3)安定性に優れている (4)エラーレートが小さい (5)消費電力が少ない (6〉生産性が高く、価格が安い 等が挙げられる。
[Prior Art] In recent years, the use of memory devices has become a core part of the electronics industry, such as computers and related equipment, video discs, digital audio discs, etc.
Its development is also actively progressing. Generally speaking, the performance required of a memory device is (1) large memory capacity, (2) fast response speed for recording and playback, (3) excellent stability, (4) low error rate, and (5) consumption. Low electricity consumption (6) High productivity and low price, etc.

従来までは磁性体や半導体を素材εした磁気メモリー、
半導体メモリーが主流であったが、近年レーザー技術の
進展に伴い、有機色素、フォトポリマーなとの有機薄膜
を用いた安価で高密度な光メモリー素子などが登場して
きた。
Until now, magnetic memory was made of magnetic materials or semiconductors,
Semiconductor memories have been the mainstream, but with advances in laser technology in recent years, inexpensive, high-density optical memory devices using organic thin films such as organic dyes and photopolymers have appeared.

[発明が解決しようとする課題] しかしながら有機薄膜を記録層として用いた光メモリー
の場合、有機材料を用いているため非常に安価となり、
また、記録・再生にレーザー光を用いているので高密度
にはなるが、光(特に紫外線)に反応する材料を記録層
として用いているため、特に耐光性に劣り、安定性に問
題があった。
[Problem to be solved by the invention] However, in the case of an optical memory that uses an organic thin film as a recording layer, it is very cheap because it uses an organic material.
In addition, since laser light is used for recording and reproduction, high density is achieved, but since the recording layer uses a material that reacts to light (particularly ultraviolet light), it has particularly poor light resistance and has problems with stability. Ta.

また、耐光性を向上させるために、有機材料自身に紫外
線吸収剤を混ぜたり、或は、紫外線吸収フィルムで記録
層をカバーするという方法などをとるが、この場合、逆
に光に対する反応性が悪くなるため、記録感度が劣って
しまい、例えば、通常と同じ記録パワーで書き込み再生
を行うヒエラーレートが大きくなってしまうという問題
点があった。即ち、光を用いて記録・再生をする様な光
メモリーの場合、その特性上、どうしても耐光性つまり
安定性が悪い、或は、エラーレートが悪(なるという問
題点があった。
In addition, in order to improve light resistance, methods such as mixing ultraviolet absorbers into the organic material itself or covering the recording layer with ultraviolet absorbing film are used, but in this case, the reactivity to light conversely increases. As a result, there is a problem in that the recording sensitivity deteriorates and, for example, the error rate when writing and reproducing is performed with the same recording power as normal becomes large. That is, in the case of an optical memory that performs recording and reproduction using light, due to its characteristics, there are problems such as poor light resistance, that is, stability, or a poor error rate.

すなわち、本発明の目的とするところは、上記のような
問題点を解決した記録・再生の方法及び装置を提供する
ことにある。
That is, an object of the present invention is to provide a recording/reproducing method and apparatus that solve the above-mentioned problems.

[課題を解決するための手段及び作用]本発明の特徴と
するところは、少なくとも1つのプローブ電極と該プロ
ーブ電極と対向配置した対向電極とを有し、電気メモリ
ー効果を有する記録層と該記録層上に導電性材料からな
る1個或は複数個の微小孤立電極を持つ記録媒体が、前
記プローブ電極と前記対向電極の間に配置された記録・
再生装置にある。
[Means and effects for solving the problems] The present invention is characterized by a recording layer having an electric memory effect, which has at least one probe electrode and a counter electrode disposed opposite to the probe electrode, and the recording layer. A recording medium having one or more minute isolated electrodes made of a conductive material on a layer is arranged between the probe electrode and the counter electrode.
It's on the playback device.

また、前記電気メモリー効果を有する記録層に、プロー
ブ電極から微小孤立電極を通して、電気メモリー効果を
生じるしきい値電圧を越えた電圧を印加して記録を行い
、電気メモリー効果を生じるしきい値電圧を越えていな
い電圧を印加して前記記録層に流れる電流値の変化を読
んで再生を行う記録・再生方法を特徴とするものである
Furthermore, recording is performed by applying a voltage exceeding the threshold voltage that causes the electrical memory effect to the recording layer that has the electrical memory effect from the probe electrode through the micro isolated electrode, and performs recording at the threshold voltage that causes the electrical memory effect. The present invention is characterized by a recording/reproducing method in which reproduction is performed by applying a voltage that does not exceed .

すなわち、本発明によれば、電気メモリー効果を持つ記
録層とその記録層上社微小孤立電極を設けた記録媒体に
、プローブ電極から微小孤立電極を通して電気的に記録
及び再生を行う方式を取るため、記録層自身に耐光性を
持った材料を使用することができ、なおかつ、記録部位
が微小孤立電極に覆われて保護されているため、耐光性
・安定性に非常に優れた記録・再生装置を提供すること
ができる。また、微小孤立電極1個ずつに情報を記録す
る方式を辷るため2、あらかじめ微小孤立電極を所望の
通りに規則正しく配置することにより、記録ビットすな
わち微小孤立電極自身でトラッキングを行うことも可能
となる。これにより、案内溝を形成しなくても良くなる
ため、記録媒体の製造工程が簡単になる。また、微小孤
立電極の大きさを小さくするこヒによって、光ディスク
と同等、或はそれ以上の高密度化を図るこεも可能であ
る。
That is, according to the present invention, a recording medium having a recording layer having an electric memory effect and a minute isolated electrode on the recording layer is provided with a method of electrically recording and reproducing from a probe electrode through the minute isolated electrode. , a recording/reproducing device with extremely excellent light resistance and stability, as the recording layer itself can use a material with light resistance, and the recording area is covered and protected by minute isolated electrodes. can be provided. In addition, in order to overcome the method of recording information on each small isolated electrode2, by arranging the small isolated electrodes regularly as desired in advance, it is also possible to perform tracking using the recorded bits, that is, the small isolated electrodes themselves. Become. This eliminates the need to form guide grooves, which simplifies the manufacturing process of the recording medium. Furthermore, by reducing the size of the minute isolated electrodes, it is possible to achieve a density equal to or higher than that of an optical disk.

ここで本発明で用いる記録媒体は、π電子準位をもつ群
とσ電子準位のみを有する群を併有する分子を電極上に
積層した有機累積膜において、膜面に垂直な方向にプロ
ーブ電極から微小孤立電極を通して電流を流すことによ
り、従来とは異なる非線形電流電圧特性を発現すること
ができる。
Here, the recording medium used in the present invention is an organic cumulative film in which molecules having both a group having a π electron level and a group having only a σ electron level are stacked on an electrode, and a probe electrode is placed in a direction perpendicular to the film surface. By passing a current through a minute isolated electrode, it is possible to develop nonlinear current-voltage characteristics that are different from conventional ones.

一般に有機材料のほとんどは絶縁性もしくは半絶縁性を
示すことから、かかる本発明に於て、適用可能なπ電子
準位を持つ群を有する有機材料は著しく多岐にわたる。
Since most organic materials generally exhibit insulating or semi-insulating properties, the present invention can be applied to a wide variety of organic materials having a group having a π-electron level.

本発明に好適なπ電子系を有する色素の構造として例え
ば、フタロシアニン、テトラフェニルポルフィリン等の
ポルフィリン骨格を有する色素、スクアリリウム基及び
クロコニックメチン基を結合鎖として持つアズレン系色
素及びキノリン、ベンゾチアゾール、ベンゾオキサゾー
ル等の2個の含窒素複素環をスクアリリウム基及びクロ
コニックメチン基により結合したシアニン系類似の色素
、またはシアニン色素、アントラセン及びピレン等の縮
合多環芳香族、及び芳香環及び複素環化合物が重合した
鎖状化合物及びジアセチレン基の重合体、さらにはテト
ラシアノキノジメタンまたはテトラチアフルバレンの誘
導体およびその類縁体およびその電荷移動錯体、また更
にはフ翼ロセン、トリスビピリジンルテニウム錯体等の
金属錯体化合物が挙げられる。
Examples of structures of dyes having a π-electron system suitable for the present invention include phthalocyanine, dyes having a porphyrin skeleton such as tetraphenylporphyrin, azulene dyes having squarylium groups and croconic methine groups as bonding chains, quinoline, benzothiazole, Cyanine-based similar dyes, such as benzoxazole, in which two nitrogen-containing heterocycles are bonded by a squarylium group and a croconic methine group, or cyanine dyes, fused polycyclic aromatics such as anthracene and pyrene, and aromatic and heterocyclic compounds and polymers of diacetylene groups, derivatives of tetracyanoquinodimethane or tetrathiafulvalene, analogs thereof, and charge transfer complexes thereof, and furthermore, fluoroethylene, trisbipyridine ruthenium complexes, etc. Examples include metal complex compounds.

本発明に好適な高分子材料としては、例えばポリアクリ
ル酸誘導体等の付加重合体、ポリイミド等の縮合重合体
、ナイロン等の開環重合体、バクテリオロドプシン等の
生体高分子が挙げられる。
Examples of polymeric materials suitable for the present invention include addition polymers such as polyacrylic acid derivatives, condensation polymers such as polyimide, ring-opening polymers such as nylon, and biopolymers such as bacteriorhodopsin.

有機記録層の形成に関しては、具体的には蒸着法やクラ
スターイオンビーム法等の適用も可能であるが、制御性
、容易性そして再現性から公知の従来技術の中ではLB
法が極めて好適である。
Regarding the formation of the organic recording layer, it is possible to specifically apply vapor deposition methods, cluster ion beam methods, etc., but among known conventional techniques, LB is preferred due to its controllability, ease, and reproducibility.
The method is highly preferred.

このLB法によれば、1分子中に疎水性部位と親水性部
位とを有する有機化合物の単分子膜またはその累積膜を
基板上に容易に形成するこヒができ、分子オーダーの厚
みを有し、かつ大面積にわたって均一、均質な有機超薄
膜を安定に供給することができる。
According to this LB method, it is possible to easily form a monomolecular film of an organic compound having a hydrophobic site and a hydrophilic site in one molecule or a cumulative film thereof on a substrate, and the thickness is on the order of a molecule. Moreover, it is possible to stably supply a uniform and homogeneous ultra-thin organic film over a large area.

LB法は分子内に親水性部位と疎水性部位とを有する構
造の分子において、両者のバランス(両親媒性のバラン
ス)が適度に保たれている時、分子は水面上で親水性基
を下に向けて単分子の層になることを利用して単分子膜
またはその累積膜を作製する方法である。
The LB method is a molecule with a structure that has a hydrophilic site and a hydrophobic site, and when the balance between the two (amphiphilic balance) is maintained appropriately, the molecule lowers the hydrophilic group on the water surface. This is a method of producing a monomolecular film or a cumulative film thereof by utilizing the fact that it becomes a monomolecular layer toward.

疎水性部位を構成する基としては、一般に広く知られて
いる飽和及び不飽和炭化水素基や縮合多環芳香族基及び
鎖状多環フェニル基等の各種疎水基が挙げられる。これ
らは各々単独又はその複数が組み合わされて疎水性部位
を構成する。一方、親木性部位の構成要素として最も代
表的なものは、例えばカルボキシル基、エステル基、酸
ア主ド基、イ主ド基、ヒドロキシル基、更にはアミノ基
、(1,2,3級及び4級)等の親水性基等が挙げられ
る。これらも各々単独又はその複数が組み合わされて上
記分子の親水性部分を構成する。
Examples of the group constituting the hydrophobic moiety include various hydrophobic groups such as generally widely known saturated and unsaturated hydrocarbon groups, fused polycyclic aromatic groups, and chain polycyclic phenyl groups. These each constitute a hydrophobic site singly or in combination. On the other hand, the most typical constituent elements of the wood-philic moiety are, for example, carboxyl groups, ester groups, acid a-do groups, i-do groups, hydroxyl groups, amino groups, (1, 2, tertiary and quaternary), and the like. These also constitute the hydrophilic portion of the above molecule either singly or in combination.

これらの疎水性基ヒ親水性基をバランス良く併有してい
れば、水面上で単分子膜を形成することが可能であり、
本発明に対して極めて好適な材料となる。
If these hydrophobic groups and hydrophilic groups are combined in a well-balanced manner, it is possible to form a monomolecular film on the water surface.
This is an extremely suitable material for the present invention.

具体例としては、例えば下記の如き分子等が挙げられる
Specific examples include the following molecules.

(以下余白) く有機材料〉 [I]ジクロニックメチン色素 [II ]スクアリリウム色素 [IIで挙げた化合物のクロコニックメチン基を下記の
構造を持つスクアリリウム基で置き換えた化合物。
(Left below) Organic materials> [I] Dichronic methine dye [II] Squarylium dye [A compound in which the croconic methine group of the compound listed in II is replaced with a squarylium group having the following structure.

[III ] ポルフィリ ン系色素化合物 ここでR8は前述のσ電子準位をもつ群に相当したもの
で、しかも水面上で単分子膜を形成しやすくするために
導入された長鎖アルキル基で、その炭素数nは5≦n≦
30が好適である。
[III] Porphyrin dye compound Here, R8 corresponds to the group with the above-mentioned σ electron level, and is a long-chain alkyl group introduced to facilitate the formation of a monomolecular film on the water surface. The number of carbon atoms n is 5≦n≦
30 is preferred.

\ OH。\ Oh.

−CHJI(C3)1y M =H2,Cu、  Ni、  A11−CR希土類
金属イオン 及び r R” cnH2n+1    5≦n≦25M = 8
2.  CLl、  Ni、  Zn、Al−Cl!及
び希土類金属イオン R= 0CH(COOH)CnLn+1   5 S 
n525M  = H,、Cu、  Ni、  Zn、
  へR−CR及び希土類金属イオン Rは単分子膜を形成しやすくするために導入されたもの
で、ここで挙げた置換基に限るものではない。又、R1
−R4,Rは前述したσ電子準位をもつ群に相当してい
る。
-CHJI(C3)1y M = H2, Cu, Ni, A11-CR rare earth metal ion and r R” cnH2n+1 5≦n≦25M = 8
2. CLl, Ni, Zn, Al-Cl! and rare earth metal ion R= 0CH(COOH)CnLn+1 5 S
n525M = H, Cu, Ni, Zn,
R-CR and the rare earth metal ion R are introduced to facilitate the formation of a monomolecular film, and are not limited to the substituents listed here. Also, R1
-R4,R corresponds to the group having the above-mentioned σ electron level.

[IV ] 縮合多環芳香族化合物 ool [V]ジアセチレン化合物 COW→CL)−Ca C−C繭c−+ C)It)−
XO≦n、jl≦20 但しn+J!>10 Xは親木基で一般的には−COOHが用いられるが−O
H,−CONII2等も使用できる。
[IV] Condensed polycyclic aromatic compound ool [V] Diacetylene compound COW→CL)-Ca C-C cocoon c-+ C) It)-
XO≦n, jl≦20, but n+J! >10 X is a parent tree group, generally -COOH is used, but -O
H,-CONII2, etc. can also be used.

[■コ その他 Quinquethienyl 2) 4) アクリル酸エステルコポリマー III。[■ko others Quinquethienyl 2) 4) Acrylic ester copolymer III.

5) ポリビニルアセテート R。5) polyvinyl acetate R.

6) 酢酸ビニルコポリマー く有機高分子材料〉 [ ■ ] 付加重合体 l) ポリアクリル酸 2) ポリアクリル酸エステル II。6) vinyl acetate copolymer Organic polymer materials [ ■ ] addition polymer l) polyacrylic acid 2) polyacrylic acid ester II.

3) アクリル酸コポリマー R。3) acrylic acid copolymer R.

[If ]縮合重合体 2) ポリカーボネート R1 [III ] 開環重合体 1) ポリエチレンオキシド ここで、R1は水面上で単分子膜を形威し易くするため
に導入された長鎖アルキル基で、その炭素数nは5≦n
≦30が好適である。
[If] Condensation polymer 2) Polycarbonate R1 [III] Ring-opening polymer 1) Polyethylene oxide Here, R1 is a long-chain alkyl group introduced to make it easier to form a monomolecular film on the water surface; Carbon number n is 5≦n
≦30 is suitable.

また、R5は短鎖アルキル基であり、炭素数nは1≦n
≦4が好適である。重合度mは100:S m ’55
000が好適である。
Further, R5 is a short-chain alkyl group, and the number of carbon atoms n is 1≦n
≦4 is suitable. Degree of polymerization m is 100: S m '55
000 is preferred.

以上、具体例として挙げた化合物は基本構造のみであり
、これら化合物の種々の置換体も本発明に於いて好適で
あることは言うにおよばない9尚、上記以外でもLB法
に適している有機材料、有機高分子材料であれば、本発
明に好適なのは言うまでもない。例えば近隼研究が盛ん
になりつつある生体材料(例えばバタテリオロドブシン
やチトクロームC)や合成ポリペプチド(PIILG)
等も適用が可能である。
The compounds mentioned above as specific examples are only basic structures, and it goes without saying that various substituted products of these compounds are also suitable in the present invention9. Needless to say, any organic polymer material is suitable for the present invention. For example, biomaterials (e.g. batatteriorhodobuscin and cytochrome C) and synthetic polypeptides (PIILG), which are becoming increasingly researched by Kinhaya.
etc. can also be applied.

かかる両親媒性の分子は、水面上で親木基を下に向けて
単分子の層を形成する。このとき、水面上の単分子層は
二次元系の特徴を有し、分子がまばらに散開していると
きは、一分子当り面積Ah表面圧πとの間に二次元理想
気体の式、π A=kT が成り立ち、“気体膜”となる。ここに、kはボルツマ
ン定数、Tは絶対温度である。Aを十分小さくすれば分
子間相互作用が強まり、二次元固体の“凝縮膜(または
固体膜)”になる。凝縮膜はガラスや樹脂の如き種々の
材質や形状を有する任意の物体の表面へ一層ずつ移すこ
とができる。この方法を用いて、単分子膜またはその累
積膜を形成し、記録層として使用することができる。
Such amphiphilic molecules form a monomolecular layer on the water surface with the parent group facing downward. At this time, the monomolecular layer on the water surface has the characteristics of a two-dimensional system, and when the molecules are sparsely dispersed, the two-dimensional ideal gas equation, π A=kT holds true, resulting in a "gas film". Here, k is Boltzmann's constant and T is absolute temperature. If A is made sufficiently small, the intermolecular interaction becomes stronger, resulting in a two-dimensional solid "condensation film (or solid film)." The condensed film can be transferred layer by layer onto the surface of arbitrary objects having various materials and shapes, such as glass and resin. Using this method, a monomolecular film or a cumulative film thereof can be formed and used as a recording layer.

具体的な製法としては、例えば以下じ示す方法を挙げる
ことができる。
As a specific manufacturing method, for example, the method shown below can be mentioned.

所望の有機化合物をクロロホルム、ベンゼン、アセトニ
トリル等の溶剤に溶解させる。次は添付図面の第7図に
示す如き適当な装置を用いて、かかる溶液を水相81上
に展開させて有機化合物を膜状に形成させる。
A desired organic compound is dissolved in a solvent such as chloroform, benzene, or acetonitrile. Next, using a suitable apparatus as shown in FIG. 7 of the accompanying drawings, this solution is spread on the aqueous phase 81 to form an organic compound in the form of a film.

次に、この展開膜82が水相81上を自由に拡散して広
がりすぎないように仕切板(または浮子)83を設け、
展開膜82の展開面積を制限して膜物質の集合状態を制
御し、その集合状態に比例した表面圧πを得る。この仕
切板83を動かし、展開面積を縮小して膜物質の集合状
態を制御し、表面圧を徐々に上昇させ、膜の製造に適す
る表面圧πを設定することができる。この表面圧を維持
しながら、静かに清浄な基板84を垂直に上昇又は下降
させることにより有機化合物の単分子膜が基板84上に
移し取られる。このような単分子膜91は第8a図また
は第8b図に模式的に示す如く分子が秩序正しく配列し
た膜である。
Next, a partition plate (or float) 83 is provided to prevent the developed film 82 from freely diffusing and spreading too much on the aqueous phase 81.
The expanded area of the expanded membrane 82 is limited to control the aggregated state of the membrane material, and a surface pressure π proportional to the aggregated state is obtained. By moving the partition plate 83, the developed area can be reduced to control the aggregation state of the membrane material, and the surface pressure can be gradually increased to set the surface pressure π suitable for membrane production. While maintaining this surface pressure, the monomolecular film of the organic compound is transferred onto the substrate 84 by gently raising or lowering the clean substrate 84 vertically. Such a monomolecular film 91 is a film in which molecules are arranged in an orderly manner as schematically shown in FIG. 8a or 8b.

単分子膜91は以上で製造されるが、前記の操作を繰り
返すことにより所望の累積数の累積膜が形成される。!
#分子膜91を基板84上に移すには、上述した垂直浸
漬法の他、水平付着法、回転円筒法等の方法でも可能で
ある。尚、水平付着法は、基板を水面に水平に接触させ
て単分子膜を移し取る方法であり、回転円筒法は円筒形
の基板を水面上を回転させて単分子膜を基板表面に移し
取る方法である。
The monomolecular film 91 is manufactured as described above, and by repeating the above operations, a desired number of cumulative films can be formed. !
# To transfer the molecular film 91 onto the substrate 84, in addition to the above-mentioned vertical dipping method, methods such as a horizontal adhesion method and a rotating cylinder method can also be used. The horizontal deposition method is a method in which a monomolecular film is transferred by bringing the substrate into horizontal contact with the water surface, and the rotating cylinder method is a method in which a cylindrical substrate is rotated above the water surface to transfer the monomolecular film onto the substrate surface. It's a method.

前述した垂直浸漬法では、表面が親水性である基板を水
面を横切る方向に水中から引き上げると有機化合物の親
水性部位92が基板84側に向いた有機化合物の単分子
膜91が基板84上に形成される(第8b図)。前述の
ように基板84を上下させると、各行程毎に一枚ずつ単
分子膜91が積み重なって累積膜94が形成される。成
膜分子の向きが引き上げ行程と浸漬行程で逆になるので
、この方法によると単分子膜の各層間は有機化合物の疎
水性部位93aと93bが向かい合うY型膜が形成され
る(第9a図)。これに対し、水平付着法は、有機化合
物の疎水性部位93が基板84側に向いた単分子膜91
が基板84上に形成される(第8a図)。この方法では
、単分子膜91を累積しても成膜分子の向きの交代はな
く全ての層に於いて、疎水性部位93aと93bが基板
84側に向いたX型膜が形成される(第9b図)。反対
に全ての層において親水性部位92a、 92bが基板
84側に向いた累積膜94はZ型膜と呼ばれる(第9C
図)。
In the vertical immersion method described above, when a substrate with a hydrophilic surface is lifted out of water in a direction across the water surface, a monomolecular film 91 of an organic compound with the hydrophilic portion 92 of the organic compound facing the substrate 84 is formed on the substrate 84. (Fig. 8b). When the substrate 84 is moved up and down as described above, the monomolecular films 91 are stacked one by one in each step, forming a cumulative film 94. Since the direction of the film-forming molecules is reversed between the pulling process and the dipping process, this method forms a Y-shaped film in which the hydrophobic parts 93a and 93b of the organic compound face each other between each layer of the monomolecular film (Fig. 9a). ). On the other hand, in the horizontal deposition method, a monomolecular film 91 with the hydrophobic portion 93 of the organic compound facing the substrate 84 side is used.
is formed on substrate 84 (FIG. 8a). In this method, even if the monomolecular film 91 is accumulated, the direction of the film-forming molecules does not change, and an X-shaped film is formed in which the hydrophobic parts 93a and 93b face the substrate 84 in all layers ( Figure 9b). On the contrary, the cumulative film 94 in which the hydrophilic parts 92a and 92b of all the layers face the substrate 84 side is called a Z-type film (No. 9C).
figure).

単分子膜91を基板84上に移す方法は、上記方法に限
定されるわけではなく、大面積基板を用いるときにはロ
ールから水相中に基板を押し出していく方法なども採り
得る。また、前述した親水性基及び疎水性基の基板への
向きは原則であり、基板の表面処理等によって変えるこ
ともできる。
The method of transferring the monomolecular film 91 onto the substrate 84 is not limited to the above method, and when a large-area substrate is used, a method of extruding the substrate from a roll into an aqueous phase may also be adopted. Furthermore, the directions of the hydrophilic groups and hydrophobic groups described above toward the substrate are in principle, and can be changed by surface treatment of the substrate, etc.

以上の如くして有機化合物の単分子膜91またはその累
積@94からなる有機化合物記録層が基板84上に形成
される。
As described above, an organic compound recording layer consisting of the monomolecular film 91 of an organic compound or its accumulation@94 is formed on the substrate 84.

本発明において、上記の如き有機材料が積層された薄膜
を支持するための基板84は、金属、ガラス、セラミッ
クス、プラスチックス材料等いずれの材料でもよく、更
に耐熱性の著しく低い生体材料も使用できる。
In the present invention, the substrate 84 for supporting the thin film laminated with organic materials as described above may be made of any material such as metal, glass, ceramics, or plastic materials, and biomaterials with extremely low heat resistance may also be used. .

上記の如き基板84は任意の形状でよく、平板状である
のが好ましいが、平板に何ら限定されない。すなわち前
記成膜法(LB法)においては、基板の表面がいかなる
形状であってもその形状通りに膜を形成し得る利点を有
するからである。
The substrate 84 as described above may have any shape, preferably a flat plate, but is not limited to a flat plate. That is, the film forming method (LB method) has the advantage that a film can be formed in accordance with the shape of the surface of the substrate, no matter what shape it is.

本発明で用いる記録媒体の微小孤立電極の材料は、高い
導電性を有するものであればよく、例えばAu、 Pt
、 Ag、 Pd、 ACIn、 Sn、 Pb、 W
などの金属やこれらの合金、さらにはグラファイトやシ
リサイド、またさらにはITO等の導電性酸化物を始め
として数多くの材料が挙げられ、これらの本発明への応
用が考えられる。かかる材料を用いた電極形成法として
も従来公知の薄膜作成技術で充分である。また、かかる
微小孤立電極の電極形状についても、角型、大型などが
考えられるが、これに限定することなく所望の形状を選
ぶことができる。さらに、かかる微小孤立電極の大きさ
についても、種々の大きさを取ることができるが、記録
密度の点から鑑みて、なるべく小さいものが好ましく、
例えば1010000p以下、好ましくは光メモリーと
同程度以上の高密度となるI ILm”以下が良く、記
録層自身が分子メモリーとして利用できるため分子の大
きさ程度まで電極の大きさを小さくしても構わない。
The material of the minute isolated electrodes of the recording medium used in the present invention may be any material as long as it has high conductivity, such as Au, Pt, etc.
, Ag, Pd, ACIn, Sn, Pb, W
There are many materials including metals such as metals, alloys thereof, graphite, silicides, and conductive oxides such as ITO, and their applications to the present invention can be considered. As a method for forming electrodes using such materials, conventionally known thin film forming techniques are sufficient. Further, the electrode shape of such a micro isolated electrode may be rectangular, large, etc., but any desired shape can be selected without being limited thereto. Furthermore, although the size of such a small isolated electrode can be various, it is preferable that it be as small as possible from the point of view of recording density.
For example, it is preferably 1,010,000p or less, preferably 1ILm" or less, which provides a high density comparable to or higher than that of an optical memory. Since the recording layer itself can be used as a molecular memory, the electrode size may be reduced to the size of a molecule. do not have.

一方、本発明で用いられる対向電極の材料も高い導電性
を有するものであればよく、例えばAu。
On the other hand, the material of the counter electrode used in the present invention may be any material as long as it has high conductivity, such as Au.

Pt、 Ag、 Pd、 A1. In、 Sn、 P
b、 Wなどの金属やこれらの合金、さらにはグラファ
イトやシリサイド、またさらにはITOなとの導電性酸
化物を始めとして数多くの材料が挙げられ、これらの本
発明への適用が考えられる。かかる材料を用いた電極形
成法としても従来公知の薄膜技術で十分である。但し、
基板上に直接形成される電極材料は表面が1、B111
形成の際、絶縁性の酸化物をつくらない導電材料、例え
ば責金属やITOなどの酸化物導電体を用いることが望
ましい。
Pt, Ag, Pd, A1. In, Sn, P
There are many materials that can be used in the present invention, including metals such as B and W, alloys thereof, graphite, silicide, and even conductive oxides such as ITO. Conventionally known thin film techniques are sufficient for forming electrodes using such materials. however,
The surface of the electrode material formed directly on the substrate is 1, B111.
During formation, it is desirable to use a conductive material that does not form an insulating oxide, such as a metal or an oxide conductor such as ITO.

また、プローブ電極の材料は、導電性を示して記録媒体
の微小孤立電極を通して記録層に電圧を印加することが
できれば何を用いてもよく、例えばPt、、 Pt −
Ir、 W、 Au、 Ag等が挙げられる。プローブ
電極の先端は、微小孤立電極の大きさにあわせてできる
だけ尖らせる必要がある。本発明では、針状の導電性材
料を電界研磨法を用い先端形状を制御して、プローブ電
極を作製しているが、プローブ電極の作製方法及び形状
は何らこれに限定するものではない。
Further, the material of the probe electrode may be any material as long as it exhibits conductivity and can apply a voltage to the recording layer through the minute isolated electrode of the recording medium. For example, Pt, Pt -
Examples include Ir, W, Au, Ag, and the like. The tip of the probe electrode needs to be as sharp as possible to match the size of the micro isolated electrode. In the present invention, a probe electrode is produced by controlling the shape of the tip of a needle-shaped conductive material using an electropolishing method, but the method and shape of the probe electrode are not limited thereto.

以上述べてきた材料及び成膜方法を用いて第4図(示し
たMIM構造の素子を作成したとき、第5図と第6図に
示すような電流電圧特性を示すメモリースイッチング素
子が得られ、2−)の状態(ON状態とOFF状態)が
それぞれメモリ性を有することがすでに見い出されてい
る。これらのメモリースイッチング特性は数Å〜数10
00人の層厚のものに発現されているが、本発明におけ
る記録媒体としてはIOλ〜1000人の範囲の層厚の
ものがよく、最も好ましくは50Å〜500人の層厚を
もつものが良い。またLB法で累積膜を形成して有機絶
縁層とする場合、その積層数は1〜50程度が好ましい
。以上の暦数、層厚において、メモリー特性上好ましい
抵抗値としては、OFF状態に於て数MΩ以上が望まし
い。
When a device with the MIM structure shown in FIG. 4 (shown in FIG. 4) is created using the materials and film-forming methods described above, a memory switching device exhibiting current-voltage characteristics as shown in FIGS. 5 and 6 can be obtained. It has already been found that the states 2-) (ON state and OFF state) each have memory properties. These memory switching characteristics range from several Å to several tens of Å.
However, the recording medium in the present invention preferably has a layer thickness in the range of IOλ to 1000 layers, most preferably 50 Å to 500 layers. . Further, when a cumulative film is formed by the LB method to form an organic insulating layer, the number of layers is preferably about 1 to 50. With the above-mentioned number of calendars and layer thicknesses, the preferred resistance value in terms of memory characteristics is desirably several MΩ or more in the OFF state.

第4図中84は基板、41はAu電極、42はA2電極
、43は前述した単分子累積膜を表オ)シている。
In FIG. 4, 84 is a substrate, 41 is an Au electrode, 42 is an A2 electrode, and 43 is the aforementioned monomolecular cumulative film.

第1図は本発明の記録・再生装置を示すブロック構成図
である。第1図中、106はプローブ電流増幅器で、1
07は記録層101にプローブ電極10?から微小孤立
電極103を通して電圧を印加できるよう両者間の距離
をコントロールするように圧電素子を用いた微動制御機
構108を制御するサーボ回路である。109はプロー
ブ電極102と対向電極104の間の記録層101に微
小孤立電極103を通して記録・消去用のパルス電圧を
印加するための電1原である。
FIG. 1 is a block diagram showing a recording/reproducing apparatus of the present invention. In FIG. 1, 106 is a probe current amplifier;
07 is the probe electrode 10 on the recording layer 101? This is a servo circuit that controls a fine movement control mechanism 108 using a piezoelectric element so as to control the distance between the small isolated electrode 103 and the small isolated electrode 103 so that a voltage can be applied from the small isolated electrode 103. Reference numeral 109 denotes an electric current source for applying a pulse voltage for recording and erasing to the recording layer 101 between the probe electrode 102 and the counter electrode 104 through the minute isolated electrode 103.

110はXY方向にプローブ電極102を移動制御する
ためのXY走査駆動回路である。
110 is an XY scanning drive circuit for controlling the movement of the probe electrode 102 in the XY directions.

111と112は、あらかじめプローブ電極1c!2 
a記録媒体1の間の距離をある程度接近させるための粗
動制御機構である。
111 and 112 are probe electrodes 1c! 2
This is a coarse movement control mechanism for reducing the distance between the recording media 1 to some extent.

これらの各機器は、すべてマイクロコンピュータ113
により中央制御されている。また、114は表示機器を
表わしている。
All of these devices are microcomputer 113
Centrally controlled by Further, 114 represents a display device.

[実施例] 以下、本発明を実施例に従って説明する。[Example] Hereinafter, the present invention will be explained according to examples.

夫」直利」、 第1図に示す記録・再生装置を用いた。プローブ電極1
02として電界研磨法によって作成した白金/ロジウム
製のプローブ電極を用いた。このプローブ電極102は
記録層101上の微小孤立電極103を通して記録媒体
lに電圧を印加できるように、圧電素子により、その距
離(Z)が微動制御されている。ざらに微動制御機構1
0Bは上記機能を持ったまま、面内(X、Y)方向にも
微動制御できるように設計されている。よって、このw
l、動制御機構108によりプローブ電極102で任意
の位置の微小孤立電極の記録・再生及び消去を行うこと
ができる。また、記録媒体1は高精度のXYステージ1
15の上に置かれ、任意の位置に移動させることができ
る。
My husband, Naotoshi, used the recording/playback device shown in Figure 1. Probe electrode 1
As No. 02, a platinum/rhodium probe electrode prepared by an electric field polishing method was used. The distance (Z) of this probe electrode 102 is finely controlled by a piezoelectric element so that a voltage can be applied to the recording medium l through a minute isolated electrode 103 on the recording layer 101. Rough fine movement control mechanism 1
0B is designed to allow fine movement control in the in-plane (X, Y) directions while maintaining the above functions. Therefore, this lol
l. The motion control mechanism 108 allows the probe electrode 102 to record, reproduce, and erase minute isolated electrodes at arbitrary positions. In addition, the recording medium 1 is a high-precision XY stage 1
15 and can be moved to any position.

第2a図に微動制御機構10Bヒブローブ電極102、
記録媒体の模式図を示す、微動制御機構108は、円筒
型圧電素子とX方向、Y方向、Z方向への微動制御用電
圧を印加する電極をそれぞれ持っており、例えば第2b
図の様に+X、−Xに電圧を印加することによりX方向
へ走査することができる。
FIG. 2a shows the fine movement control mechanism 10B Hirobe electrode 102,
The fine movement control mechanism 108, which shows a schematic diagram of a recording medium, has a cylindrical piezoelectric element and electrodes for applying voltages for fine movement control in the X direction, Y direction, and Z direction.
As shown in the figure, scanning can be performed in the X direction by applying voltages to +X and -X.

次に、Auで形成した対向電極104の上に形成された
スクアリリウム−ビス−6−オクチルアズレン(以下5
OAZと略す)のLB膜(8層)を記録層とし、微小孤
立電極103としてAP:を用いた時の記録・再生・消
去の実験についてその詳細を記す。
Next, squarylium-bis-6-octyl azulene (hereinafter referred to as 5
The details of the recording/reproducing/erasing experiment when an LB film (8 layers) of OAZ (abbreviated as OAZ) was used as the recording layer and AP: was used as the minute isolated electrode 103 will be described in detail.

5OA28 Nを累積した記録層101を持つ記録媒体
1をXYステージの上に置き、まず目視によりプローブ
電極102の位置を決め、しっかりと固定した。次に、
Au電極104と微小孤立電極となるAF電極103の
間に電圧が印加できるようにプローブ電極102の位置
を微動制御II機構108によって調製した。プローブ
電極102からA2電極103とAuN極1.04どの
間に電気メモリー効果を生じるしきい値電圧を越えてい
ない電圧である1、5■の読み取り用電圧を印加して電
流値を測定したところ、数μ、A以下でOFF状態を示
した。次にON状態を生じるしきい値電圧vth−08
以上の電圧である第3図に示した波形を持つ三角波パル
ス電圧を印加した後、再び1.5■の電圧を電極間に印
加して電流を測定したところ0.7mA程度の電流が流
れ、ON状態となっていたことを示した。すなわち、O
N状態が記録された。
The recording medium 1 having the recording layer 101 in which 5OA28N was accumulated was placed on an XY stage, and the probe electrode 102 was first positioned visually and firmly fixed. next,
The position of the probe electrode 102 was adjusted by the fine movement control II mechanism 108 so that a voltage could be applied between the Au electrode 104 and the AF electrode 103 serving as a minute isolated electrode. The current value was measured by applying a reading voltage of 1.5 cm, which is a voltage that does not exceed the threshold voltage that causes an electrical memory effect, between the probe electrode 102 and the A2 electrode 103 and the AuN electrode 1.04. , several microns, A or less showed an OFF state. Threshold voltage vth-08 that causes the next ON state
After applying the triangular wave pulse voltage having the waveform shown in Figure 3, which is the above voltage, a voltage of 1.5 square meters was applied between the electrodes again and the current was measured, and a current of about 0.7 mA flowed. It showed that it was in the ON state. That is, O
N status was recorded.

次にON状態からOFF状態へ変化するしきい値電圧V
th−arF以上の電圧であるピーク電圧5■、パルス
幅i usecの三角波パルス電圧を印加した後、再び
1.5 Vを印加したところ、この時の電流値は数lL
八へ下でOFF状態に房ることが確認された。
Next, the threshold voltage V that changes from the ON state to the OFF state
After applying a triangular wave pulse voltage with a peak voltage of 5 cm and a pulse width of i usec, which is a voltage higher than th-arF, 1.5 V was applied again, and the current value at this time was several liters.
It was confirmed that the cell was in the OFF state at the bottom of the 8th floor.

次に、プローブ電極102の位置を微動制御税構108
によって、上記とは別の微小孤立電極に移動して、先は
どと同様の記録・再生・消去の実験を行ったところ、全
く同様の結果が得られ、本発明の記録・再生装置が、有
効であることが確認された。
Next, the position of the probe electrode 102 is adjusted by the fine movement control mechanism 108.
When we moved to a different micro-isolated electrode from the above and conducted the same recording, reproducing, and erasing experiments as before, we obtained exactly the same results, and the recording/reproducing device of the present invention It has been confirmed that it is valid.

以上述べた方法でON状態及び叶F状態を作成した後、
本発明の記録媒体に光照射を行い、再度記録した部位に
l。5Vの電圧を印加し再生を行ったヒころ、光照射前
にON状態を示した部分は光照射後もサブ111Aオー
ダーの電流が流れ、OFF状態の部分は数岬以下の電流
しか流れず、光照射による記録情報の変化は認められず
、耐光性すなわち安定性に優れていることが分かった。
After creating the ON state and Kano F state using the method described above,
The recording medium of the present invention was irradiated with light, and the recorded area was exposed to l. When a voltage of 5V was applied and regeneration was performed, the part that was in the ON state before the light irradiation had a current on the order of sub-111A flowing even after the light irradiation, and the part in the OFF state only had a current of less than a few caps. No change in recorded information due to light irradiation was observed, indicating that the film had excellent light resistance, that is, stability.

また、ON状態及びOFF状態の面状態とも、少なくと
も3ケ月もの長期保存が可能であった。
In addition, long-term storage of at least 3 months was possible in both the ON and OFF states.

以上の実験に用いた記録媒体は下記の如く作製した。The recording medium used in the above experiment was prepared as follows.

光学研磨したガラス基板(基板105)を中性洗剤およ
びトリクレンを用いて洗浄した後、下引き層としてCr
を真空蒸着(抵抗加熱)法により厚さ50人堆積させ、
更にへ〇を同法により400人蒸着し、対向電極(^U
電極104)を形成した。
After cleaning the optically polished glass substrate (substrate 105) using a neutral detergent and Triclean, Cr was applied as an undercoat layer.
was deposited to a thickness of 50 mm using the vacuum evaporation (resistance heating) method.
Furthermore, 400 people evaporated 〇 using the same method, and the counter electrode (^
An electrode 104) was formed.

次にSO八へを濃度0.2mg/mi!で溶かしたクロ
ロホルム溶液を20℃の水相上に展開し、水面上に単分
子膜を形成した。溶媒の蒸発を待ち、かかる単分子膜の
表面圧を20111N101まで高め、更にこれを一定
に保ちながら前記電極基板を水面に横切るように速度5
 mm7分で静かに漫潰し、更に引き上げて、2層のY
形単分子膜の累積を行った。この操作を適当回数繰り返
すことによって、前記対向電極上に8層の累積膜を形成
した。
Next, go to SO8 at a concentration of 0.2mg/mi! The chloroform solution dissolved in 1 was spread on the water phase at 20°C to form a monomolecular film on the water surface. After waiting for the solvent to evaporate, the surface pressure of the monomolecular film was increased to 20111N101, and while keeping this constant, the electrode substrate was moved across the water surface at a speed of 5.
Gently crush it for 7 minutes, then pull it up again to form two layers of Y.
The accumulation of shaped monolayers was carried out. By repeating this operation an appropriate number of times, a cumulative film of eight layers was formed on the counter electrode.

その後、5OAZ−LB膜からなる記録層上に、微小孤
立電極として厚さ500人大きさ50μm角の複数個の
AN電極を真空マスク蒸着(抵抗加熱)法じより形成す
ることにより、本発明の記録媒体を作製した。
Thereafter, a plurality of AN electrodes each having a thickness of 500 mm and a size of 50 μm square were formed as minute isolated electrodes on the recording layer made of the 5OAZ-LB film by a vacuum mask evaporation (resistance heating) method. A recording medium was produced.

また、これとは別は、記録層の層数を、2゜4、12.
20.30.40.60層というように変えた7[類の
記録媒体を作製した。この記録媒体についても、先はど
と同様の記録・再生実験を行った。その評価結果を表1
に示す。
Apart from this, the number of recording layers is 2°4, 12.
20, 30, 40, and 60 layers were prepared as type 7 recording media. Similar recording and playback experiments were conducted on this recording medium as well. Table 1 shows the evaluation results.
Shown below.

評価は、記録書き込みパルス及び消去電圧を印加した後
の記録性及び消去性の良否、更に記録状態ε消去状態で
の電流値の比(ON10FF比〉及び安定性により総合
的に判定し、特に良好なものを01良好なものをO1他
のものと比較していくぶん評価の低いものを△とした。
The evaluation is comprehensively judged based on the quality of recording and erasing properties after applying the recording write pulse and erasing voltage, as well as the ratio of current values in the recording state ε erasing state (ON10FF ratio) and stability. A rating of 01 indicates that the rating is good. A rating of 0 indicates that the rating is somewhat low compared to other items.

なお、5OAZ 1層あたりの厚さは、小角X線回折法
により求めたところ、約15人であった。
The thickness of each 5OAZ layer was determined by small-angle X-ray diffraction and was about 15.

見立組上 実施例1で用いた5OAZ記録層の代わりにポリイミド
を用いた以外は実施例1と同様にして実験を行った。記
録性、0N10FF比、消去性の結果は表1にまとめて
示した。 5OAZと同様に、データ信号の記録・再生
ができ、光照射によるデータ信号の変化は認められず、
耐光性に優れていた。
An experiment was conducted in the same manner as in Example 1, except that polyimide was used instead of the 5OAZ recording layer used in Example 1. The results of recordability, 0N10FF ratio, and erasability are summarized in Table 1. Like 5OAZ, data signals can be recorded and reproduced, and data signals do not change due to light irradiation.
It had excellent light resistance.

なお、ポリイミド膜の形成法は下記の通りである。Note that the method for forming the polyimide film is as follows.

ポリアミック酸(分子量約20万)を濃度1×10−3
%(g/g)で溶かしたジメチルアセトアミド溶液を、
水温20℃の純水の水相上に展開し、水面上に単分子膜
を形成した。この単分子膜の表面圧を25mN/mまで
高め、更にこれを一定に保ちながら、前記基板を水面に
横切るように5mm/分で移動させて浸漬、引き上げを
行い、Y型単分子膜の累積を行った。かかる操作を繰り
返すことによって、12、18.24.30.3B、 
42.60層の7種類の累積膜を作製した。更にこれら
の膜を300℃で10分加熱を行うことによりポリイミ
ドにした。
Polyamic acid (molecular weight approximately 200,000) at a concentration of 1 x 10-3
% (g/g) of dimethylacetamide solution,
It was spread on an aqueous phase of pure water at a water temperature of 20°C to form a monomolecular film on the water surface. The surface pressure of this monomolecular film was increased to 25 mN/m, and while keeping this constant, the substrate was immersed and pulled up by moving it across the water surface at a rate of 5 mm/min, and the Y-shaped monomolecular film was accumulated. I did it. By repeating this operation, 12, 18.24.30.3B,
Seven types of cumulative films each having 42.60 layers were produced. Further, these films were heated at 300° C. for 10 minutes to form polyimide.

なお、ポリイミド1r@あたりの厚さは、エリプソメト
リ−法により約4人と求められた。
The thickness per polyimide 1r@ was determined to be about 4 by the ellipsometry method.

(以下余白) 表  1 実44例ユ 実施例1で用いた5OAZ記録層の代わりにルテチウム
シフタロジアニン[LuH(Pc) 21のt−ブチル
誘導体を用いた以外は実施例1と同様にして実験を行っ
た。但し、記録層の層数は5OAZ記録層と同様に2.
4.8.12.20.30.40.60層の8種類ヒし
た。
(Margin below) Table 1 44 Examples Experiments were carried out in the same manner as in Example 1 except that the t-butyl derivative of lutetium siphthalodianine [LuH(Pc) 21 was used instead of the 5OAZ recording layer used in Example 1. I did it. However, the number of recording layers is 2.
4.8, 12, 20, 30, 40, and 60 layers were tested.

この時の記録性、0N10FF比、消去性及び耐光性の
結果は5OAZ記録膜の時と全く同じとなり、5OAZ
と同様に、データ信号の記録・再生ができ、光照射によ
るデータ信号の変化は認められず、耐光性に優れている
ことが分かった。
The results of recording performance, 0N10FF ratio, erasability, and light resistance at this time were exactly the same as those for the 5OAZ recording film.
Similarly, data signals could be recorded and reproduced, and no change in data signals was observed due to light irradiation, indicating excellent light resistance.

なお、LuH(Pc) zのt−ブチル誘導体の累積条
件は下記の通りである。
Note that the cumulative conditions for the t-butyl derivative of LuH(Pc) z are as follows.

溶 媒:クロロホルム/トリメチルベンゼン/アセトン
(1/1/2) 濃  度: 0.5mg/mi) 水 相:純水、水温20℃ 表面圧: 20mN/m、基板上下速度3 mm/分及
血皿±二1 記録層としてポリイミドを用い、表2に示した電極材料
を使用して記録媒体を作製し、実施例1と同様の実験を
行ったところ、表2に示す結果を得た。表中0印で示し
た様に全ての試料に関し、十分な記録・再生特性と耐光
性が得られた。
Solvent: Chloroform/trimethylbenzene/acetone (1/1/2) Concentration: 0.5 mg/mi) Water Phase: Pure water, water temperature 20°C Surface pressure: 20 mN/m, substrate vertical speed 3 mm/min Dish ±21 A recording medium was prepared using polyimide as the recording layer and the electrode materials shown in Table 2, and the same experiment as in Example 1 was conducted, and the results shown in Table 2 were obtained. As indicated by the 0 mark in the table, sufficient recording/reproducing characteristics and light resistance were obtained for all samples.

なお、ポリイミドLB膜の暦数は全て24層である。ま
た、Au電極は抵抗加熱法、pt電極はEB法を、I丁
0はスパッタ法を用いてそれぞれ形成した。
Note that all polyimide LB films have 24 layers. Further, the Au electrode was formed using a resistance heating method, the PT electrode was formed using an EB method, and the I-type electrode was formed using a sputtering method.

表  2 以上述べてきた実施例中では有機化合物記録層の形成に
LB法を使用してきたが、極めて薄く均な膜が作製でき
る成膜法であればLB法に限らず使用可能であり、具体
的にはMBEやCVD法等の成膜法が挙げられる。
Table 2 In the examples described above, the LB method has been used to form the organic compound recording layer, but any film formation method that can produce an extremely thin and uniform film can be used other than the LB method. Examples include film forming methods such as MBE and CVD.

対向電極や微小孤立電極の形成性は関しても既に述べて
いるように、均一な薄膜を作製しうる成膜法であれば使
用可能であり、真空蒸着法に限られるものではない。
Regarding the formability of the counter electrode and minute isolated electrode, as already mentioned, any film forming method that can produce a uniform thin film can be used, and is not limited to the vacuum evaporation method.

更に基板材料やその形状も本発明は何ら限定するもので
はない。
Furthermore, the present invention does not limit the substrate material or its shape in any way.

[発明の効果] 以上述べたように、本発明によれば ■ 光記録に比べて安定性、特に耐光性に非常に優れた
記録・再生装置及び記録・再生方法を提供することがで
きた。
[Effects of the Invention] As described above, according to the present invention, (1) it was possible to provide a recording/reproducing apparatus and a recording/reproducing method which are extremely superior in stability, particularly light resistance, compared to optical recording.

■ 微小孤立電極1個に1つの情報を記録するため、こ
の電極を小型化することにより、将来的に光メモリー素
子よりも高密度な記録・再生装置を提供できる。
(1) Since one piece of information is recorded on each microscopic isolated electrode, by miniaturizing this electrode, it will be possible to provide recording/reproducing devices with higher density than optical memory devices in the future.

■ 単分子膜の累積によって記録層を形成するため、分
子オーダー(λ〜数10人)による膜厚制御が容易に実
現できた。
(2) Since the recording layer is formed by the accumulation of monomolecular films, it is possible to easily control the film thickness on the order of molecules (λ~several tens of molecules).

■ 記録層が薄くて良いため、生産性に富み安価な記録
媒体を提供できる。
■ Since the recording layer can be thin, it is possible to provide a highly productive and inexpensive recording medium.

といったような効果がある。There are effects like this.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に用いた記録・再生装置の模式図である
。 第2a図、第2b図はIt動制御機構の模式図及び走査
説明図である。 第3図は記録信号波形である。 ′s4図はMIM素子の構成略図で、第5図と第6図は
第4図の素子で得られる電気的特性を示す特性図である
。 第7図は累積膜の成膜装置の模式図である。 第8a図と第8b図は単分子膜の模式図であり、Nea
図、第9b図、第9c図は累積膜の模式図である。 1・・・記録媒体    41・・・^ut8i42・
・・^l電極     43・・・単分子累積膜81・
・・水相      82・・・展開膜83・・・仕切
板     84・・・基板91・・・単分子膜 92.92a、 92b−・・親水性部位93、93a
、 93b・−・疎水性部位94・・・累積膜    
 101・・・記録層102・・・プローブ電極 10
3・・・微小孤立電極104・・・対向電極   10
5・・・基板106・・・プローブ電流増幅器 107・・・サーボ回路  108・・・微動制御機構
109・・・パルス電源  110・・・XY走査駆動
回路111・・・粗動機構   112・・・粗a駆動
回路113・・・マイクロコンピュータ
FIG. 1 is a schematic diagram of a recording/reproducing apparatus used in the present invention. FIGS. 2a and 2b are a schematic diagram and a scanning explanatory diagram of the It dynamic control mechanism. FIG. 3 shows the recording signal waveform. Figure 's4 is a schematic diagram of the configuration of the MIM element, and Figures 5 and 6 are characteristic diagrams showing the electrical characteristics obtained with the element of Figure 4. FIG. 7 is a schematic diagram of a cumulative film forming apparatus. Figures 8a and 8b are schematic diagrams of monolayers, with Nea
9b and 9c are schematic diagrams of the cumulative film. 1...Recording medium 41...^ut8i42・
...^l Electrode 43... Monomolecular cumulative film 81.
...Aqueous phase 82...Development membrane 83...Partition plate 84...Substrate 91...Monolayer film 92.92a, 92b-...Hydrophilic portions 93, 93a
, 93b -- Hydrophobic site 94 -- Cumulative membrane
101... Recording layer 102... Probe electrode 10
3... Micro isolated electrode 104... Counter electrode 10
5... Substrate 106... Probe current amplifier 107... Servo circuit 108... Fine movement control mechanism 109... Pulse power supply 110... XY scan drive circuit 111... Coarse movement mechanism 112... Coarse a drive circuit 113... microcomputer

Claims (10)

【特許請求の範囲】[Claims] (1)少なくとも1つのプローブ電極と該プローブ電極
と対向配置した対向電極とを有し、電気メモリー効果を
有する記録層と該記録層上に導電性材料からなる1個或
は複数個の微小孤立電極を持つ記録媒体が、前記プロー
ブ電極と前記対向電極の間に配置されたことを特徴とす
る記録・再生装置。
(1) A recording layer having at least one probe electrode and a counter electrode disposed opposite to the probe electrode and having an electric memory effect, and one or more microisolated particles made of a conductive material on the recording layer. A recording/reproducing device characterized in that a recording medium having an electrode is disposed between the probe electrode and the counter electrode.
(2)前記記録層が、有機化合物の単分子膜または該単
分子膜を累積した累積膜を有していることを特徴とする
請求項1記載の記録・再生装置。
(2) The recording/reproducing device according to claim 1, wherein the recording layer has a monomolecular film of an organic compound or a cumulative film formed by accumulating the monomolecular film.
(3)前記単分子膜または累積膜の膜厚が数Å〜数10
00Åの範囲であることを特徴とする請求項2記載の記
録・再生装置。
(3) The thickness of the monomolecular film or cumulative film is from several Å to several tens of angstroms.
3. The recording/reproducing apparatus according to claim 2, wherein the recording/reproducing apparatus has a range of 00 Å.
(4)前記単分子膜または累積膜の膜厚が10Å〜10
00Åの範囲であることを特徴とする請求項2記載の記
録・再生装置。
(4) The thickness of the monomolecular film or cumulative film is 10 Å to 10 Å.
3. The recording/reproducing apparatus according to claim 2, wherein the recording/reproducing apparatus has a range of 00 Å.
(5)前記単分子膜または累積膜の膜厚が50Å〜50
0Åの範囲であることを特徴とする請求項2記載の記録
・再生装置。
(5) The thickness of the monomolecular film or cumulative film is 50 Å to 50 Å.
3. The recording/reproducing apparatus according to claim 2, wherein the recording/reproducing apparatus is in a range of 0 Å.
(6)前記単分子膜または累積膜がLB法によつて成膜
した膜であることを特徴とする請求項2記載の記録・再
生装置。
(6) The recording/reproducing apparatus according to claim 2, wherein the monomolecular film or the cumulative film is a film formed by an LB method.
(7)前記有機化合物が分子中にπ電子準位を持つ群と
σ電子準位を持つ群とを有することを特徴とする請求項
2記載の記録・再生装置。
(7) The recording/reproducing device according to claim 2, wherein the organic compound has a group having a π electron level and a group having a σ electron level in the molecule.
(8)前記プローブ電極が前記記録層面方向への走査駆
動装置を有していることを特徴とする請求項1記載の記
録・再生装置。
(8) The recording/reproducing apparatus according to claim 1, wherein the probe electrode has a scanning drive device in the direction of the surface of the recording layer.
(9)前記プローブ電極と記録媒体の相対位置を3次元
的に微動制御する手段を有していることを特徴とする請
求項1記載の記録・再生装置。
(9) The recording/reproducing apparatus according to claim 1, further comprising means for three-dimensionally controlling the relative position of the probe electrode and the recording medium.
(10)電気メモリー効果を有する記録層に、プローブ
電極から微小孤立電極を通して、電気メモリー効果を生
じるしきい値電圧を越えた電圧を印加して記録を行い、
電気メモリー効果を生じるしきい値電圧を越えていない
電圧を印加して前記記録層に流れる電流値の変化を読ん
で再生を行うことを特徴とする記録・再生方法。
(10) Recording is performed by applying a voltage exceeding a threshold voltage that causes an electric memory effect to the recording layer having an electric memory effect from a probe electrode through a minute isolated electrode,
A recording/reproducing method characterized in that reproduction is performed by applying a voltage that does not exceed a threshold voltage that causes an electric memory effect and reading changes in the value of current flowing through the recording layer.
JP1205771A 1989-08-10 1989-08-10 Recording / reproducing method and recording / reproducing apparatus Expired - Fee Related JP2859652B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP1205771A JP2859652B2 (en) 1989-08-10 1989-08-10 Recording / reproducing method and recording / reproducing apparatus
US07/564,080 US5206665A (en) 1989-08-10 1990-08-08 Recording medium, method for preparing the same, recording and reproducing device, and recording, reproducing and erasing method by use of such recording medium
CA002022929A CA2022929C (en) 1989-08-10 1990-08-08 Organic recording medium with electrodes
DE69028963T DE69028963T2 (en) 1989-08-10 1990-08-09 Recording medium, method for producing the same, recording and reproducing device and method for recording, reproducing and erasing with such a recording medium
EP90308803A EP0412829B1 (en) 1989-08-10 1990-08-09 Recording medium, method for preparing the same, recording and reproducing device, and recording, reproducing and erasing method by use of such a recording medium
US08/005,466 US5264876A (en) 1989-08-10 1993-01-19 Recording medium, method for preparing the same, recording and reproducing device, and recording, reproducing and erasing method by use of such recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1205771A JP2859652B2 (en) 1989-08-10 1989-08-10 Recording / reproducing method and recording / reproducing apparatus

Publications (2)

Publication Number Publication Date
JPH0371453A true JPH0371453A (en) 1991-03-27
JP2859652B2 JP2859652B2 (en) 1999-02-17

Family

ID=16512399

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1205771A Expired - Fee Related JP2859652B2 (en) 1989-08-10 1989-08-10 Recording / reproducing method and recording / reproducing apparatus

Country Status (1)

Country Link
JP (1) JP2859652B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6435744A (en) * 1987-07-31 1989-02-06 Canon Kk Reproducing device and reproducing method
JPS6435743A (en) * 1987-07-31 1989-02-06 Canon Kk Recorder and recording method

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2603241B2 (en) 1987-03-11 1997-04-23 キヤノン株式会社 Recording device and playback device
JP2556491B2 (en) 1986-12-24 1996-11-20 キヤノン株式会社 Recording device and recording method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6435744A (en) * 1987-07-31 1989-02-06 Canon Kk Reproducing device and reproducing method
JPS6435743A (en) * 1987-07-31 1989-02-06 Canon Kk Recorder and recording method

Also Published As

Publication number Publication date
JP2859652B2 (en) 1999-02-17

Similar Documents

Publication Publication Date Title
US5623476A (en) Recording device and reproduction device
JP2556491B2 (en) Recording device and recording method
JP2556492B2 (en) Reproduction device and reproduction method
JP2794348B2 (en) Recording medium, manufacturing method thereof, and information processing apparatus
JPH03156749A (en) Substrate and electrode substrate for recording medium, recording medium, production thereof, recording device, reproducing device, recording and reproducing device, recording method, recording and reproducing method, reproducing and erasing method
JPH01245445A (en) Recording and detecting device
US5264876A (en) Recording medium, method for preparing the same, recording and reproducing device, and recording, reproducing and erasing method by use of such recording medium
US5206665A (en) Recording medium, method for preparing the same, recording and reproducing device, and recording, reproducing and erasing method by use of such recording medium
EP0553937B1 (en) Recording device and reproducing device
JP2556520B2 (en) Recording device and recording method
JPH0371453A (en) Method and device for recording and reproducing
JPS63204531A (en) Reproducing device
JPH0371447A (en) Recording medium
JP2981789B2 (en) Recording medium and information processing device
JPH0291836A (en) Device and method for recording and reproducing
JP2936290B2 (en) Method for manufacturing recording medium, recording medium, and information processing apparatus having the same
JPH03295043A (en) Recording medium
JPH03273539A (en) Recording and reproducing device
JPH03272037A (en) Recording medium, production thereof and recording and reproducing device
JPH03295044A (en) Production of recording medium
JPH04143942A (en) Formation of track
JPH03295042A (en) Production of recording medium
JP2992908B2 (en) Method for manufacturing substrate electrode and method for manufacturing recording medium
JPH04344348A (en) Recording medium and production thereof and information processor
JPH0490151A (en) Information processing method and information processor

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees