[go: up one dir, main page]

JPH0371039A - Ion measuring device - Google Patents

Ion measuring device

Info

Publication number
JPH0371039A
JPH0371039A JP20722689A JP20722689A JPH0371039A JP H0371039 A JPH0371039 A JP H0371039A JP 20722689 A JP20722689 A JP 20722689A JP 20722689 A JP20722689 A JP 20722689A JP H0371039 A JPH0371039 A JP H0371039A
Authority
JP
Japan
Prior art keywords
ion
measuring device
piezoelectric element
impedance
sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20722689A
Other languages
Japanese (ja)
Inventor
Masayuki Suda
正之 須田
Hiroshi Muramatsu
宏 村松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Instruments Inc
Original Assignee
Seiko Instruments Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Instruments Inc filed Critical Seiko Instruments Inc
Priority to JP20722689A priority Critical patent/JPH0371039A/en
Publication of JPH0371039A publication Critical patent/JPH0371039A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Abstract

PURPOSE:To miniaturize the sensor part and to facilitate the handling and measurement by forming the sensor part only by a piezoelectric element and an ion sensitive material. CONSTITUTION:The sensor part 1 is connected to an impedance measuring device 2 with the measuring frequency capable of being optionally set, and the measuring device 2 is connected to a computer 3 for arithmetic control. The sensor part 1 is fixed in a cell 7 so that only one side of the piezoelectric element 6 is brought into contact with a sample to be tested. The surface of the element 6 to be brought into contact with the sample is coated with an ion sensitive material 8. The resonance frequency and resonance resistance value of the element 6 are obtained by measuring the impedance by the impedance measuring device 2 in the vicinity of the resonance frequency of the element 6 and calculating the impedance by the computer 3. Consequently, since a standard sample need not be retained in the sensor, attention need not be paid to handling, and measurement is easily carried out without any special pretreatment.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、分析化学、電気化学、食品工業、医療、お
よび薬学分野における溶液中のイオン種の分析およびイ
オンの定量を行う分野での利用が可能である。
[Detailed Description of the Invention] [Field of Industrial Application] This invention is applicable to the fields of analyzing ion species and quantifying ions in solutions in the fields of analytical chemistry, electrochemistry, food industry, medicine, and pharmacy. is possible.

〔発明の概要〕[Summary of the invention]

この発明のイオン測定装置のセンサー部は、第2図に示
されるように、圧電素子をイオン感心物質で被覆した構
造を持つ。このイオン測定装置は、イオン感応物質がイ
オンを捕捉した場合に生じるイオン感応物質の重量変化
や構造変化を、圧電素子の共振抵抗値もしくCよ共振周
波数変化として検出することを特徴としている。イオン
感応物質に特定のイオンを選択的に捕捉する物質を用い
ることにより、イオン種の分析や特別の分離操作なしに
特定イオンの定量が可能である。
As shown in FIG. 2, the sensor section of the ion measuring device of the present invention has a structure in which a piezoelectric element is coated with an ion-sensitive substance. This ion measurement device is characterized by detecting changes in the weight and structure of the ion-sensitive material that occur when the ion-sensitive material captures ions, as changes in the resonance resistance value or resonance frequency of the piezoelectric element. By using an ion-sensitive material that selectively captures specific ions, specific ions can be quantified without analysis of ion species or special separation operations.

この発明は、センサー部と、共振周波数測定装置もしく
は共振抵抗測定装置の少なくとも一方より構成される。
The present invention includes a sensor section and at least one of a resonant frequency measuring device or a resonant resistance measuring device.

〔従来の技術〕[Conventional technology]

従来のイオン測定装置としては、第3図に示されるよう
に、目的のイオンに対して選択的に応答する膜(イオン
選択性膜9)を、標準試料10と被検試料11の間に配
し、膜の両端に発生ずる電位差を2つの基準電極12で
測定する方法が一般的である。イオン選択性膜9として
は、ガラス薄膜、難溶性塩の固体膜やイオン感応物質を
PVC(ポリ塩化ビニル)に含浸させた膜などを用いた
ものがある。ガラス薄膜を用いたものは、水素イオン、
ナトリウムイオン用のセンサーとして、難溶性塩固体膜
を用いたものは、フッ素イオンや塩素イオン用のセンサ
ーなどとして実用化されている。PVC膜を用いたもの
には、クラウンエーテルやパリノマイシンを含浸させた
カリウムイオン用のセンサーがある。また、その他に目
的のイオンを難溶性の塩にして、水晶振動子上に付着さ
せた場合に生じる、水晶振動子の共振周波数変化からイ
オンの定量を行った例も報告されている。
As shown in FIG. 3, a conventional ion measurement device has a membrane (ion-selective membrane 9) that selectively responds to target ions placed between a standard sample 10 and a test sample 11. However, a common method is to measure the potential difference generated across the membrane using two reference electrodes 12. Examples of the ion-selective membrane 9 include those using a glass thin membrane, a solid membrane of poorly soluble salt, and a membrane in which PVC (polyvinyl chloride) is impregnated with an ion-sensitive substance. Those using a glass thin film can emit hydrogen ions,
Sensors for sodium ions using poorly soluble salt solid membranes have been put into practical use as sensors for fluorine ions and chloride ions. Examples of sensors using PVC membranes include sensors for potassium ions impregnated with crown ether or palinomycin. In addition, there have also been reports of ions being quantified from changes in the resonance frequency of a crystal resonator, which occurs when the target ion is made into a poorly soluble salt and adhered to the crystal resonator.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

従来のセンサー部にイオン選択性膜を用いたイオン測定
装置は、膜の両端に発生する電位差を測定するために2
つの基準電極が必要である。この基準電極には銀/塩化
銀電極や飽和カロメル電極(SCE)などがあるが、い
ずれも構造がやや複雑である。これGこ加え、この種の
イオン測定装置では、標準試料が必要であり、センサー
内部に液体を保持する構造となるため、センサー部を小
型化することが困難であるとともに、取扱いに注意を要
するという問題点があった。
Conventional ion measuring devices that use an ion-selective membrane in the sensor section have two
Two reference electrodes are required. This reference electrode includes a silver/silver chloride electrode and a saturated calomel electrode (SCE), but both have somewhat complex structures. In addition, this type of ion measurement device requires a standard sample and has a structure that holds liquid inside the sensor, making it difficult to miniaturize the sensor unit and requiring careful handling. There was a problem.

一方、イオンを難易溶性の塩にして水晶振動子に付着さ
せた場合の水晶振動子の共振周波数変化を測定するイオ
ン測定装置では、目的とするイオンを難溶性の塩の形に
するための操作が必要であるという問題点があった。
On the other hand, in an ion measuring device that measures the change in the resonant frequency of a crystal resonator when ions are made into a poorly soluble salt and attached to the crystal resonator, an operation to convert the target ion into a poorly soluble salt is required. The problem was that it required

一 〔課題を解決するための手段〕 本発明のイオン測定装置は、センサー部が圧電素子とイ
オン感応物質のみで構成され、それを被検試料中に浸漬
させるだけで測定が可能である。
(1) [Means for Solving the Problems] In the ion measuring device of the present invention, the sensor portion is composed only of a piezoelectric element and an ion-sensitive material, and measurement can be performed simply by immersing the sensor portion in a test sample.

このため、センサー部の構造が単純で小型化が容易であ
る。またセンサー内部に標準試料を保持する必要がない
ため、取扱いに特に注意を払う必要がなく、測定を行う
場合も特別の前処理なしに簡便に測定を行うことが可能
である。
Therefore, the structure of the sensor section is simple and miniaturization is easy. Furthermore, since there is no need to hold a standard sample inside the sensor, there is no need to pay special attention to handling, and measurements can be easily performed without special pretreatment.

〔作用〕[Effect]

圧電素子は、圧電効果を利用したデバイスであり、共振
周波数付近の周波数の電圧を印加することによって機械
的な振動を起こす。この振動はきわめて微小であるが、
物質が接した状態で物質と液体と圧電素子表面との間の
剪断応力による抵抗を受ける。この機械的抵抗の抵抗係
数は、圧電素子の機械的な振動と電気的な振動とを対応
づけて考えると電気的抵抗と同等であると考えることが
できる。この抵抗を共振抵抗と言い、圧電素子はその表
面が接している物質の粘弾性、密度によって変化する。
A piezoelectric element is a device that utilizes the piezoelectric effect, and generates mechanical vibration by applying a voltage at a frequency near the resonance frequency. Although this vibration is extremely small,
When the substances are in contact with each other, they are subjected to resistance due to shear stress between the substance, the liquid, and the surface of the piezoelectric element. The resistance coefficient of this mechanical resistance can be considered to be equivalent to the electrical resistance when considering the correspondence between the mechanical vibration and the electrical vibration of the piezoelectric element. This resistance is called resonance resistance, and it changes depending on the viscoelasticity and density of the material with which the surface of the piezoelectric element is in contact.

また共振周波数は、粘性、密度Gこ加えて、表面上への
物質の吸着等の重量変化などの影響を受け、変化するこ
とが知られている。一方、イオン感応物質である環状デ
プシペプチド、環状ペプチド、環状ラクトン、環状ポリ
エーテルは、イオンを1つの分子内もしくは複数の分子
間に包接することが知られている。環状デプシペプチド
の一種であるパリノマイシンはカリウムにイオンに対し
て特異性があり、また、環状ポリエーテルの一種である
クラウンエーテルは、クラウン環の大きさによってイオ
ンに対する選択性が異なる。
It is also known that the resonance frequency changes due to the influence of viscosity, density G, and weight changes such as adsorption of substances onto the surface. On the other hand, ion-sensitive substances such as cyclic depsipeptides, cyclic peptides, cyclic lactones, and cyclic polyethers are known to include ions within one molecule or between multiple molecules. Palinomycin, a type of cyclic depsipeptide, has specificity for potassium ions, and crown ether, a type of cyclic polyether, has different selectivity for ions depending on the size of the crown ring.

従って、目的のイオンに対して選択性を持つイオン感応
物質を圧電素子に被覆することにより、これらのイオン
感応物質がイオンを捕捉した場合の重量変化や構造変化
を圧電素子の共振周波数変化や共振抵抗変化として検出
することが可能となる。
Therefore, by coating a piezoelectric element with an ion-sensitive material that is selective to the target ions, changes in weight and structure when these ion-sensitive materials capture ions can be reflected in changes in the piezoelectric element's resonant frequency and resonance. This can be detected as a resistance change.

〔実施例〕〔Example〕

以下、この発明の実施例を図面に基づいて説明する。第
1図は本発明のイオン測定装置の模式図である。第1図
において、センサー部1は、測定周波数が任意に設定で
きるインピーダンス測定器2に接続され、インピーダン
ス測定器2は、演算、制御を行うためのコンピュータ3
に接続され、コンピュータ3にはプリンタ4.デイスプ
レィ5が接続されている。インピーダンス測定器2およ
びコンピュータ3によって、共振抵抗値および共振周波
数を測定することができる。第2図は本発明のイオン測
定装置のセンサー部の模式図を示したものである。第2
図において、圧電素子6は片側だけが被検試料と接する
ようにセルフ中に固定されている。圧電素子6の被検試
料と接する例の表面は、イオン感応物質8で被覆されて
いる。
Embodiments of the present invention will be described below based on the drawings. FIG. 1 is a schematic diagram of the ion measuring device of the present invention. In FIG. 1, a sensor section 1 is connected to an impedance measuring device 2 whose measurement frequency can be arbitrarily set, and the impedance measuring device 2 is connected to a computer 3 for performing calculation and control.
The computer 3 has a printer 4. Display 5 is connected. The impedance measuring device 2 and the computer 3 can measure the resonant resistance value and the resonant frequency. FIG. 2 shows a schematic diagram of the sensor section of the ion measuring device of the present invention. Second
In the figure, the piezoelectric element 6 is fixed in the cell so that only one side is in contact with the test sample. The surface of the piezoelectric element 6 in contact with the test sample is coated with an ion-sensitive material 8.

圧電素子6の共振周波数及び共振抵抗値は、圧電素子6
の共振周波数付近でインピーダンス測定を行い求めた。
The resonant frequency and resonant resistance value of the piezoelectric element 6 are
The impedance was determined by measuring the impedance near the resonance frequency.

インピーダンス測定は、具体的にはアトミソタンスの虚
数部であるサセプタンスの最大値と最小値を与える周波
数の間に共振周波数があることから、サセプタンスの最
大値と最小値を周波数掃引して求め、この間の周波数に
ついて等間隔の周波数でコンダクタンスのサセプタンス
の測定を行った。測定値は、コンダクタンス及びサセプ
タンスのデータを円の最小自乗法によって処理し、円の
直径を求め、この逆数を共振抵抗の値とした。また、円
の中心を求め、この中心点のサセプタンスの値と同しく
直を持つ円上の周波数をサセプタンスと測定周波数の多
項式近似から求め、これを共振周波数とした。
Specifically, in impedance measurement, since there is a resonance frequency between the frequencies that give the maximum and minimum values of susceptance, which is the imaginary part of atomic sotance, the maximum and minimum values of susceptance are found by frequency sweeping, and the The susceptance of conductance was measured at equally spaced frequencies. As for the measured values, conductance and susceptance data were processed by the circular least squares method to determine the diameter of the circle, and the reciprocal of this was taken as the value of the resonant resistance. Further, the center of the circle was found, and a frequency on the circle having the same directness as the susceptance value at this center point was found from a polynomial approximation of the susceptance and the measurement frequency, and this was taken as the resonance frequency.

こうした測定及び演算の処理は、コンピュータによって
自動的に行うことが可能であり、本発明の装置では、1
回の測定を3秒以内に行うことが可能であった。
Such measurement and calculation processing can be automatically performed by a computer, and in the device of the present invention, 1
It was possible to perform multiple measurements within 3 seconds.

イオン感応物質8に第4図のような構造をもつクラウン
エーテルを用い、圧電素子6とし゛ζ共振周波数が9M
HhのATカット水晶振動子を用いて、水’lB液中の
カリウムイオンについて濃度測定を行った結果、共振抵
抗及び共振周波数はカリウJ、イオン流度に依在して変
化することが明らかとなった。これにより、本発明のイ
オン測定装置により、イオンの定量が可能であることが
示された。同様の測定は、圧電素子6として、共振周波
数が1〜40 M tlzのA′Fカットもしくは8T
カット水晶振動子や共振周波数が10 k、 IIZ〜
10 M llzのセラミソクス圧電体を使用しても測
定可能であり、また、インピーダンス測定器2の代わり
に発振回路と周波数カウンタから構成される共振周波数
測定装置もしくは、発振回路と発振振幅計測回路から構
成される共振抵抗値測定装置を使用しても測定可能であ
る。
Crown ether having a structure as shown in FIG. 4 is used as the ion-sensitive material 8, and the piezoelectric element 6 has a resonance frequency of 9M.
As a result of measuring the concentration of potassium ions in the water'lB solution using a Hh AT-cut crystal oscillator, it was found that the resonance resistance and resonance frequency changed depending on potassium J and ion flow rate. became. This demonstrated that the ion measuring device of the present invention is capable of quantifying ions. Similar measurements were made using A'F cut or 8T with a resonance frequency of 1 to 40 M tlz as the piezoelectric element 6.
Cut crystal oscillator and resonance frequency is 10k, IIZ ~
It is also possible to measure using a ceramic piezoelectric body of 10 Mllz, and instead of the impedance measuring device 2, a resonance frequency measuring device consisting of an oscillation circuit and a frequency counter, or a resonant frequency measuring device consisting of an oscillation circuit and an oscillation amplitude measuring circuit can be used. It can also be measured using a resonant resistance measuring device.

〔発明の効果〕〔Effect of the invention〕

本発明のイオン測定装置を用いることにより、従来のイ
オン測定装置に比較して、センサー部の小型化が可能と
なった。また、センサー部の取扱や測定方法の簡便化を
図ることができた。
By using the ion measuring device of the present invention, it has become possible to downsize the sensor section compared to conventional ion measuring devices. In addition, it was possible to simplify the handling of the sensor unit and the measurement method.

第4図は本実施例で用いたイオン感応物質(ジヘンソ1
8−クラウン−6)構造を示す図である。
Figure 4 shows the ion-sensitive material (Dihenso 1) used in this example.
FIG. 8-Crown-6) is a diagram showing the structure.

■・・・センサー部 6・・・圧電素子 8・・・イオン感応物質 以上■・・・Sensor part 6...Piezoelectric element 8...Ion sensitive substance that's all

Claims (5)

【特許請求の範囲】[Claims] (1)センサー部に少なくとも片面をイオン感応物質で
被覆した圧電素子を用い、溶液中のイオンがイオン感応
物質に捕捉された場合に生じる圧電素子の共振抵抗値も
しくは、共振周波数変化から溶液中の、イオン種、イオ
ン濃度を求めることを特徴とするイオンセンサーを具備
したイオン測定装置。
(1) A piezoelectric element coated on at least one side with an ion-sensitive material is used in the sensor part, and the resonance resistance value of the piezoelectric element that occurs when ions in the solution are captured by the ion-sensitive material, or the resonance frequency change, An ion measuring device equipped with an ion sensor, which is characterized by determining ion species, ion concentration, and ion concentration.
(2)前記センサー部と、共振周波数測定装置もしくは
共振抵抗値測定装置の少なくとも一方より構成される請
求項1記載のイオン測定装置。
(2) The ion measuring device according to claim 1, comprising the sensor section and at least one of a resonant frequency measuring device or a resonant resistance value measuring device.
(3)前記圧電素子がATカット水晶振動子もしくはB
Tカット水晶振動子である請求項2記載のイオン測定装
置。
(3) The piezoelectric element is an AT-cut crystal resonator or B
The ion measuring device according to claim 2, which is a T-cut crystal resonator.
(4)前記圧電素子がセラミックス圧電体である請求項
2記載のイオン測定装置。
(4) The ion measuring device according to claim 2, wherein the piezoelectric element is a ceramic piezoelectric body.
(5)前記イオン感応物質が環状デプシペプチド、環状
ペプチド、環状ラクトン、環状ポリエーテルのいずれか
である請求項3あるいは4記載のイオン測定装置。
(5) The ion measuring device according to claim 3 or 4, wherein the ion-sensitive substance is any one of a cyclic depsipeptide, a cyclic peptide, a cyclic lactone, and a cyclic polyether.
JP20722689A 1989-08-09 1989-08-09 Ion measuring device Pending JPH0371039A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20722689A JPH0371039A (en) 1989-08-09 1989-08-09 Ion measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20722689A JPH0371039A (en) 1989-08-09 1989-08-09 Ion measuring device

Publications (1)

Publication Number Publication Date
JPH0371039A true JPH0371039A (en) 1991-03-26

Family

ID=16536330

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20722689A Pending JPH0371039A (en) 1989-08-09 1989-08-09 Ion measuring device

Country Status (1)

Country Link
JP (1) JPH0371039A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09145583A (en) * 1995-11-14 1997-06-06 Dev Center For Biotechnol Piezoelectric sensor chip of cartridge-form
WO2002023176A1 (en) * 2000-09-13 2002-03-21 British Nuclear Fuels Plc Improvements in and relating to sensors

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09145583A (en) * 1995-11-14 1997-06-06 Dev Center For Biotechnol Piezoelectric sensor chip of cartridge-form
WO2002023176A1 (en) * 2000-09-13 2002-03-21 British Nuclear Fuels Plc Improvements in and relating to sensors

Similar Documents

Publication Publication Date Title
US9762204B2 (en) Piezoelectric resonator
US5136247A (en) Apparatus and methods for calibrated work function measurements
US20040126814A1 (en) Sensor having molecularly imprinted polymers
JP5140724B2 (en) Quartz crystal resonator and measurement method using the same
JP2020514687A (en) Gas sensor with humidity compensation
JP3094190B2 (en) Chemical measuring device
JP4134025B2 (en) Sensing device
US7165452B2 (en) Measuring method, measurement-signal output circuit, and measuring apparatus
CN101568820A (en) Sensor
JPH0371039A (en) Ion measuring device
US7331232B2 (en) Measurement method and biosensor apparatus using resonator
EP0304283A2 (en) Apparatus for measuring a characteristic of a liquid
Yu et al. Simultaneous determination of nitrate and nitrite in saliva and foodstuffs by non-suppressed ion chromatography with bulk acoustic wave detector
Li et al. Preparation and application of a trimethoprim ion-selective piezoelectric sensor
JPH02226044A (en) Specimen cell
AU2006208032A1 (en) Amperometric sensor comprising counter electrode isolated from liquid electrolyte
JPH09210975A (en) Gas detector
JP4936921B2 (en) Quartz crystal sensor device
JP3447210B2 (en) Quartz resonator for chemical substance measurement and chemical substance detection device using the same
Lau et al. Determination of glucose using a piezoelectric quartz crystal and the silver mirror reaction
Baiz et al. Quartz Crystal Microbalance a Powerful Technique for Nanogram Mass Sensing
JP3954430B2 (en) Concentration measurement method
JPH03107753A (en) Instrument for measuring concentration of ion
JP2549311B2 (en) Ion sensor
Kechadi et al. Investigating the Kinetics of Antibody Adsorption onto Polyethylene Terephthalate (PET) Modified with Gold Nanoparticles in Flow Microchannel