JPH0369880B2 - - Google Patents
Info
- Publication number
- JPH0369880B2 JPH0369880B2 JP61014232A JP1423286A JPH0369880B2 JP H0369880 B2 JPH0369880 B2 JP H0369880B2 JP 61014232 A JP61014232 A JP 61014232A JP 1423286 A JP1423286 A JP 1423286A JP H0369880 B2 JPH0369880 B2 JP H0369880B2
- Authority
- JP
- Japan
- Prior art keywords
- crystal growth
- temperature
- zone
- ampoule
- growth
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Landscapes
- Crystals, And After-Treatments Of Crystals (AREA)
- Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)
Description
【発明の詳細な説明】
(産業上の利用分野)
本発明は、ハロゲンによる化学輸送法(ハロゲ
ン輸送法)あるいは昇華再結晶法(昇華法)を用
いた―族化合物(ZnS.ZnSe等)のバルク単
結晶成長法に関する。Detailed Description of the Invention (Industrial Application Field) The present invention is a method for producing - group compounds (ZnS, ZnSe, etc.) using a chemical transport method using halogen (halogen transport method) or a sublimation recrystallization method (sublimation method). Concerning bulk single crystal growth methods.
(従来の技術)
ZnS,ZnSe等の―族化合物は、そのエネ
ルギーバンド・ギヤツプが紫外から青色領域に対
応するため、可視短波長(緑色・青色)から紫外
域での光電変換材料として有用な半導体材料であ
り、SiC,GaN等を含めてもいまだに十分に実用
性のあるデバイス化が実現していない青色発光ダ
イオード材料としても本質的に高効率発光が可能
である。可視発光ダイオードが家庭電器、産業機
器、情報機器等の産業上に占める重要性がますま
す増大する今日、これらの―族化合物の良質
結晶の成長とデバイス化の実現は極めて大きい産
業上の意味を持つ。(Prior art) - group compounds such as ZnS and ZnSe are useful semiconductors as photoelectric conversion materials in the visible short wavelength (green/blue) to ultraviolet range because their energy band gap corresponds to the ultraviolet to blue region. Blue light-emitting diode materials, including SiC, GaN, etc., which have not yet been realized as fully practical devices, are essentially capable of high-efficiency light emission. Today, as visible light-emitting diodes play an increasingly important role in industries such as home appliances, industrial equipment, and information equipment, the growth of high-quality crystals of these - group compounds and the realization of devices have enormous industrial significance. have
第2図イ,ロに図式的に示すように、ZnS,
ZnSe等の―族化合物のハロゲン輸送法ある
いは昇華法を用いたバルク単結晶の成長法では、
従来、平担部とそれに続く緩やかに減少する自然
温度勾配を持つ温度分布(第2図イの5)あるい
は、低、高の二つの温度T1,T2が定められた温
度分布(第2図ロの5)を有する加熱炉中で、石
英製の結晶成長容器(アンプル)1中に設置され
た原料部分2と種結晶部分4の温度を設定して、
単結晶3を種結晶4からまたはアンプルの先端か
ら成長させる。なお、第2図イ,ロは、それぞ
れ、縦型加熱炉と横型加熱炉を用いる場合を示
す。 As shown schematically in Figure 2 A and B, ZnS,
In the bulk single crystal growth method using the halogen transport method or sublimation method for − group compounds such as ZnSe,
Conventionally, a temperature distribution with a flat part followed by a gradually decreasing natural temperature gradient (5 in Figure 2 A) or a temperature distribution with two defined low and high temperatures T 1 and T 2 (2 In a heating furnace having 5) in Figure B, the temperatures of the raw material portion 2 and the seed crystal portion 4 placed in a crystal growth container (ampule) 1 made of quartz are set,
A single crystal 3 is grown from a seed crystal 4 or from the tip of an ampoule. Note that FIGS. 2A and 2B show cases in which a vertical heating furnace and a horizontal heating furnace are used, respectively.
(発明の解決しようとする問題点)
―族化合物のハロゲン輸送法あるいは昇華
法による単結晶成長技術の現在の水準では、成長
する結晶のフロントは一意的に定まらず、すなわ
ち異なる温度の場所での成長が同時に進行するこ
とあるいは、異なる方位の面上での成長が同時に
進行することがある。したがつて、成長する結晶
の形状は、単結晶が得られる場合においても、ア
ンプルの形状のわずかな違いや仕込条件のわずか
な変化とそれらにより生ずるアンプル管内の対流
の影響を反映して、成長実行毎に任意の面が勝手
な方向に発達した制御されない形状を呈し、しか
もこの結果として、単結晶の寸法も最大でも10〜
15mm程度に留まつている。いいかえれば、デバイ
ス製作用あるいは単結晶成長基板用として用い得
る水準の高品質かつ十分な寸法の結晶を得る技術
は確立されていない。例えば、エピタキシヤル成
長用基板としては、特殊な用途を除いては、
ZnS,ZnSe等にとつては、不純物として作用す
る元素を含むため不利なGaAs,GaP等を用いざ
るを得ないのが現状である。このことは、ZnS,
ZnSe等の物性制御の上で重要な要因である高純
度化、低欠陥密度化を目指す現在のデバイス化を
含めた研究開発において極めて重大な問題となつ
ている。(Problems to be solved by the invention) At the current level of single crystal growth technology using the halogen transport method or sublimation method for group compounds, the front of the growing crystal is not uniquely determined; Growth may proceed simultaneously, or growth may proceed simultaneously on planes with different orientations. Therefore, even when a single crystal is obtained, the shape of the growing crystal depends on slight differences in the shape of the ampoule, slight changes in the preparation conditions, and the effects of convection within the ampoule tube caused by these. Each run presents an uncontrolled shape in which arbitrary planes develop in arbitrary directions, and as a result of this, the single crystal size also decreases to a maximum of 10 to 10 mm.
It remains at around 15mm. In other words, no technology has been established for obtaining crystals of high quality and sufficient size that can be used for device fabrication or single crystal growth substrates. For example, as a substrate for epitaxial growth, except for special uses,
Currently, ZnS, ZnSe, etc., have no choice but to use GaAs, GaP, etc., which are disadvantageous because they contain elements that act as impurities. This means that ZnS,
This has become an extremely important issue in research and development, including current device development, which aims to achieve high purity and low defect density, which are important factors in controlling the physical properties of materials such as ZnSe.
本発明は、上記の点に鑑みてなされたものであ
り、その目的は、石英アンプル中での―族化
合物のハロゲン輸送法および昇華法による成長法
において従来方法が有する限界と欠点を除去し、
高品質の十分な寸法を持つ形状の制御されたバル
ク単結晶を成長させる方法を提供することであ
る。 The present invention has been made in view of the above points, and its purpose is to eliminate the limitations and drawbacks of conventional methods in the growth method of - group compounds by halogen transport method and sublimation method in a quartz ampoule,
It is an object of the present invention to provide a method for growing bulk single crystals of high quality, sufficient dimensions, and a controlled shape.
(問題点を解決するための手段)
本発明に係る―族化合物単結晶のハロゲン
輸送法あるいは昇華法を用いた気相成長法におい
て、加熱炉内に高温部、狭い結晶成長ゾーン、お
よび低温部からなる温度分布を実現し、高温部と
低温部の温度差を小さく保ち、上記の結晶成長ゾ
ーンを所定の温度勾配に制御し、上記の結晶成長
ゾーン内に結晶成長フロントが位置するように温
度を制御し、原料を一端に配置した結晶成長用ア
ンプルを所定の牽引速度に制御して移動させるこ
とを特徴とする。(Means for Solving the Problems) In the vapor phase growth method using a halogen transport method or a sublimation method for single crystal of - group compounds according to the present invention, there are a high temperature section, a narrow crystal growth zone, and a low temperature section in a heating furnace. The temperature difference between the high-temperature part and the low-temperature part is kept small, the crystal growth zone is controlled to a predetermined temperature gradient, and the temperature is adjusted so that the crystal growth front is located within the crystal growth zone. The method is characterized in that the ampoule for crystal growth, in which the raw material is placed at one end, is controlled and moved at a predetermined pulling speed.
(作 用)
本発明の単結晶成長法の特徴は、ハロゲン輸送
法および昇華法を用いて―族化合物のバルク
単結晶を成長させる際、加熱炉内の温度分布にお
いて結晶成長化部分を急勾配を有する温度傾斜と
することおよび結晶成長アンプルを一定速度で牽
引することである。さらに具体的には、石英アン
プル中に設置したもしくは自然核発生により生成
した種結晶から成長する際に、小さな温度差でし
かも急勾配を持つ温度傾斜部を利用することによ
り、温度分布(傾斜部)の一点即ちほぼ等温と見
なせる一定の平面内のみでの結晶の成長が可能で
あるようにした上で、一定のあるいは段階的に変
化させた速度でアンプルを移動させることにより
結晶成長フロントを上記の一定温度の点を通過さ
せて、温度分布あるいはアンプル形状等に依存せ
ず一定の形で定常的に単結晶化させることによつ
て、ほぼアンプルの断面状の切断面を持つ任意の
長さのバルク単結晶を得る成長法を具現させたこ
とにある。(Function) A feature of the single crystal growth method of the present invention is that when growing a bulk single crystal of a - group compound using a halogen transport method and a sublimation method, the temperature distribution in the heating furnace causes the crystal growth portion to have a steep slope. , and the crystal growth ampoule is pulled at a constant speed. More specifically, when growing from a seed crystal placed in a quartz ampoule or generated by natural nucleation, the temperature distribution (slope part ), that is, within a fixed plane that can be considered almost isothermal, and then by moving the ampoule at a fixed or stepwise speed, the crystal growth front can be grown as described above. By passing through a constant temperature point and steadily forming a single crystal in a constant shape regardless of temperature distribution or ampoule shape, it is possible to create crystals of arbitrary length with a cross-sectional surface roughly shaped like that of an ampoule. The goal is to realize a growth method for obtaining bulk single crystals.
(実施例)
以下、本発明の実施例を第1図によつて説明す
る。(Example) Hereinafter, an example of the present invention will be described with reference to FIG.
石英製の結晶成長容器(アンプル)6内の両端
に、原料7および種結晶9を充填する(ハロゲン
輸送法では、輸送ガスも封入する。)。縦型加熱炉
内に高温部(温度T2′)11、低温部(温度T1′)
12および中間の温度傾斜部13からなる温度分
布10を実現させる。温度傾斜部13の温度は、
結晶が成長する温度に設定する。いいかえれば、
温度傾斜部13は結晶成長ゾーンである。T2′と
T1′との温度差ΔTは小さくし、しかも、温度傾
斜部13では約5℃/cm以上の急勾配ΔT/ΔX
を持持たせる。そして、アンプル6を、高温部1
1に挿入する。次に、一定のあるいは段階的に変
化させた0.1〜20mm/dayの一定牽引速度vでアン
プル6を上方向へ牽引して移動させる。種結晶9
が温度傾斜部13内を上方に移動するにつれ、温
度傾斜部13の一点14すなわちほぼ等温とみな
せる一定の平面内で結晶が成長していく。この点
が結晶成長フロント8Aになる。換言すれば、結
晶成長フロント8Aが温度傾斜部13の一点14
に常時位置するように制御する。このようにし
て、アンプル6を上方向に移動させていくと、ほ
ぼアンプル6の内周面の外形を有し、任意の長さ
を有するバルク単結晶8が成長していく。 A raw material 7 and a seed crystal 9 are filled at both ends of a crystal growth container (ampule) 6 made of quartz (in the halogen transport method, a transport gas is also enclosed). There are a high temperature section (temperature T 2 ') 11 and a low temperature section (temperature T 1 ') in the vertical heating furnace.
12 and an intermediate temperature gradient section 13. The temperature of the temperature gradient section 13 is
Set the temperature to grow crystals. In other words,
The temperature gradient section 13 is a crystal growth zone. T 2 ′ and
The temperature difference ΔT from T 1 ' should be small, and the temperature gradient section 13 should have a steep gradient ΔT/ΔX of about 5°C/cm or more.
to hold. Then, the ampoule 6 is placed in the high temperature section 1.
Insert into 1. Next, the ampoule 6 is pulled upward at a constant pulling speed v of 0.1 to 20 mm/day, which is constant or changed in steps. seed crystal 9
As the crystal moves upward within the temperature gradient section 13, the crystal grows at a point 14 of the temperature gradient section 13, that is, within a fixed plane that can be considered to be approximately isothermal. This point becomes the crystal growth front 8A. In other words, the crystal growth front 8A is located at one point 14 of the temperature gradient section 13.
control so that it is always located at As the ampoule 6 is moved upward in this manner, a bulk single crystal 8 having an outer shape approximately equal to the inner peripheral surface of the ampoule 6 and having an arbitrary length grows.
本成長法においては、加熱炉が垂直配置の場合
においても、水平配置の場合においても、成長結
晶の制御性において同等の効果と生産性を有す
る。また、アンプルと炉は相対的にいずれかを移
動させる。 This growth method has the same effect and productivity in terms of controllability of grown crystals whether the heating furnace is vertically arranged or horizontally arranged. Also, move the ampoule and the furnace relative to each other.
アンプル口径およびアンプル長を実用的に任意
に選び、充填原料を所望の量として温度勾配とア
ンプル牽引速度に所定の値に設定することによ
り、一定の定常的成長条件下で任意の口径と長さ
を有する高品位かつ均質なZnS,ZnSe等の―
族化合物バルク単結晶を高い生産性をもつて成
長させることができる。 By choosing the ampoule diameter and ampoule length practically arbitrarily, and setting the temperature gradient and ampoule drawing speed to predetermined values with the desired amount of filling material, any diameter and length can be obtained under certain steady growth conditions. High quality and homogeneous ZnS, ZnSe, etc. with
Bulk single crystals of group compounds can be grown with high productivity.
(発明の効果)
本発明により、―族化合物のデバイス用結
晶およびエピタキシヤル基板用結晶を供給するこ
とが可能となる。(Effects of the Invention) The present invention makes it possible to supply device crystals and epitaxial substrate crystals of - group compounds.
第1図は、本発明のハロゲン輸送法あるいは昇
華法による成長法の概略図である。第2図イ,ロ
は、それぞれ、ハロゲン輸送法および昇華法によ
り結晶成長させる場合に従来用いられてきた成長
法の概略図である。
6…結晶成長用アンプル、7…原料、8…成長
結晶、9…種結晶、10…温度分布、11…高温
部、12…低温部、13…温度傾斜部。
FIG. 1 is a schematic diagram of the growth method using the halogen transport method or sublimation method of the present invention. FIGS. 2A and 2B are schematic diagrams of conventional growth methods used for crystal growth by a halogen transport method and a sublimation method, respectively. 6... Ampoule for crystal growth, 7... Raw material, 8... Growing crystal, 9... Seed crystal, 10... Temperature distribution, 11... High temperature section, 12... Low temperature section, 13... Temperature gradient section.
Claims (1)
いは昇華法を用いた気相成長法において、加熱炉
内に高温部、狭い結晶成長ゾーン、および低温部
からなる温度分布を実現し、高温部と低温部の温
度差を小さく保ち、上記の結晶成長ゾーンを所定
の温度勾配に制御し、上記の結晶成長ゾーン内に
結晶成長フロントが位置するように温度を制御
し、原料を一端に配置した結晶成長用アンプルを
所定の牽引速度に制御して移動させることを特徴
とする―族化合物の単結晶成長法。In the vapor phase growth method using the halogen transport method or sublimation method for single crystals of 1- group compounds, a temperature distribution consisting of a high temperature zone, a narrow crystal growth zone, and a low temperature zone is realized in the heating furnace, and the high temperature zone and the low temperature zone are separated. For crystal growth, the temperature difference is kept small, the above-mentioned crystal growth zone is controlled to a predetermined temperature gradient, the temperature is controlled so that the crystal growth front is located within the above-mentioned crystal growth zone, and the raw material is placed at one end. A method for growing single crystals of - group compounds, which is characterized by moving an ampoule while controlling it at a predetermined pulling speed.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1423286A JPS62172000A (en) | 1986-01-24 | 1986-01-24 | Single crystal growth of ii-vi compound |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1423286A JPS62172000A (en) | 1986-01-24 | 1986-01-24 | Single crystal growth of ii-vi compound |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS62172000A JPS62172000A (en) | 1987-07-28 |
JPH0369880B2 true JPH0369880B2 (en) | 1991-11-05 |
Family
ID=11855325
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1423286A Granted JPS62172000A (en) | 1986-01-24 | 1986-01-24 | Single crystal growth of ii-vi compound |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS62172000A (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102009024473B4 (en) * | 2009-06-10 | 2015-11-26 | Siltronic Ag | A method for pulling a single crystal of silicon and then produced single crystal |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS49129694A (en) * | 1973-04-04 | 1974-12-12 | ||
JPS59164695A (en) * | 1983-03-10 | 1984-09-17 | Matsushita Electric Ind Co Ltd | Preparation of single crystal |
-
1986
- 1986-01-24 JP JP1423286A patent/JPS62172000A/en active Granted
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS49129694A (en) * | 1973-04-04 | 1974-12-12 | ||
JPS59164695A (en) * | 1983-03-10 | 1984-09-17 | Matsushita Electric Ind Co Ltd | Preparation of single crystal |
Also Published As
Publication number | Publication date |
---|---|
JPS62172000A (en) | 1987-07-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4999082A (en) | Process for producing monocrystalline group II-IV or group III-V compounds and products thereof | |
JPS63230599A (en) | ZnSe single crystal manufacturing method | |
JPH0369880B2 (en) | ||
US5047112A (en) | Method for preparing homogeneous single crystal ternary III-V alloys | |
JP3465853B2 (en) | Manufacturing method of ZnSe bulk single crystal | |
JPH06298600A (en) | Method for growing SiC single crystal | |
JPH0570276A (en) | Device for producing single crystals | |
JP3231050B2 (en) | Compound semiconductor crystal growth method | |
Fornari | Electronic materials and crystal growth | |
JP2004203721A (en) | Apparatus and method for growing single crystal | |
JP2680617B2 (en) | Method for growing silicon carbide single crystal | |
CN105970286B (en) | A kind of method of more crucible liquid phase epitaxy SiC crystals | |
JP2543449B2 (en) | Crystal growth method and apparatus | |
JPH069025Y2 (en) | Compound semiconductor single crystal manufacturing equipment | |
JPH08290991A (en) | Method for growing compound semiconductor single crystal | |
JP3132034B2 (en) | Method for growing compound semiconductor crystal | |
JPS627693A (en) | Device for growing compound semiconductor single crystal | |
JP2873449B2 (en) | Compound semiconductor floating zone melting single crystal growth method | |
JPH0316988A (en) | Compound semiconductor single crystal manufacturing equipment | |
JPS62153192A (en) | Method for growing crystal of compound semiconductor | |
JPH03261699A (en) | Growth method of ZnSe single crystal | |
CS225497B1 (en) | Low-temperature formation of single crystals of the gallium arsenide with structure without mosaic blocks and dislocations | |
JPH01252597A (en) | Method for manufacturing compound semiconductor single crystal | |
JPS62223088A (en) | Method for growing compound single crystal | |
JPS58194792A (en) | Preparation of single crystal of inorganic compound |