JPH037037B2 - - Google Patents
Info
- Publication number
- JPH037037B2 JPH037037B2 JP61122383A JP12238386A JPH037037B2 JP H037037 B2 JPH037037 B2 JP H037037B2 JP 61122383 A JP61122383 A JP 61122383A JP 12238386 A JP12238386 A JP 12238386A JP H037037 B2 JPH037037 B2 JP H037037B2
- Authority
- JP
- Japan
- Prior art keywords
- piston
- transition
- abutment surface
- transition surfaces
- blower
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 230000007704 transition Effects 0.000 description 39
- 210000003739 neck Anatomy 0.000 description 5
- 230000013011 mating Effects 0.000 description 4
- 238000005096 rolling process Methods 0.000 description 4
- 238000000034 method Methods 0.000 description 3
- 238000007789 sealing Methods 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 2
- 238000013459 approach Methods 0.000 description 1
- 230000004323 axial length Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 238000007373 indentation Methods 0.000 description 1
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04C—ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
- F04C18/00—Rotary-piston pumps specially adapted for elastic fluids
- F04C18/08—Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing
- F04C18/12—Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type
- F04C18/126—Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type with radially from the rotor body extending elements, not necessarily co-operating with corresponding recesses in the other rotor, e.g. lobes, Roots type
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01C—ROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
- F01C1/00—Rotary-piston machines or engines
- F01C1/08—Rotary-piston machines or engines of intermeshing engagement type, i.e. with engagement of co- operating members similar to that of toothed gearing
- F01C1/12—Rotary-piston machines or engines of intermeshing engagement type, i.e. with engagement of co- operating members similar to that of toothed gearing of other than internal-axis type
- F01C1/126—Rotary-piston machines or engines of intermeshing engagement type, i.e. with engagement of co- operating members similar to that of toothed gearing of other than internal-axis type with elements extending radially from the rotor body not necessarily cooperating with corresponding recesses in the other rotor, e.g. lobes, Roots type
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Applications Or Details Of Rotary Compressors (AREA)
- Compressors, Vaccum Pumps And Other Relevant Systems (AREA)
- Compressor (AREA)
Description
【発明の詳細な説明】
本発明は、交叉する円筒状の二つの外筒走行面
と二つの側壁で形成されたハウジングを有し、そ
の側壁が、対向方向に同じ速度で回転する軸によ
り両方の外筒走行面に対し同心に貫通され、これ
らの軸には、それ自体で対称的なおよび他方のピ
ストンと同じそれぞれ一つの二翼形のピストンが
配置され、各ピストンの翼には、外筒走行面に沿
つて走る外側当接面と、翼の間で相手ピストンの
外側当接面に沿つて走る円筒状の内側当接面と、
翼の側面を形成する、内側当接面と外側当接面の
間の移行面とを有し、これらの移行面が相手ピス
トンの移行面と係合するようになつている外軸形
回転ピストン送風機に関する。DETAILED DESCRIPTION OF THE INVENTION The present invention has a housing formed of two intersecting cylindrical outer cylinder running surfaces and two side walls, and the side walls are connected to each other by shafts rotating at the same speed in opposite directions. are pierced concentrically with respect to the cylindrical running surface of the pistons, and on these axes are disposed in each case one bifoil-shaped piston, symmetrical in itself and identical to the other piston, the wings of each piston having an outer cylindrical surface. an outer contact surface running along the cylinder running surface; a cylindrical inner contact surface running along the outer contact surface of the mating piston between the blades;
an external rotary piston having transition surfaces between an inner abutment surface and an outer abutment surface forming the flanks of a wing, the transition surfaces being adapted to engage the transition surfaces of a mating piston; Regarding blowers.
このような送風機は、それ自体同列に置くべき
対称的なルーツ型と異なつて外筒走行面に対し長
い表面シールを形成し、かつこの送風機によれ
ば、ピストンが互いに係合した状態で転動する間
に形成されるくさび状間隙が狭まつて流れが絞ら
れ、駆動抵抗が大きくなることが避けられる。 Such a blower, unlike the symmetrical Roots type which itself should be placed in line, forms a long surface seal against the running surface of the outer cylinder, and according to this blower the pistons roll in engagement with each other. The wedge-shaped gap formed during this process narrows, restricting the flow, and preventing an increase in drive resistance.
オーストリヤ特許明細書におよびドイツ公開公
報にこのような回転ピストン機械が記載されてい
るが、その場合当面の関係にとつて、多段性が提
案されることは重要でない。両方の刊行物におい
て、他方のピストンに対する一方のピストンの外
側当接面の縁からの半径方向断面の移行面の輪か
くがエピサイクロイドで描かれており、それによ
り完全なシールが達成されなければならい。しか
しながら、それを以て、当接面と移行面により作
られる角の前後で圧縮されるガスポケツトが形成
される。その圧縮に必要なエネルギーがそのよう
な機械の駆動に必要な出力を著しく増加させ、そ
れは再膨脹により回復させることができない。な
ぜなら、このガスポケツトは、さらに回転したと
きに再び開放されるからである。 Although rotary piston machines of this type are described in the Austrian Patent Specification and in the German Published Application, it is not important for the present context that multi-stages are proposed. In both publications, the circling of the transition surface of the radial section from the edge of the outer abutment surface of one piston to the other piston is depicted as epicycloid, so that a complete seal is not achieved. Learn. However, gas pockets are thereby formed which are compressed before and after the corner formed by the abutment surface and the transition surface. The energy required for its compression significantly increases the power required to drive such machines, which cannot be recovered by re-expansion. This is because this gas pocket will be opened again upon further rotation.
しかしながらその際かてて加えて、このガスポ
ケツトが開閉したときに流れが絞られて著しいエ
ネルギーを消費する。 However, in addition, when this gas pocket opens and closes, the flow is restricted and considerable energy is consumed.
本発明の課題は、冒頭に述べた機械において、
そのような圧縮されるガスポケツトが生ずるのを
避け、かつ移行面が互いに係合したときに流れが
絞られるのを避けることである。 The problem of the present invention is to solve the problem in the machine mentioned at the beginning.
The purpose is to avoid the creation of such compressed gas pockets and to avoid flow restriction when the transition surfaces engage each other.
この課題を解決するには、本発明により、内側
当接面が半径方向断面で90゜の部分円にわたつて
延びていて、かつこの部分円の接線に対し直角に
平らな内側移行面に移行しており、その内側移行
面が円味部でピストンの縦軸の方向に120゜の角度
で曲がつて平らな外軸移行面になり、その外側移
行面が外側当接面をピストンネツクで切るように
すればよい。 To solve this problem, the invention provides that the inner abutment surface extends in radial section over a partial circle of 90° and transitions into a flat inner transition surface at right angles to the tangent to this partial circle. The inner transition surface bends at an angle of 120° in the direction of the longitudinal axis of the piston at the conical part to become a flat outer transition surface, and the outer transition surface connects the outer abutment surface with the piston neck. Just cut it.
本発明による送風機は、二翼形のピストンを有
する周知の送風機と反対に、著しくわずかな所要
出力を有する。なぜなら、ピストンが係合したと
きに封じこめられた作用ガスが圧縮されならびに
流れが絞られるのが避けられるからである。同じ
理由から、そのような送風機でさもいと非常に不
利な騒音の発生の減少もなしとげられる。 The blower according to the invention, in contrast to the known blower with a two-blade piston, has significantly lower power requirements. This is because the trapped working gas is compressed and flow restriction is avoided when the piston is engaged. For the same reason, a reduction in the production of noise, which is also very disadvantageous, is also achieved with such blowers.
以下、本発明の実施例を図面により説明する。 Embodiments of the present invention will be described below with reference to the drawings.
第1図について:本発明による送風機の概略的
な半径方向断面において、送風機を1で示し、そ
の外筒走行面を2で示し、かつ平面図で見てその
一方の側壁を3で示す。さらに、ハウジングを側
壁に対し垂直に貫通する軸を4と5で示し、これ
らの軸上で互いに同じかつそれ自体で対称なピス
トン6と7が対向方向に回転する。外筒走行面の
交又する範囲に、作用ガスのための入口開口8と
出口開口9が設けられている。 Regarding FIG. 1: In a schematic radial section of a blower according to the invention, the blower is designated at 1, its outer cylinder running surface is designated at 2, and its one side wall, seen in plan, is designated at 3. Furthermore, axes 4 and 5 passing through the housing perpendicularly to the side wall are designated 4 and 5 on which pistons 6 and 7, mutually identical and symmetrical in themselves, rotate in opposite directions. In the area where the cylinder running surfaces intersect, an inlet opening 8 and an outlet opening 9 for the working gas are provided.
各ピストン6と7はその翼10と11の間に内
側当接面12と13を有し、これらの当接面が半
径方向断面において90゜の部分円にわたつて延び
ている。内側当接面はこの部分円の接線に対し垂
直に内側の移行面14,15,16,17に移行
している。これらの移行面14,15,16,1
7は120゜の角度で内方に向かつて、すなわちピス
トンの縦軸線に向かつて円弧状の円味部19で曲
げられて、これらの円味部から外側移行面20,
21,22,23に走り、ついには外側当接面2
4,25を有する切断縁に至るが、外側当接面は
半径方向断面において50゜の部分円を描く。円味
部19は、転動したときに相手ピストンの円味部
により描かれるエピサイクロイドから生ずる。し
かしながら、円味部は、特に密封間隙を考慮し
て、困難に至らずに工場の製造を単純化するため
にいわゆる円形曲線により置き代えることができ
る。 Each piston 6 and 7 has an inner abutment surface 12 and 13 between its wings 10 and 11, which abutment surfaces extend over a partial circle of 90 DEG in radial section. The inner abutment surface transitions perpendicularly to the tangent to this partial circle into an inner transition surface 14, 15, 16, 17. These transition surfaces 14, 15, 16, 1
7 is bent inwards at an angle of 120°, i.e. towards the longitudinal axis of the piston, at arcuate conical portions 19, from which outward transition surfaces 20,
21, 22, 23, and finally the outer contact surface 2
4, 25, the outer abutment surface describes a partial circle of 50° in radial section. The cone 19 results from the epicycloid described by the cone of the mating piston when rolling. However, the cone can be replaced by a so-called circular curve in order to simplify the factory production without any difficulties, especially taking into account the sealing gap.
内側移行面4,15,16,17の半径方向延
長部および円味部19の始まりは、第4図に示し
たピストンの位置から生じ、そのピストンの位置
では、ピストン6と7の縦軸線18がハウジング
1の長軸に対し45゜の角度にある。この位置では、
両ピストン6と7の内側移行面17が一平面にあ
り、かつそのときそれらの外側角が、ピストンの
間の密封間〓はさておいて、相接している。他方
では、円味部19の外側区画角、従つて外側移行
面20,21,22,23の内側角の位置が、第
5図に示したピストンの位置から生ずる。この位
置では、上方のピストン6の外側移行面23と外
側当接面25により形成された上方のピストン6
の角27が下方のピストン7の内側当接面13と
係合する。そのとき、円味部19の外側区画角が
下方のピストン7の移行面17の外側区画角に向
かい合つている。 The radial extension of the inner transition surfaces 4, 15, 16, 17 and the beginning of the cone 19 result from the piston position shown in FIG. 4, in which the longitudinal axis 18 of the pistons 6 and 7 is at an angle of 45° to the long axis of the housing 1. In this position,
The inner transition surfaces 17 of both pistons 6 and 7 lie in one plane and their outer corners then abut, apart from the sealing gap between the pistons. On the other hand, the position of the outer corner angle of the cone 19 and thus of the inner corner of the outer transition surfaces 20, 21, 22, 23 results from the position of the piston shown in FIG. In this position, the upper piston 6 is formed by the outer transition surface 23 and the outer abutment surface 25 of the upper piston 6.
The corner 27 engages the inner abutment surface 13 of the lower piston 7. The outer corner angle of the cone 19 then faces the outer corner angle of the transition surface 17 of the lower piston 7.
それ故、両ピストン6と7の円味部19が、第
3図に示すピストン位置からすべりながら互いに
転動し、そのピストン位置では、外側当接面24
と外側移行面23により形成された下方のピスト
ン7の角28が上方ピストン6の内側当接面13
から離れる。この転動過程は、上方のピストン6
の外側当接面25が下方のピストン7の内側当接
面13と係合するときに、第1図にした位置で終
る。すなわち、両ピストン6と7の間の密封を、
当接面13と24の位置の第2図の位置から、次
の当接面13と25が再び係合するまで円味部1
9が引受ける。 Therefore, the cone portions 19 of both pistons 6 and 7 slide relative to each other from the piston position shown in FIG.
The corner 28 of the lower piston 7 formed by the outer transition surface 23 and the inner abutment surface 13 of the upper piston 6
move away from This rolling process is caused by the upper piston 6
1 when the outer abutment surface 25 of the piston 7 engages the inner abutment surface 13 of the lower piston 7. That is, the seal between both pistons 6 and 7 is
From the position of FIG. 2 of the position of the abutment surfaces 13 and 24, the rounded portion 1 is moved until the next abutment surfaces 13 and 25 are engaged again.
9 will accept.
こに記載されたピストン側面の形成、各ピスト
ンの翼のすべての四つの側で半径方向対称で同じ
である。側面輪かくは、接触のない走行を最も狭
い密封間〓で可能とするために外筒走行面2に対
しおよび相手ピストンに対してわずかな値だけ内
側にずらされている。 The formation of the piston sides described here is radially symmetrical and the same on all four sides of the vanes of each piston. The side wheels are offset inwardly by a small amount with respect to the cylinder running surface 2 and with respect to the mating piston in order to enable contact-free running with the narrowest sealing distances.
内側移行面14,15,16,17の半径方向
外端部に、全軸方向長さにわたつて延びる彎入部
29が設けられており、この彎入部は、内側移行
面14,15,16,17のうちの一つが外側移
行面20,21,22,23の一つに向い合つて
いるときに作用媒体が流れ去るのを容易にする。 At the radially outer ends of the inner transition surfaces 14, 15, 16, 17, there is provided a concave portion 29 extending over the entire axial length; 17 is facing one of the outer transition surfaces 20, 21, 22, 23 to facilitate the flow of the working medium away.
前述した送風機の場合、軸4と5の各回転時に
内側移行面14,15,16,17および外側移
行面20,21,22,23の八つの通路が生
じ、しかも第1図の位置で始まるときに移行面が
次の順序で相接して走り去る。すなわち、17が
23に、23が17に、21が16にそして15
が22に、ならびに繰返えして14が20に、2
0が14に、22が15にそして16が21に相
接して走り去り、その場合それぞれ二番目の参照
数字が下方のピストンの参照数字である。従つ
て、ここではまず上方ピストン6の翼11が第1
図の位置で下方ピストン7の右側に沿つて通過
し、それから上方ピストン6の翼10がピストン
6の他方の側に沿つて通過する。 In the case of the blower described above, eight passages of inner transition surfaces 14, 15, 16, 17 and outer transition surfaces 20, 21, 22, 23 occur during each rotation of shafts 4 and 5, starting at the position shown in FIG. Sometimes the transition surfaces meet and run away in the following order: i.e. 17 becomes 23, 23 becomes 17, 21 becomes 16 and 15
becomes 22, and repeats 14 becomes 20, 2
0 runs off adjacent to 14, 22 to 15 and 16 to 21, in each case the second reference numeral being that of the lower piston. Therefore, here, the blade 11 of the upper piston 6 first
It passes along the right side of the lower piston 7 in the position shown, and then the vanes 10 of the upper piston 6 pass along the other side of the piston 6.
第2図の位置では、上方ピストン6の内側移行
面17が下方ピストン7の外側移行面23に、両
方の面の平行な位置まで近づく。そのときこれら
の面の間に存在する作用ガスが圧力側に向かつて
円味部19の周りを流れ去るのが、上方のピスト
ンの移行面17の彎入部29により改良される。
この平行位置では、ピストンの間に比較的広い間
〓が残つているが、この間〓は、さらに回転する
と、図示した断面(第3図)で三角形の室に拡が
り、下方ピストン7のピストンネツク28が上方
ピストン6の内側当接面13から離れるや否や吸
込室に向かつて開く(第4図)。従つてその間に
ある作用ガスの吸込相の間、それを囲む室が狭め
られないで拡げられる。次に前述した移行面17
と23に隣接する円味部19の転動が終ると共
に、第5図に示すように上方ピストン6の角27
が下方ピストン7の内側当接面13と係合すると
きに、上方ピストン6の外側移行面23と下方ピ
ストン7の内側移行面17の間に半径方向断面で
三角形の別の室が瞬間的に閉じる。この三角形室
が、さらに回転すると、比較的広い間〓を形成し
ながら再び吸込側に向かつて開放され、その間〓
が、さらに回転すると外方に向かつて拡げられ、
そしてその間〓から作用ガスが下方ピストン7の
外側当接面23を通つて押し出される。さらに回
転すると、次に下方ピストン7の移行面16と2
2に沿つた上方ピストン6の移行面21と15の
通過が前述した過程に対し鏡像対称的に行なわ
れ、そして上方ピストン6の翼10が、下方ピス
トン7の第1図の左側を通過したときに両方の経
過が繰り返えされる。 In the position of FIG. 2, the inner transition surface 17 of the upper piston 6 approaches the outer transition surface 23 of the lower piston 7 to the extent that both surfaces are parallel. The flow of the working gas present between these surfaces towards the pressure side and away around the cone 19 is improved by the indentation 29 of the transition surface 17 of the upper piston.
In this parallel position, a relatively wide gap remains between the pistons, which on further rotation expands into a triangular chamber in the cross-section shown (FIG. 3) and which connects the piston neck 28 of the lower piston 7. As soon as it leaves the inner abutment surface 13 of the upper piston 6, it opens towards the suction chamber (FIG. 4). During the intervening suction phase of the working gas, the surrounding chamber is therefore expanded rather than narrowed. Next, the transition surface 17 mentioned above
As the conical portion 19 adjacent to the corners 27 and 23 finishes rolling, the corner 27 of the upper piston 6 as shown in FIG.
engages the inner abutment surface 13 of the lower piston 7, a further chamber, triangular in radial section, is momentarily formed between the outer transition surface 23 of the upper piston 6 and the inner transition surface 17 of the lower piston 7. close. When this triangular chamber rotates further, it opens again toward the suction side while forming a relatively wide space.
However, as it rotates further, it expands outward,
From there, the working gas is forced out through the outer abutment surface 23 of the lower piston 7. Further rotation then transition surfaces 16 and 2 of the lower piston 7
When the passage of the transition surfaces 21 and 15 of the upper piston 6 along 2 takes place mirror-symmetrically to the previously described process, and the wing 10 of the upper piston 6 passes to the left in FIG. 1 of the lower piston 7. Both processes are repeated.
かくして、移行面のこの通過相において相接し
て転動するピストンの間に形成されるガスポケツ
トが狭まつてガスを封じ込めることが起こり得な
いことが明らかになる。下方ピストン7のピスト
ンネツク例えば28,30が、上方ピストン6の
内側移行面17,16と内側当接面13の間の空
間にもぐつたときの移行面の平行位置へ向かう運
動が短期的にのみ作用ガスをなめらかに流れさ
せ、そして直ちに三角形室へ拡がることになる。
同様に、ピストンネツクが出ると、直ちに平行空
間が拡大空間に広がる変化が行なわれる。 It thus becomes clear that in this passing phase of the transition surface, the gas pockets formed between the pistons rolling next to each other cannot become narrowed and contain the gas. When the piston necks, e.g. 28, 30, of the lower piston 7 are inserted into the space between the inner transition surfaces 17, 16 of the upper piston 6 and the inner abutment surface 13, the movement of the transition surfaces toward the parallel position occurs in the short term. Only the working gas will flow smoothly and immediately spread into the triangular chamber.
Similarly, as soon as the piston neck is released, a change occurs in which parallel space expands into expanded space.
第1図〜第5図は、本発明による送風機の、前
後に連続する概略的な種々の位置相の半径方向断
面図である。
2……外筒走行面、3……側壁、4,5……
軸、6,7……ピストン、12,13……内側当
接面、14,15,16,17……内側移行面、
19……円味部、20,21,22,23……外
側移行面、24,25……外側当接面、27,2
8,30……ピストンネツク。
1 to 5 are schematic radial cross-sectional views of the blower according to the invention in various sequential positions. 2... Outer cylinder running surface, 3... Side wall, 4, 5...
Shaft, 6, 7... Piston, 12, 13... Inner contact surface, 14, 15, 16, 17... Inner transition surface,
19... Rounded part, 20, 21, 22, 23... Outer transition surface, 24, 25... Outer contact surface, 27, 2
8,30...piston neck.
Claims (1)
側壁で形成されたハウジングを有し、その側壁
が、対向方向に同じ速度で回転する軸により両方
の外筒走行面に対し同心に貫通され、これらの軸
には、それ自体で対称的な、かつ他方のピストン
と同じそれぞれ一つの二翼形のピストンが配置さ
れ、各ピストンの翼には、外筒走行面に沿つて走
る外側当接面と、翼の間で相手ピストンの外側当
接面に沿つて走る円筒状の内側当接面と、翼の側
面を形成する、内側当接面と外側当接面の間の移
行面とを有し、これらの移行面が相手ピストンの
移行面と噛み合つている、外軸形の回転ピストン
送風機において、内側当接面12,13が半径方
向断面で90゜の部分円にわたつて延びていて、か
つこの部分円の接線に対し直角に平らな内側移行
面14,15,16,17に移行しており、その
内側移行面が円味部19でピストン6,7の縦軸
18の方向に120゜の角度で曲げられて平らな外側
移行面20,21,22,23になり、その外側
移行面が外側当接面24,25をピストンネツク
27,28,30で切ることを特徴とする外軸形
回転ピストン送風機。 2 一方のピストン6,7の内側移行面14,1
5,16,17の半径方向外側角は、一方のピス
トン6,7のこれらの内側移行面16または17
が他方のピストンの内側移行面17または15と
一平面にあるピストン6,7の位置で接触する、
特許請求の範囲第1項に記載の外軸形回転ピスト
ン送風機。 3 円味部19が相手ピストンの円味部19の転
動曲線である、特許請求の範囲第1項または第2
項に記載の外軸形回転ピストン送風機。 4 内側移行面14,15,16,17において
その半径方向外縁の近くに、これらの移行面の全
軸方向長さにわたつて延びている彎入部29が設
けられている、特許請求の範囲第1項に記載の外
軸形回転ピストン送風機。[Claims] 1. A housing having two intersecting cylindrical outer cylinder running surfaces and two side walls, the side walls of which are connected to both outer cylinder running surfaces by shafts rotating at the same speed in opposite directions. These axes are pierced concentrically with respect to the planes, and on these axes are arranged in each case a two-winged piston, symmetrical in itself and identical to the other piston, the wings of each piston having an outer cylinder running surface. a cylindrical inner abutment surface that runs along the outer abutment surface of the mating piston between the wings, and an inner abutment surface and an outer abutment surface that form the sides of the wing. In an external rotary piston blower having transition surfaces between the pistons and the transition surfaces meshing with the transition surfaces of the mating piston, the inner abutment surfaces 12 and 13 have an angle of 90° in radial cross section. It extends over a partial circle and transitions at right angles to the tangent to this partial circle into a flat inner transition surface 14, 15, 16, 17, which in the rounded part 19 is connected to the piston 6, 7 into a flat outer transition surface 20, 21, 22, 23 which connects the outer abutment surface 24, 25 to the piston neck 27, 28, An external shaft rotary piston blower characterized by cutting at 30 degrees. 2 Inner transition surface 14, 1 of one piston 6, 7
The radially outer corners of 5, 16, 17 are connected to these inner transition surfaces 16 or 17 of one piston 6, 7.
contacts at a position of the piston 6, 7 lying in one plane with the inner transition surface 17 or 15 of the other piston,
An external rotary piston blower according to claim 1. 3. Claim 1 or 2, wherein the rounded portion 19 is a rolling curve of the rounded portion 19 of the mating piston.
External shaft type rotary piston blower described in . 4. The inner transition surfaces 14, 15, 16, 17 are provided with indentations 29 near their radially outer edges, which extend over the entire axial length of these transition surfaces. The external shaft rotary piston blower according to item 1.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE3519170.8 | 1985-05-29 | ||
DE19853519170 DE3519170A1 (en) | 1985-05-29 | 1985-05-29 | External-shaft rotary-piston blower |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS6223591A JPS6223591A (en) | 1987-01-31 |
JPH037037B2 true JPH037037B2 (en) | 1991-01-31 |
Family
ID=6271866
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP12238386A Granted JPS6223591A (en) | 1985-05-29 | 1986-05-29 | External shaft type rotating piston blower |
Country Status (2)
Country | Link |
---|---|
JP (1) | JPS6223591A (en) |
DE (1) | DE3519170A1 (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63179188A (en) * | 1987-01-20 | 1988-07-23 | Mitsubishi Motors Corp | Roots type fluid feeder |
DE19649163C2 (en) * | 1996-11-25 | 2002-01-17 | Ernst Born | Rotary piston compressor of the trochoid design |
JP5725660B2 (en) * | 2011-09-30 | 2015-05-27 | アネスト岩田株式会社 | Claw pump |
DE102013110091B3 (en) * | 2013-09-13 | 2015-02-12 | Pfeiffer Vacuum Gmbh | Roots pump with two rotors |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5035704A (en) * | 1973-07-20 | 1975-04-04 |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE1503553A1 (en) * | 1965-03-20 | 1970-03-26 | Wilhelm Klein Inhaber Otto Sch | Rotary piston blower, so-called Roots blower |
DE2108714B2 (en) * | 1971-02-24 | 1973-05-30 | Gebr Wmkelstrater GmbH, 5600 Wuppertal Barmen | PARALLEL AND EXTERNAL ROTARY PISTON MACHINE |
US3941521A (en) * | 1974-08-28 | 1976-03-02 | Calspan Corporation | Rotary compressor |
-
1985
- 1985-05-29 DE DE19853519170 patent/DE3519170A1/en active Granted
-
1986
- 1986-05-29 JP JP12238386A patent/JPS6223591A/en active Granted
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5035704A (en) * | 1973-07-20 | 1975-04-04 |
Also Published As
Publication number | Publication date |
---|---|
DE3519170A1 (en) | 1986-12-04 |
JPS6223591A (en) | 1987-01-31 |
DE3519170C2 (en) | 1992-02-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4412796A (en) | Helical screw rotor profiles | |
US4714417A (en) | Internal axis single-rotation machine with intermeshing internal and external rotors | |
US10844720B2 (en) | Rotary machine with pressure relief mechanism | |
USRE32568E (en) | Screw rotor machine and rotor profile therefor | |
US4390331A (en) | Positive displacement four lobe impeller structure | |
US3472445A (en) | Rotary positive displacement machines | |
KR910002727B1 (en) | Positive-displacement rotators and rotors for them | |
US4527967A (en) | Screw rotor machine with specific tooth profile | |
EP0009916A1 (en) | Rotary positive displacement machines | |
JPH0656081B2 (en) | Scroll machine | |
JPH037037B2 (en) | ||
US7520738B2 (en) | Closed system rotary machine | |
EP0466351B1 (en) | Improvements relating to gerotor pumps | |
JPS58128486A (en) | Rotary volume type machine | |
US5039289A (en) | Rotary piston blower having piston lobe portions shaped to avoid compression pockets | |
JPH01227886A (en) | Vane of scroll machine | |
GB2092676A (en) | Rotary Positive-displacement Fluid-machines | |
JPS63230979A (en) | Vane type compressor | |
JPH0618681U (en) | Vane pump | |
JPS6344956B2 (en) | ||
EP0046946B1 (en) | Universal rotating machine for expanding or compressing a compressible fluid | |
US10451065B2 (en) | Pair of co-operating screw rotors | |
EP3507459B1 (en) | Rotary piston and cylinder device | |
US3799712A (en) | Rotary piston machines | |
JP2860678B2 (en) | Liquid injection screw fluid machine |