[go: up one dir, main page]

JPH0369925B2 - - Google Patents

Info

Publication number
JPH0369925B2
JPH0369925B2 JP57064654A JP6465482A JPH0369925B2 JP H0369925 B2 JPH0369925 B2 JP H0369925B2 JP 57064654 A JP57064654 A JP 57064654A JP 6465482 A JP6465482 A JP 6465482A JP H0369925 B2 JPH0369925 B2 JP H0369925B2
Authority
JP
Japan
Prior art keywords
ethylene
mfi
mol
content
propylene
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57064654A
Other languages
Japanese (ja)
Other versions
JPS58181613A (en
Inventor
Fumio Sakaguchi
Kiwamu Hirota
Hideki Tamano
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Holdings Corp
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP6465482A priority Critical patent/JPS58181613A/en
Priority to EP82304319A priority patent/EP0074194B2/en
Priority to DE8282304319T priority patent/DE3274455D1/en
Priority to US06/408,479 priority patent/US4552930A/en
Publication of JPS58181613A publication Critical patent/JPS58181613A/en
Priority to SG379/87A priority patent/SG37987G/en
Publication of JPH0369925B2 publication Critical patent/JPH0369925B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F210/00Copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F210/04Monomers containing three or four carbon atoms
    • C08F210/06Propene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F210/00Copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F210/16Copolymers of ethene with alpha-alkenes, e.g. EP rubbers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2323/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2323/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2323/16Ethene-propene or ethene-propene-diene copolymers

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Shaping By String And By Release Of Stress In Plastics And The Like (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、水冷インフレーシヨンフイルムの製
造方法に関し、更に詳しくはフイルム強度、特に
低温での耐衝撃性に優れ、しかも透明性の良好な
プロピレン−エチレン系共重合体を用いた水冷イ
ンフレーシヨンフイルムの製造方法に関する。 ポリプロピレンの水冷インフレーシヨンフイル
ムの特性は既に良く知られている通りであるが、
低温、特に0℃以下で包装材料として使用する際
に衝撃強度が著しく低下するという欠点がある。
かかる欠点を改良する方法として異種コモノマー
をブロツク状に共重合する方法が提案されている
が、水冷インフレーシヨン法によつた場合に透明
性が出ないという問題が生じる。更に重要なこと
は、透明性と逆相関にあるインフレーシヨンンフ
イルムの口開き性が充分実用に耐えられることで
あるが、低温での衝撃強度、透明性及び口開き性
(耐ブロツキング性という)のすべてにおいて優
れたフイルムを与えるポリプロピレン系樹脂は知
られていなかつた。 本発明者らは、強度、特に低温でのフイルム強
度、透明性及び耐ブロツキング性の優れた水冷イ
ンフレーシヨンフイルムを開発すべく鋭意検討し
た結果、C13−NMRで測定したエチレン含量が
6〜17モル%、後述するブロツク指数が1.1以下、
MLMFI/MFI比が10〜16、及びMFIが1〜30
g/10minの特性を有するプロピレン−エチレン
系ランダム共重合体を用いて製造した水冷インフ
レーシヨンフイルムが、従来市販されているプロ
ピレン−エチレンランダム共重合体を用いて製造
した水冷インフレーシヨンフイルムに比較して、
特に低温でのフイルム強度が格段に優れているこ
とを認め本発明に到達した。 本発明による水冷インフレーシヨンフイルムの
製造方法は、チーグラー型触媒の存在下にランダ
ム共重合させて得られたC13−NMR法で求めた
エチレン単位含量が6〜17モル%、プロピレン単
位含量が83〜94モル%、かつ炭素数4以上のα−
オレフイン単位含量が0〜5モル%で、MFIが
0.5g/10min未満のプロピレン−エチレン系共
重合体をラジカル発生剤の存在下に分子量減成さ
せて成る、下記(イ)〜(ニ)の特性を有するプロピレン
−エチレン系ランダム共重合体(以下、単に共重
合体と呼ぶことがある)を水冷インフレーシヨン
成形することから構成される。 (イ) C13−NMR法で求めたエチレン単位含量:
6〜17モル%、プロピレン単位含量83〜94モル
%、及び炭素数4以上のα−オレフイン単位含
量0〜5モル% (ロ) C13−NMR法で算出した下記で定義したブ
ロツク指数:1.1以下 ブロツク指数= (100)+(000)/(101)+(100)+(000)×1
00/100−〔(100−CE2/100〕 [式中、0はエチレンユニツト、1はプロピレ
ンユニツト、CEはエチレン含量(モル%)を
示す] (ハ) MFI(230℃、荷重2.16Kg):1〜30g/min (ニ) MLMFI(230℃、荷重10.0Kg)とMFI(230
℃、荷重2.16Kg)との比 MLMFI/MFI:10〜16 本明細書において使用する「ブロツク指数」な
る語は、C13−NMR法によりモノマーシークエ
ンスをトリアドで求め、エチレンがブロツク的に
付加する分率、即ちプロピレンユニツト:1、エ
チレンユニツト:0として〔(100)+(000)〕を、
エチレンを含む全トリアド分率の総和 〔(101)+(100)+(000)〕で除した百分率を100−
〔100−エチレン含量モル百分率〕2で除した値をい
う。 ブロツク指数= (100)+(000)/(101)+(100)+(000)×1
00/100−〔100−CE(モル%)〕2 (注)但しCEはエチレン含量(モル%)を示す。 本発明において用いられる共重合体は、例えば
次のような方法で製造することができる。チーグ
ラー型触媒(例えば、三塩化チタンを主成分とす
る固体触媒成分、有機アルミニウム化合物及び必
要に応じて電子供与性化合物からなる触媒系)の
存在下、プロピレンとエチレンのランダム共重合
を行ない、エチレン含量が6〜17モル%及び
MFIが0.01〜0.3g/10minの共重合体を得、これ
をラジカル発生剤存在下に分子量減成することに
よつてれ得られる。本発明にいうプロピレン−エ
チレン系ランダム共重合体には、エチレンの他
に、更に炭素数4以上のα−オレフイン、例え
ば、ブテン−1,4−メチル−ペンテン−1、ヘ
キセン−1、オクテン−1等の5モル%以下をも
含ませることが可能である。 本発明において用いられる共重合体はC13
NMR法で求めたエチレン含量(以下単にエチレ
ン含量という場合がある)が6〜17モル%である
ことが必要である。ホモポリマーやエチレン含量
が6モル%未満のランダム共重合体では、他の要
件は満足していても耐寒性に劣るので好ましくな
い。一方、エチレン含量が17モル%を超えると、
フイルムの耐ブロツキング性が悪化し、ブロツキ
ング防止剤(例えば、シリカ等)を多量添加する
必要が生じ、このため透明性のすぐれたフイルム
を得ることが困難となるので好ましくない。 更に、上に示したような含量のエチレンが共重
合体の中でより均一に分布していることが、後述
する如く、肝要であり、ブロツク指数が1.1以下
である必要がある。ブロツク指数が1.1を超える
と、特に透明性が悪化して好ましくない。いわゆ
るプロピレン−エチレンブロツク共重合体は本発
明において使用するには不適当である。 共重合体中のエチレンの分布を判断する手段と
して前に定義したブロツク指数を測定して用い
た。C13−NMRのトリアドを見て、エチレンを
含む全トリアドの分率の総和に対するエチレンが
ブロツク的に入つたトリアドの分率の比は低エチ
レン含量(3モル%以下)ではほとんど0に近
く、エチレン含量の増加に従つて値が大きくな
る。 従つて、ブロツク指数は共重合しているエチレ
ンの分布のブロツク性を表現するものであり、本
発明においては、この指数が1.1以下であること
が必要である。先に述べたプロピレン−エチレン
ブロツク共重合体や、高エチレン含量共重合体を
低温重合したり、特殊な触媒系で重合した共重合
体はブロツク指数がこの値よりも大きくなり、ブ
ロツク共重合体では3以上の値をとる。ブロツク
指数が1.1より大となると、フイルムの透明性が
低下し、ブロツキング防止剤(例えばシリカ)や
滑り剤(例えばアマイド)の量をコントロールし
ても透明性と耐ブロツキング性とのバランスが良
好な域に達しないので好ましくない。 本発明において使用する前記共重合体の溶融流
れ比、即ちMLMFI(230℃10.0Kg荷重)とMFI
(230℃2.16Kg荷重)の流出量比MLMFI/MFIは
10〜16であることが重要である。市販の通常のプ
ロピレン−エチレン共重合体のMLMFI/MFIの
比は18〜25である。従つてMLMFI/MFIは分子
量減成の程度を表わしていると考えることも出来
る。例えばMFIが0.09g/10minの共重合体を1.3
ビス(t−ブチルパーオキシイソプロピル)ベン
ゼンの使用量を変えて分子量減成したときの減成
後のMLMFI/MFIの変化をみると以下の通りで
ある。 MFI MLMFI/MFI 0.09 20.1(減成前) 0.13 18.6 0.56 15.8 1.8 13.1 3.4 12.8 8.2 12.6 12.3 12.3 28.6 11.6 即ち、本発明において使用する共重合体の
MLMFI/MFIは10〜16の範囲であるが更に好ま
しい範囲としては、減成された共重合体のMFI
が例えば1g/10min付近では12〜16、10g/
10min付近では10〜14、50g/10min付近では10
〜12であるといえる。 MLMFI/MFIの比が16を超えると、分子量減
成の程度が小さいため、好ましい透明性、低温衝
撃性と耐ブロツキング性のバランスが発現され
ず、逆に10未満では分子量減成の程度が非常に大
きく、ラジカル発生剤が多量に必要となり、色、
臭いなどに問題を生じる。 本発明において使用される分子量減成された共
重合体のMFI(230℃、荷重2.16Kg)は、1〜30
g/10minであることが必要であり、共重合体の
MFIが前記範囲外では水冷インフレーシヨンフ
イルムの成形が困難となる。好ましいMFIは2
〜15g/10minである。 減成前の共重合体のMFIは、一般的には0.5
g/10minよりも低いものが用いられ、特に0.01
〜0.3g/10minのものが好適である。通常の
MFI領域(MFI=0.5〜60g/10min)の共重合
体を直接重合で製造せず、高分子量共重合体
(MFI=約0.01〜0.3g/10min)を分子量減成し、
MLMFI/MFIの比を10〜16としたフイルムが何
故本発明において有効であるかは明らかではない
が、以下の如く推察される。エチレン含量12.3モ
ル%のプロピレン−エチレン共重合体のMFIを
かえて製造した種々の重合体、粉末のイソブチル
アルコール可溶分とヘキサン可溶分について試験
したところ、アルコール可溶分は一般的に低分子
量の量に比例して抽出され、ヘキサンでは低分子
量の他に結晶性(エチレン含量)に応じて抽出さ
れることが確認された。即ち、ヘキサン可溶分は
MFI0.3g/10min以下で急激に減少するが、こ
の程度はイソブチルアルコール可溶分との対比か
ら考えて分子量が大きくなつた効果だけでは説明
出来ない。低結晶性部の量が大巾に減少したと考
えるのが妥当であろう。高分子量共重合体
(MFI:0.01〜0.3)では、通常のMFI(1〜60)
の共重合体に比較し、同じエチレン含量でもポリ
マー中のコモノマーエチレンの分布が均一である
と考えられる。 分子量減成のために用いられる有機又は無機の
フリーラジカル発生剤としてはラジカル重合の開
始剤として一般に用いられるパーオキシド、ハイ
ドロパーオキシド、パーアシド、金属アルキル、
金属アリル、またそれらと同じ無機錯塩形成物と
の組合せ等をあげることができる。有機過酸化物
としては、液状、固形状、又は無機充填物で固化
された形のものがあり、この有機過酸化物が実質
的に分解しない温度でポリオレフインと混合及び
拡散される。 本発明に使用できる有機過酸化物としては、そ
の半減期1分の温度が70〜300℃のものから選択
するのが好ましい。例えば、t−ブチルハイドロ
パーオキシド、クメンハイドロパーオキシド等の
ヒドロパーオキシド類、ジクミルパーオキシド、
2,5−ジメチル2,5−ジ(t−ブチルパーオ
キシ)ヘキサン、2,5−ジメチル2,5−ジ
(t−ブチルパーオキシ)ヘキシン−3等のジア
ルキルパーオキシド類、ラウロイルパーオキシ
ド、ベンゾイルパーオキシド等のジアシルパーオ
キシド類、t−ブチルパーオキシアセテート、t
−ブチルパーオキシラウレート等のパーオキシエ
ステル類、メチルエチルケトンパーオキシド、メ
チルイソブチルケトンパーオキシド類等を例とし
てあげることができる。更に空気酸化により生成
されるようなポリマーのパーオキシド、過酸化水
素、リチウムパーオキシド又はアルカリもしくは
アルカリ土類金属のパーオキシドも加熱すれば本
発明において、有効である。その他、例えば、
α,α′−アゾビス−(イソブチロニトリル)のよ
うなアゾ化合物もフリーラジカル生成剤として用
いられる。ラジカル発生剤の添加量は本発明組成
物のMFIを決定する重要な因子となるが、その
添加量はポリオレフインに対し0.001〜2重量%、
好ましくは0.01〜0.5重量%であり、少なすぎる
とその添加効果は発揮されず、また多すぎると分
解の程度がはなはだしくなり、好ましくない。従
つて、実際には、減成前後のMFIを考慮して、
その添加量を調整する。 共重合体及びラジカル発生剤を所定の割合で配
合し、例えばスーパーミキサーでドライブレンド
し、プロピレン重合体を押出できる通常の条件、
例えば170℃から300℃の間の温度で溶融混練すれ
ば容易に混合及び解重合が達成される。あるいは
直接添加混入し溶融混練する方法も適用できる。 本発明による共重合体はラジカル発生剤の他
に、通常配合される各種補助成分、例えば、酸化
防止剤、紫外線劣化防止剤、アンチブロツキング
剤、スリツプ剤、帯電防止剤、着色剤等を含有す
ることができる。 水冷インフレーシヨンフイルムの製造方法は、
一般的な製法方法によることができ、例えば一般
に使用されている40mm径の押出機及びダイス径
100mm、リツプ巾0.8mmからなる冷却水温25℃の水
冷インフレーシヨン成形機によつて、ダイス温度
220℃で、厚み30μ、折径が190mmのチユーブ状フ
イルムを得ることができた。 本発明によるポリプロピレン系樹脂から成る水
冷インフレーシヨンフイルムは耐ブロツキング
性、低温耐衝撃性及び透明性にすぐれ、包装材料
特に食品などの低温保存用包装材料等の用途に好
適である。 以下、本発明の内容を実施例により説明するが
本発明はこれらの実施例に限定するものでないこ
とはいうまでもない。下記の実施例及び比較例中
のMFI及びMLMFI、ヘイズ、エチレン含量、イ
ンパクト強度、並びに開口性は下記の方法で測定
したものである。 (a) メルトフローインデツクス(MFI) JIS K−6758の方法で測定した。但し、温度
230℃及び荷重2.16Kgとした。また、荷重10.0
Kgの値をMLMFIと呼ぶ。 (b) フイルムヘイズ ASTM−D−1003−61に準じてヘイズメー
タにて測定した。 (c)エチレン含量 日本電子(株)のFT核磁気共鳴吸収測定装置
(FX−100)を用いて、下記条件で、 観測巾 1800Hz パルス巾 6μs(45゜パルス) パルス間隔 3s 積算回数 10000以上 測定温度 100℃ 試料を1,2,4−トリクロルベンゼンと
C6D6の混合溶液に溶解して測定し、各ピーク
面積より算出した。 (d) インパクト強度 東洋精機(株)製のTTSインパクトテスターを
用いて、−5℃の恒温室において衝撃強度を測
定した。 (d) 開口性 成形5分後、フイルムの切り口部分が容易に
口開きする状態を得るためにシリカの添加量を
調整した。 実施例 1 290の連続式環状反応器に三塩化チタン組成
物(市販のAA型三塩化チタン5.0Kgとγ−ブチロ
ラクトン0.75Kgを共粉砕した粉体)39g/H、
Et2AlClのヘプタン溶液(2mol/)0.30/
H、プロピレン91Kg/H、エチレン4Kg/H及び
水素4.1Nl/Hを供給し、60℃において連続重合
した。この粗重合体をイソブタノールで洗浄精製
乾燥し、白色粉末を得た。得られた重合体の
MFIは0.08g/10min、エチレン含量は12.0モル
%であつた。 このランダム共重合体100重量部に、第1表記
載の量のラジカル発生剤2,5−ジメチル−2,
5−ジ(t−ブチルパーオキシ)ヘキサン(日本
油脂(株)製パーヘキサ2,5B−40)、テトラキス
〔メチレン−3−(3′,5′−ジ−t−ブチル−4′−
ヒドロキシフエニル)プロプオネート〕メタン
0.25重量部及びステアリン酸カルシウム0.1重量
部を添加し、ヘンシエルミキサーで混合後、押出
機にて温度240℃で押出しペレツトを作成した。
このペレツトのMFIは5.1g/10minであつた。
このときのMLMFI/MFIは12.7、C13−NMRで
のブロツク指数は0.92、融点は126.8℃であつた。 このペレツトに合成シリカ(ブロツキング防止
剤)0.55%及びオレイン酸アマイド(滑り剤)
0.30%を添加し、一般に使用されている40mm径の
押出機及びダイス径100mm、リツプ巾0.8mmからな
る冷却水温25℃の水冷インフレーシヨン成形機に
よつて、ダイス温度220℃で、厚み30μ、折径が
190mmのチユーブ状フイルムを得た。 このサンプルについて、ヘイズ、エチレン含
量、インパクト強度を前記の方法で測定した。結
果は下記第1表に示す。 実施例2〜4及び比較例1〜4 エチレンの供給量を変えた以外は、実施例1と
同様にしてエチレン含量の異なる高分子量共重合
体粉末を製造した。これから実施例1と全く同様
にして、ブロツキング防止剤及び滑り剤を添加し
分子量減成した後、30μ厚の水冷インフレーシヨ
ンフイルムを得た。結果を第1表に示す。 なお、比較例3は水素使用量を変えて重合し、
分子量減成されていない、ブロツク指数及び
MLMFI/MFIが上限を超えた例を示し、比較例
4は分子量減成の程度が小さく、MLMFI/MFI
が上限を超えた例を示す。 実施例 5 エチレンの供給量4Kg/Hrの他に、同時にブ
テン−1を4Kg/H供給した以外は実施例1と同
様にして共重合体を製造した。得られた共重合体
のブテン含量は1.6モル%、融点は126℃であつ
た。 この共重合体から実施例1と同様にして、分子
量減成を行ない、水冷インフレーシヨンフイルム
を成形した。結果を下記第1表に示す。 実施例 6 エチレン供給量を3Kg/Hrに変え、他にブテ
ン−1を3Kg/Hr供給した以外は実施例1と同
様にして、MFIが0.08g/10min、エチレン含量
が9.6モル%、ブテン−1含量が1.3モル%の重合
体粉末を得た。実施例1と全く同様にして、分子
量減成した後、水冷インフレーシヨンフイルムを
得た。得られた結果を第1表に示す。 比較例 5 エチレン含量が7.4モル%、MFIが5.1g/
10min、ブロツク指数が3.7、MLMFI/MFIが
19.6のプロピレン−エチレンブロツク共重合体
(昭和電工製シヨウアロマーMK311C)を用いて
実施例1と同様にして、水冷インフレーシヨンフ
イルムを成形した。得られた結果を下記第1表に
示す。 エチレン含量の低い場合(比較例2)に比べ、
本発明に係る実施例3において非常に高い低温イ
ンパクト衝撃強度が得られることが明らかであ
る。また、同一エチレン含量において比較した場
合、本発明に係るブロツク指数及びMLMFI/
MFIを有するもの(実施例3)は、比較例2に
比べ低温インパクト衝撃強度が大幅に改善されて
いる。
The present invention relates to a method for producing a water-cooled blown film, and more specifically to a water-cooled blown film using a propylene-ethylene copolymer that has excellent film strength, particularly low-temperature impact resistance, and good transparency. This invention relates to a film manufacturing method. The characteristics of polypropylene water-cooled inflation film are already well known;
When used as a packaging material at low temperatures, particularly below 0° C., it has the disadvantage that impact strength is significantly reduced.
A method of copolymerizing different types of comonomers in the form of a block has been proposed as a method for improving this drawback, but when a water-cooled inflation method is used, the problem arises that transparency is not achieved. What is more important is that the opening property of blown film, which is inversely correlated with transparency, is sufficient for practical use. ) No polypropylene resin has been known that provides a film that is excellent in all of the above. The inventors of the present invention have conducted intensive studies to develop a water-cooled blown film with excellent strength, particularly film strength at low temperatures, transparency, and anti-blocking properties. 17 mol%, block index described below is 1.1 or less,
MLMFI/MFI ratio 10-16 and MFI 1-30
The water-cooled blown film produced using a propylene-ethylene random copolymer with the property of Compared to,
The present invention was achieved by recognizing that the film strength is particularly excellent at low temperatures. In the method for producing a water-cooled blown film according to the present invention, the ethylene unit content obtained by random copolymerization in the presence of a Ziegler type catalyst is 6 to 17 mol%, and the propylene unit content is 6 to 17 mol%, as determined by C 13 -NMR method. 83 to 94 mol% and α- having 4 or more carbon atoms
Olefin unit content is 0-5 mol%, MFI is
A propylene-ethylene random copolymer (hereinafter referred to as "propylene-ethylene random copolymer") having the properties (a) to (d) below, which is obtained by reducing the molecular weight of a propylene-ethylene copolymer with a yield of less than 0.5 g/10 min in the presence of a radical generator (sometimes simply called a copolymer) is formed by water-cooled inflation molding. (a) Ethylene unit content determined by C 13 −NMR method:
6 to 17 mol%, propylene unit content 83 to 94 mol%, and α-olefin unit content having 4 or more carbon atoms 0 to 5 mol% (b) Block index defined below calculated by C 13 -NMR method: 1.1 Below Block index = (100) + (000) / (101) + (100) + (000) × 1
00/100 - [(100 - C E ) 2 /100] [In the formula, 0 is ethylene unit, 1 is propylene unit, C E indicates ethylene content (mol%)] (c) MFI (230℃, load 2.16Kg): 1 to 30g/min (d) MLMFI (230℃, load 10.0Kg) and MFI (230
℃, load 2.16 kg) MLMFI/MFI: 10 to 16 The term "block index" used in this specification refers to the monomer sequence determined in triads by C13 -NMR method, The fraction, that is, propylene unit: 1, ethylene unit: 0, [(100) + (000)],
The percentage divided by the sum of all triad fractions including ethylene [(101) + (100) + (000)] is 100-
[100-ethylene content molar percentage] Refers to the value divided by 2 . Block index = (100) + (000) / (101) + (100) + (000) × 1
00/100-[100-C E (mol%)] 2 (Note) However, C E indicates the ethylene content (mol%). The copolymer used in the present invention can be produced, for example, by the following method. Random copolymerization of propylene and ethylene is carried out in the presence of a Ziegler-type catalyst (for example, a catalyst system consisting of a solid catalyst component mainly composed of titanium trichloride, an organoaluminum compound, and an electron-donating compound as necessary) to produce ethylene. The content is 6-17 mol% and
It is obtained by obtaining a copolymer having an MFI of 0.01 to 0.3 g/10 min and reducing its molecular weight in the presence of a radical generator. In addition to ethylene, the propylene-ethylene random copolymer referred to in the present invention includes α-olefins having 4 or more carbon atoms, such as butene-1,4-methyl-pentene-1, hexene-1, octene-1, It is also possible to contain 5 mol% or less of 1 etc. The copolymer used in the present invention is C 13
It is necessary that the ethylene content (hereinafter simply referred to as ethylene content) determined by NMR method is 6 to 17 mol%. Homopolymers and random copolymers with an ethylene content of less than 6 mol % are not preferred because they have poor cold resistance even if other requirements are met. On the other hand, when the ethylene content exceeds 17 mol%,
This is not preferred because the blocking resistance of the film deteriorates and it becomes necessary to add a large amount of an antiblocking agent (eg, silica), making it difficult to obtain a film with excellent transparency. Furthermore, as will be described later, it is important that the above-mentioned content of ethylene is more uniformly distributed in the copolymer, and the block index must be 1.1 or less. When the block index exceeds 1.1, transparency is particularly deteriorated, which is undesirable. So-called propylene-ethylene block copolymers are unsuitable for use in the present invention. The previously defined block index was measured and used as a means of determining the distribution of ethylene in the copolymer. Looking at the C 13 -NMR triads, the ratio of the fraction of triads containing ethylene as a block to the sum of the fractions of all triads containing ethylene is almost 0 at low ethylene contents (3 mol% or less); The value increases as the ethylene content increases. Therefore, the block index expresses the blockiness of the distribution of copolymerized ethylene, and in the present invention, it is necessary that this index is 1.1 or less. The previously mentioned propylene-ethylene block copolymers and copolymers with high ethylene content that are polymerized at low temperatures or polymerized using special catalyst systems have block indexes larger than this value, resulting in block copolymers. Then it takes a value of 3 or more. When the blocking index is greater than 1.1, the transparency of the film decreases, and even if the amount of anti-blocking agent (e.g. silica) or slip agent (e.g. amide) is controlled, a good balance between transparency and anti-blocking property cannot be maintained. It is not desirable because it does not reach the range. The melt flow ratio of the copolymer used in the present invention, that is, MLMFI (230°C 10.0 kg load) and MFI
(230℃2.16Kg load) Outflow ratio MLMFI/MFI is
It is important that it is between 10 and 16. The MLMFI/MFI ratio of commercially available common propylene-ethylene copolymers is 18-25. Therefore, MLMFI/MFI can be considered to represent the degree of molecular weight reduction. For example, a copolymer with an MFI of 0.09g/10min is 1.3
The change in MLMFI/MFI after molecular weight reduction when changing the amount of bis(t-butylperoxyisopropyl)benzene used is as follows. MFI MLMFI/MFI 0.09 20.1 (before degradation) 0.13 18.6 0.56 15.8 1.8 13.1 3.4 12.8 8.2 12.6 12.3 12.3 28.6 11.6 That is, the copolymer used in the present invention
MLMFI/MFI is in the range of 10 to 16, but a more preferable range is MLMFI/MFI of the degraded copolymer.
For example, around 1g/10min, it is 12 to 16, 10g/
10 to 14 around 10min, 10 around 50g/10min
It can be said that it is ~12. When the MLMFI/MFI ratio exceeds 16, the degree of molecular weight deterioration is small, and a desirable balance between transparency, low-temperature impact resistance, and blocking resistance cannot be achieved.On the other hand, when the ratio is less than 10, the degree of molecular weight deterioration is very small. , a large amount of radical generator is required, and color,
This causes problems such as odor. The MFI (230°C, load 2.16 kg) of the molecular weight reduced copolymer used in the present invention is 1 to 30
g/10min, and the copolymer
If the MFI is outside the above range, it will be difficult to form a water-cooled inflation film. The preferred MFI is 2
~15g/10min. The MFI of the copolymer before degradation is generally 0.5.
g/10min is used, especially 0.01
~0.3g/10min is suitable. normal
Rather than producing a copolymer in the MFI range (MFI = 0.5 to 60 g/10 min) by direct polymerization, the molecular weight of a high molecular weight copolymer (MFI = approximately 0.01 to 0.3 g/10 min) is reduced.
Although it is not clear why a film with an MLMFI/MFI ratio of 10 to 16 is effective in the present invention, it is speculated as follows. When we tested the isobutyl alcohol-soluble content and hexane-soluble content of various polymers and powders produced by changing the MFI of propylene-ethylene copolymer with an ethylene content of 12.3 mol%, we found that the alcohol-soluble content was generally low. It was confirmed that hexane is extracted in proportion to the amount of molecular weight, and in hexane, it is extracted in accordance with crystallinity (ethylene content) in addition to low molecular weight. That is, the hexane soluble content is
It decreases rapidly at MFI of 0.3 g/10 min or less, but this degree cannot be explained only by the effect of increased molecular weight in comparison with the isobutyl alcohol soluble content. It is reasonable to assume that the amount of low crystallinity areas has been significantly reduced. For high molecular weight copolymers (MFI: 0.01-0.3), normal MFI (1-60)
Compared to the copolymers of 1 and 2, the distribution of the comonomer ethylene in the polymer is considered to be uniform even with the same ethylene content. Organic or inorganic free radical generators used for molecular weight reduction include peroxides, hydroperoxides, peracides, metal alkyls, which are commonly used as radical polymerization initiators.
Examples include metal allyls and combinations thereof with the same inorganic complex salts. The organic peroxide may be in a liquid, solid, or solidified form with an inorganic filler, and is mixed and diffused with the polyolefin at a temperature at which the organic peroxide does not substantially decompose. The organic peroxide that can be used in the present invention is preferably selected from those having a half-life of 1 minute at a temperature of 70 to 300°C. For example, hydroperoxides such as t-butyl hydroperoxide and cumene hydroperoxide, dicumyl peroxide,
Dialkyl peroxides such as 2,5-dimethyl 2,5-di(t-butylperoxy)hexane, 2,5-dimethyl 2,5-di(t-butylperoxy)hexine-3, lauroyl peroxide, Diacyl peroxides such as benzoyl peroxide, t-butyl peroxyacetate, t
Examples include peroxy esters such as -butyl peroxylaurate, methyl ethyl ketone peroxide, and methyl isobutyl ketone peroxide. Furthermore, polymeric peroxides such as those produced by air oxidation, hydrogen peroxide, lithium peroxide, or alkali or alkaline earth metal peroxides are also effective in the present invention if heated. Others, for example,
Azo compounds such as α,α'-azobis-(isobutyronitrile) are also used as free radical generators. The amount of the radical generator added is an important factor in determining the MFI of the composition of the present invention, and the amount added is 0.001 to 2% by weight based on the polyolefin.
Preferably, the amount is 0.01 to 0.5% by weight; if it is too small, the effect of the addition will not be exhibited, and if it is too large, the degree of decomposition will be excessive, which is not preferable. Therefore, in reality, considering MFI before and after decline,
Adjust the amount added. The copolymer and the radical generator are blended in a predetermined ratio, dry blended using a super mixer, and the propylene polymer can be extruded under normal conditions.
For example, mixing and depolymerization can be easily achieved by melt-kneading at a temperature between 170°C and 300°C. Alternatively, a method of directly adding and mixing and melt-kneading can also be applied. In addition to the radical generator, the copolymer according to the present invention contains various auxiliary components that are normally blended, such as antioxidants, ultraviolet deterioration inhibitors, antiblocking agents, slip agents, antistatic agents, colorants, etc. It can contain. The manufacturing method of water-cooled inflation film is as follows:
Can be made using a general manufacturing method, for example, a commonly used extruder with a diameter of 40 mm and a die diameter
A water-cooled inflation molding machine with a diameter of 100 mm and a lip width of 0.8 mm has a cooling water temperature of 25°C.
At 220°C, a tubular film with a thickness of 30 μm and a folded diameter of 190 mm could be obtained. The water-cooled inflation film made of the polypropylene resin according to the present invention has excellent blocking resistance, low-temperature impact resistance, and transparency, and is suitable for use as packaging materials, especially packaging materials for low-temperature storage of foods and the like. Hereinafter, the content of the present invention will be explained with reference to Examples, but it goes without saying that the present invention is not limited to these Examples. MFI and MLMFI, haze, ethylene content, impact strength, and openness in the following Examples and Comparative Examples were measured by the following methods. (a) Melt flow index (MFI) Measured by the method of JIS K-6758. However, temperature
The temperature was 230℃ and the load was 2.16Kg. Also, load 10.0
The value of Kg is called MLMFI. (b) Film haze Measured using a haze meter according to ASTM-D-1003-61. (c) Ethylene content Measured using JEOL's FT nuclear magnetic resonance absorption analyzer (FX-100) under the following conditions: Observation width 1800Hz Pulse width 6μs (45° pulse) Pulse interval 3s Integration count 10000 or more Temperature: 100℃ The sample was mixed with 1,2,4-trichlorobenzene.
It was measured by dissolving it in a mixed solution of C 6 D 6 and calculated from the area of each peak. (d) Impact strength Impact strength was measured in a constant temperature room at -5°C using a TTS impact tester manufactured by Toyo Seiki Co., Ltd. (d) Openability The amount of silica added was adjusted so that the cut end of the film could easily open after 5 minutes of molding. Example 1 A titanium trichloride composition (a powder obtained by co-pulverizing 5.0 kg of commercially available AA type titanium trichloride and 0.75 kg of γ-butyrolactone) was placed in a 290 continuous ring reactor at 39 g/H.
Et 2 AlCl in heptane solution (2mol/) 0.30/
H, propylene 91 kg/H, ethylene 4 kg/H and hydrogen 4.1 Nl/H were supplied, and continuous polymerization was carried out at 60°C. This crude polymer was washed with isobutanol, purified and dried to obtain a white powder. of the obtained polymer
MFI was 0.08 g/10 min, and ethylene content was 12.0 mol%. To 100 parts by weight of this random copolymer, the radical generator 2,5-dimethyl-2, in the amount shown in Table 1,
5-di(t-butylperoxy)hexane (Perhexa 2,5B-40 manufactured by NOF Corporation), tetrakis[methylene-3-(3',5'-di-t-butyl-4'-
hydroxyphenyl propionate methane
0.25 parts by weight and 0.1 parts by weight of calcium stearate were added, mixed using a Henschel mixer, and then extruded using an extruder at a temperature of 240°C to produce pellets.
The MFI of this pellet was 5.1 g/10 min.
At this time, the MLMFI/MFI was 12.7, the block index in C 13 -NMR was 0.92, and the melting point was 126.8°C. This pellet contains 0.55% synthetic silica (anti-blocking agent) and oleic acid amide (slip agent).
0.30%, and a water-cooled inflation molding machine with a commonly used 40 mm diameter extruder, a die diameter of 100 mm, and a lip width of 0.8 mm, with a cooling water temperature of 25 °C, and a die temperature of 220 °C, and a thickness of 30 μm. , fold diameter is
A 190 mm tube-shaped film was obtained. The haze, ethylene content, and impact strength of this sample were measured using the methods described above. The results are shown in Table 1 below. Examples 2 to 4 and Comparative Examples 1 to 4 High molecular weight copolymer powders having different ethylene contents were produced in the same manner as in Example 1, except that the amount of ethylene supplied was changed. Thereafter, in exactly the same manner as in Example 1, an antiblocking agent and a slip agent were added to reduce the molecular weight, and a water-cooled blown film having a thickness of 30 μm was obtained. The results are shown in Table 1. In addition, in Comparative Example 3, polymerization was carried out by changing the amount of hydrogen used,
Block index and undegraded molecular weight
An example in which MLMFI/MFI exceeds the upper limit is shown, and Comparative Example 4 has a small degree of molecular weight degradation and MLMFI/MFI
Here is an example where exceeds the upper limit. Example 5 A copolymer was produced in the same manner as in Example 1, except that in addition to ethylene being supplied at a rate of 4 kg/hr, butene-1 was also supplied at a rate of 4 kg/hr. The copolymer obtained had a butene content of 1.6 mol% and a melting point of 126°C. This copolymer was subjected to molecular weight reduction in the same manner as in Example 1, and a water-cooled inflation film was formed. The results are shown in Table 1 below. Example 6 The same procedure as in Example 1 was carried out except that the ethylene supply rate was changed to 3 kg/Hr and butene-1 was supplied at 3 kg/Hr, but the MFI was 0.08 g/10 min, the ethylene content was 9.6 mol%, and butene-1 was supplied at 3 kg/Hr. A polymer powder with a 1.3 mol % 1 content was obtained. In exactly the same manner as in Example 1, a water-cooled blown film was obtained after molecular weight reduction. The results obtained are shown in Table 1. Comparative Example 5 Ethylene content is 7.4 mol%, MFI is 5.1 g/
10min, block index 3.7, MLMFI/MFI
A water-cooled blown film was formed in the same manner as in Example 1 using a propylene-ethylene block copolymer of 19.6 (Showa Denko Co., Ltd. Showa Allomer MK311C). The results obtained are shown in Table 1 below. Compared to the case with low ethylene content (Comparative Example 2),
It is clear that very high low-temperature impact strength is obtained in Example 3 according to the present invention. Furthermore, when compared at the same ethylene content, the block index and MLMFI/
The material having MFI (Example 3) has significantly improved low-temperature impact impact strength compared to Comparative Example 2.

【表】 * 口開き性を容易ならしめる最低量のシリカ及びア
マイドを添加した時の比較
[Table] * Comparison when adding the minimum amount of silica and amide that makes opening easier.

Claims (1)

【特許請求の範囲】 1 チーグラー型触媒の存在下にランダム共重合
させて得られた、C13−NMR法で求めたエチレ
ン単位含量が6〜17モル%、プロピレン単位含量
が83〜94モル%、かつ炭素数4以上のα−オレフ
イン単位含量が0〜5モル%で、MFIが0.5g/
10min未満のプロピレン−エチレン系共重合体を
ラジカル発生剤の存在下に分子量減成させて成
る、下記(イ)〜(ニ)の特性を有するプロピレン−エチ
レン系ランダム共重合体を水冷インフレーシヨン
成形することを特徴とする水冷インフレーシヨン
フイルムの製造方法。 (イ) C13−NMR法で求めたエチレン単位含量:
6〜17モル%、プロピレン単位含量83〜94モル
%、及び炭素数4以上のα−オレフイン単位含
量0〜5モル% (ロ) C13−NMR法で算出した下記で定義したブ
ロツク指数:1.1以下 ブロツク指数= (100)+(000)/(101)+(100)+(000)×1
00/100−〔(100−CE2/100〕 [式中、0はエチレンユニツト、1はプロピレ
ンユニツト、CEはエチレン含量(モル%)を
示す] (ハ) MFI(230℃、荷重2.16Kg):1〜30g/min (ニ) MLMFI(230℃、荷重10.0Kg)とMFI(230
℃、荷重2.16Kg)との比 MLMFI/MFI:10〜16
[Scope of Claims] 1. Obtained by random copolymerization in the presence of a Ziegler type catalyst, the ethylene unit content as determined by C 13 -NMR method is 6 to 17 mol%, and the propylene unit content is 83 to 94 mol%. , and the content of α-olefin units having 4 or more carbon atoms is 0 to 5 mol%, and the MFI is 0.5 g/
A propylene-ethylene random copolymer having the properties (a) to (d) below, which is obtained by reducing the molecular weight of a propylene-ethylene copolymer for less than 10 min in the presence of a radical generator, is water-cooled and inflation-produced. A method for producing a water-cooled inflation film, which is characterized by forming the film. (a) Ethylene unit content determined by C 13 −NMR method:
6 to 17 mol%, propylene unit content 83 to 94 mol%, and α-olefin unit content having 4 or more carbon atoms 0 to 5 mol% (b) Block index defined below calculated by C 13 -NMR method: 1.1 Below Block index = (100) + (000) / (101) + (100) + (000) × 1
00/100 - [(100 - C E ) 2 /100] [In the formula, 0 is ethylene unit, 1 is propylene unit, C E indicates ethylene content (mol%)] (c) MFI (230℃, load 2.16Kg): 1 to 30g/min (d) MLMFI (230℃, load 10.0Kg) and MFI (230
°C, load 2.16Kg) MLMFI/MFI: 10 to 16
JP6465482A 1981-08-22 1982-04-20 Water-cooled inflation film Granted JPS58181613A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP6465482A JPS58181613A (en) 1982-04-20 1982-04-20 Water-cooled inflation film
EP82304319A EP0074194B2 (en) 1981-08-22 1982-08-16 Propylene-ethylene random copolymer, production process thereof, and film derived therefrom
DE8282304319T DE3274455D1 (en) 1981-08-22 1982-08-16 Propylene-ethylene random copolymer, production process thereof, and film derived therefrom
US06/408,479 US4552930A (en) 1981-08-22 1982-08-16 Visbroken propylene-ethylene random copolymers, process and films
SG379/87A SG37987G (en) 1981-08-22 1987-04-25 Propylene-ethylene random copolymer, production process thereof, and film derived therefrom

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6465482A JPS58181613A (en) 1982-04-20 1982-04-20 Water-cooled inflation film

Publications (2)

Publication Number Publication Date
JPS58181613A JPS58181613A (en) 1983-10-24
JPH0369925B2 true JPH0369925B2 (en) 1991-11-05

Family

ID=13264428

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6465482A Granted JPS58181613A (en) 1981-08-22 1982-04-20 Water-cooled inflation film

Country Status (1)

Country Link
JP (1) JPS58181613A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS503188A (en) * 1973-05-14 1975-01-14
JPS5470388A (en) * 1977-11-16 1979-06-06 Mitsubishi Chem Ind Ltd Production of olefin polymer
JPS5590514A (en) * 1978-12-28 1980-07-09 Sumitomo Chem Co Ltd Preparation of propylene copolymer

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS503188A (en) * 1973-05-14 1975-01-14
JPS5470388A (en) * 1977-11-16 1979-06-06 Mitsubishi Chem Ind Ltd Production of olefin polymer
JPS5590514A (en) * 1978-12-28 1980-07-09 Sumitomo Chem Co Ltd Preparation of propylene copolymer

Also Published As

Publication number Publication date
JPS58181613A (en) 1983-10-24

Similar Documents

Publication Publication Date Title
RU2146728C1 (en) Polymer composition and molded product
EP2176340B1 (en) Sterilisable and tough impact polypropylene composition
JP6950694B2 (en) Heterophagic propylene polymerized material
US5340878A (en) Polypropylene composition and film thereof
PT690891E (en) POLYMERIC COMPOSITIONS BASED ON HIGHLY PROCESSABLE LLDPE
JPS5825693B2 (en) Polypropylene plant
EP0994920B1 (en) Polyolefin compositions and films obtained therefrom
JP2005325194A (en) Olefinic resin composition and film
EP0486524A1 (en) Photodegradation and heat-seal agents for polymeric matrix materials
JPH0369925B2 (en)
JP3338535B2 (en) Polyethylene resin composition for high-speed blown film
JPS6140535B2 (en)
JPH0261963B2 (en)
JPH0125333B2 (en)
JPS61243842A (en) polypropylene composition
JPH0341335B2 (en)
JPH0252654B2 (en)
JPH0214899B2 (en)
JP2859356B2 (en) Porous film
JPH07300548A (en) Polyolefin film
JP3338186B2 (en) Ethylene resin composition with improved transparency
JP3487902B2 (en) Medical infusion container
JP2006056937A (en) Propylene resin composition and film comprising the resin composition
JP2549617B2 (en) Polyolefin composition
JP2859346B2 (en) Porous film