[go: up one dir, main page]

JPH036930B2 - - Google Patents

Info

Publication number
JPH036930B2
JPH036930B2 JP57214494A JP21449482A JPH036930B2 JP H036930 B2 JPH036930 B2 JP H036930B2 JP 57214494 A JP57214494 A JP 57214494A JP 21449482 A JP21449482 A JP 21449482A JP H036930 B2 JPH036930 B2 JP H036930B2
Authority
JP
Japan
Prior art keywords
resin
weight
general formula
amount
lining
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57214494A
Other languages
Japanese (ja)
Other versions
JPS59105016A (en
Inventor
Mitsuru Moritake
Akio Nakashiba
Toshio Nishida
Tsutomu Hiraoka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Gas Co Ltd
Original Assignee
Osaka Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Gas Co Ltd filed Critical Osaka Gas Co Ltd
Priority to JP21449482A priority Critical patent/JPS59105016A/en
Publication of JPS59105016A publication Critical patent/JPS59105016A/en
Publication of JPH036930B2 publication Critical patent/JPH036930B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Epoxy Resins (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、コルゲート管内面処理用可撓性樹脂
組成物に関する。 金属コルゲート管は、管面に波型を形成させて
可撓性を付与したものであり、例えば既設の建造
物や構造物の狭隘な空間に事後的に配管を行なう
場合等に極めて有用である。しかしながら、この
様なコルゲート管も、平滑管に比して管内流体摩
擦抵抗が大きい、管内突出部が腐食損傷しやすい
等の欠点を有しているので、流体摩擦抵抗の減少
及び長期耐久性向上の為に、管内面を何らかの方
法で加工若しくは処理することが望ましい。従来
試みられてきたコルゲート管の内面加工又は処理
方法としては、(イ)コルゲート管内に平滑管を挿入
して二重管とする、(ロ)熱膨脹性チユーブによりコ
ルゲート管内面の内張を行なう、(ハ)液状合成樹脂
によりコルゲート管内面を被覆する、(ニ)粉体樹脂
塗料によりコルゲート管の内面塗装を行なう、等
の方法がある。しかしながら、これ等の方法は、
(a)コルゲート管の最大の特徴である可撓性を著る
しく悪化させる、(b)コスト高となる、(c)コルゲー
ト管の長さが一定以上となると、実施不能である
等の欠点若しくは制約の少なくとも1種を有して
いるので、多くの場合コルゲート管としての特性
を最大限に生かす為に無処理の状態で使用されて
いるのが現状である。 本発明者は、コルゲート管の最大の特性である
可撓性を実質的に害することのないライニング用
樹脂組成物を得るべく種々実験及び研究を重ねた
結果、この様な樹脂組成物は、以下の如き性質を
具備すべきであることを見出した。 A ライニング前及びライニング直後 (1) ライニング樹脂の混合調製及びコルゲート
管内面へのライニング(塗布)が容易な粘度
(塑性粘度=2×105cps以下)を有し、ライ
ニング作業中にもこの様な適度の粘度を保持
すること。 (2) 樹脂の揮発成分等による皮膚刺激性、毒
性、刺激臭等がなく、衛生上の問題点を生じ
ないこと。 (3) 作業の簡易化、施工装置の簡略化等の観点
から、常温で硬化すること。 (4) 加圧空気により駆動される球状ピグによる
ライニング終了後樹脂が硬化するまでの間塗
布物の垂れを生じない為のチキソトロピー性
を有すること。 B ライニング樹脂硬化後 (1) コルゲート管内面に密着し、管内を平滑と
して流体摩擦抵抗を大巾に低下させ且つ内面
を完全に被覆することにより、内面からの腐
食を防止し得ること。 (2) コルゲート管の伸縮及び曲げに対応して変
形し得る程度の伸び率(500%以上)及び伸
縮及び曲げによつてライニング層に損傷を生
じない程度の機械的強度を有すること。 (3) ライニング層が、都市ガス、水道水等の管
内流体及びこれ等に含まれる可能性のある各
種成分に対し、良好な耐性を有すること。 (4) ライニング層を形成されたコルゲート管の
可撓性を阻害しない程度のヤング率(50Kg/
cm2以下)を有していること。 (5) 施工環境での年間の温度変化(0〜35℃)
に対して機械的物性等の変化が少なく、低温
脆性もないこと。 本発明者は、上記の要件に合致するライニング
材を見出すべく、種々の樹脂について実験及び研
究を重ねた結果、エポキシ系樹脂が他の樹脂に比
してより良く上記の要件を充足し且つ毒性、可燃
性等の欠点も少ないことが判明した。しかしなが
ら、従来公知のエポキシ系樹脂硬化物は、コルゲ
ート管の伸縮及び曲げに対応する伸びを示さず、
破損を生じやすく、又低温下において低ヤング率
及び高伸び率を保持しないため実用に供し得ない
ことも見出された。そこで、本発明者は、上記の
要件を具備する樹脂組成物を求めて更に研究を進
めた結果、下記に示す特定の主剤と硬化剤との配
合物がその目的を満足させることを見出し、遂に
本発明を完成するに到つた。 以下、本発明樹脂組成物を構成する各成分につ
いて詳述する。 A 主剤 エポキシ樹脂 本発明で主剤100重量部中95〜45重量部の
割合で使用されるエポキシ樹脂は、常温で液
状のものであり、主なものを例示すれば以下
の通りである。 (1) ビスフエノールAジグリシジルエーテ
ル、ビスフエノールAジβメチルグリシジ
ルエーテル等のビスフエノールAのグリシ
ジルエーテル型エポキシ樹脂 (2) ダイマー酸ジグリシジルエステル、ポリ
アルキレングリコールグリシジルエステ
ル、ヘキサハイドロフタル酸ジグリシジル
エステル等のグリシジルエステル型エポキ
シ樹脂 (3) ポリエチレングリコールジグリシジルエ
ーテル、ペンタエリスリトールジグリシジ
ルエーテル等のポリアルキレングリコール
ジグリシジルエーテル型エポキシ樹脂 (4) エポキシ化ポリブタジエン等の線状脂肪
族エポキシ樹脂 本発明においては、これ等液状エポキシ樹
脂の一種又は必要に応じ二種以上の混合物を
使用する。例えば、上記(1)ビスフエノールA
グリシジルエーテル型エポキシ樹脂は、塗膜
形成直後の保型性に特に優れているのに対
し、(2)グリシジルエステル型エポキシ樹脂及
び(3)ポリアルキレングリコールグリシジルエ
ーテル型エポキシ樹脂は乾燥塗膜の可撓性に
特に優れているので、これ等を適宜混合使用
することにより、効果を更に改善することが
出来る。 エポキシ樹脂の量は、主剤100重量部中80
〜50重量部とすることがより好ましい。 末端カルボキシル型ブタジエンアクリロニ
トリルコポリマー 本発明において主剤100重量部中5〜55重
量部の割合でより好ましくは20〜50重量部の
割合で使用される末端にカルボキシル基を有
するブタジエン−アクリロニトリルコポリマ
ーは、常温で液状のものであり、下記の一般
式(1)により表わされる構造を有し、分子量
490〜580程度、常温粘度8000〜14000cp程度
である。 〔但しx=1〜10、y=1〜10、z=1〜10
である。〕 一般式(1)で示されるコポリマー(以下
CTBNという)が主剤重量の5%未満の場
合には、硬化後の樹脂が十分な可撓性を発揮
し得ず、一方55%を上回る場合には、硬化が
不完全となる。 尚、CTBNと前記のエポキシ樹脂とは、
予めエステル化反応させた状態で使用しても
良い。 B 硬化剤 ポリブタジエンオリゴマー 本発明において主剤側当量の0.15〜0.8倍
の割合で使用されるポリブタジエンオリゴマ
ーは、下記の一般式(2)で示される構造を有
し、分子量2000〜3000程度、常温粘度20000
〜24000cp程度である。 〔但しm=1〜4、n=10〜20である。〕 一般式(2)で示されるポリブタジエンオリゴ
マーは、ゴム成分を多量に含んでいるので、
本発明樹脂組成物に優れたゴム物性を与え且
つ組成物の接着性を著るしく改善する。更
に、該ポリブタジエンオリゴマーは、主鎖に
アクリロニトリルを導入しているので、他の
材料との相溶性に優れており、耐久性に優れ
た均一な硬化物を生成させる。上記ポリブタ
ジエンオリゴマーの使用量が、主剤側当量の
0.15倍未満の場合には、併用する下記の他
のアミン系硬化剤の量が増大して、組成物硬
化物の可撓性が低下し、接着力も低下する。
一方、0.8倍を上回る場合には、下記の他
のアミン系硬化剤の量が大巾に減少する為、
硬化反応が極めて遅くなり、未硬化部分を含
む性状劣悪な硬化物となる。 アミン系硬化剤 本発明においては、主剤側当量の残余分に
相当する量の硬化剤として、公知のアミン系
硬化剤を上記一般式(2)のポリブタジエンオリ
ゴマーと併用する。公知のアミン系硬化剤の
うちでも、特に一般式(3) で示されるビススピロ環ジアミンをジエチレ
ントリアミン、トリエチレンテトラミン等の
直鎖の脂肪族ポリアミンで変成ポリアミン
が、極めて低粘度(約1cp程度)なので組成
物全体の粘度を低下させる、硬化物の可撓性
及び靭性を大巾に向上させる等の理由により
有利に使用される。この様なアミン系硬化剤
は、上記一般式(2)のポリブタジエンオリゴマ
ーとの合計量が主剤側当量と等量となる割合
で使用すれば良いが、過剰量使用しても差支
えない。 C 任意的添加成分 本発明樹脂組成物には、必要に応じ所定の物
性を阻害しない範囲内で、以下の如き公知の充
填剤、非反応性希釈剤等を添加することが出来
る。 (1) ライニング終了後樹脂硬化までの間所定の
ライニング膜厚を維持するとともに塗布量の
垂れを生じさせない程度のチキソトロピー性
を附与する為に充填剤を加えることが出来
る。充填剤としては、少量の添加により優れ
た効果を発揮するアスベスト粉が特に好まし
いが、アルミナ、グラフアイト、シリカ等の
粉状物も使用可能である。充填剤の使用量
は、主剤及び硬化剤の合計100重量部に対し、
通常0.3〜5重量部程度とすることが好まし
い。 (2) 樹脂組成物の粘度を低下させ、ライニング
の作業性を向上させる為に、非反応性希釈剤
を加えることが出来る。非反応性希釈剤とし
ては、テルペンアルコール、ベンジルアルコ
ール、ジブチルフタレート、ジオクチルフタ
レート、n−ブチルグリシジルエーテル、メ
チルアルコール等が例示される。非反応性希
釈剤の使用量も特に限定はされないが、主剤
と硬化剤の合計100重量部に対し、通常3〜
30重量部程度である。 (3) ライニング処理後の樹脂組成物を速やかに
硬化させることにより作業性を向上させるた
めに、硬化促進剤を添加することが出来る。
硬化促進剤としては、2,4,6−トリス
(ジメチルアミノメチル)フエノール等のフ
エノール類が例示される。硬化促進剤の使用
量は、主剤と硬化剤の合計100重量部に対し、
通常0.3〜3重量部程度とすることが好まし
い。 本発明のコルゲート管内面処理用可撓性樹脂
組成物は、硬化前及び硬化後において、前記の
如き性質を全て具備しているので、極めて有用
である。 以下実施例を示し、本発明の特徴とするところ
をより明らかにする。 尚、以下において使用する略記の意味は、下記
の通りである。 エポキシ樹脂……ビスフエノールAジグリシジ
ルエーテル型エポキシ樹脂、商標“AER331”、
旭化成(株)製。 エポキシ樹脂……ダイマー酸ジグリシジルエス
テル型エポキシ樹脂、商標“エピコート871”、
油化シエル(株)製。 エポキシ樹脂……脂肪酸ジグリシジルエステル
型エポキシ樹脂、商標“IPU22G”、岡村製油
(株)製。 CTBNコポリマー……前出一般式(1)で示される
コポリマーをエポキシ樹脂で変成したもの、商
標“EXA992”、宇部興産(株)製。 ポリブタジエンオリゴマー……前出一般式(2)で示
されるポリブタジエンオリゴマー、商標
“Hycar ATBN”、宇部興産(株)製。 変成ポリアミン……前出一般式(3)で示されるピス
スピロ環ジアミンをジエチレントリアミン、ト
リエチレンテトラミン等の直鎖の脂肪族ポリア
ミンで変成したもの、商標“LX−2S”、油化
シエル(株)製。 TAP……2,4,6−トリス(ジメチルアミノ
メチル)フエノール 実施例 1 下記第1表に示す割合(重量部)で各成分を混
合して得た主剤と硬化剤とから本発明樹脂組成物
(No.1)を得た。樹脂組成物の硬化後のヤング率
及び伸びを第1表に併せて示す。 尚、第1表には、一般式(2)で示されるポリブタ
ジエンオリゴマーの割合が主剤側当量の0.15倍未
満の場合(No.2)、硬化剤が一般式(2)で示される
ポリブタジエンオリゴマーを含まない場合(No.
3)並びに主剤中のCTBNが55重量%を上回る
場合(No.4)を比較として示す。
The present invention relates to a flexible resin composition for treating the inner surface of a corrugated pipe. Metal corrugated pipes have a corrugated surface that gives them flexibility, and are extremely useful, for example, when installing piping into narrow spaces in existing buildings or structures. . However, such corrugated pipes also have drawbacks such as higher fluid frictional resistance inside the pipe than smooth pipes, and the protrusions inside the pipe are susceptible to corrosion damage, so it is important to reduce fluid frictional resistance and improve long-term durability. Therefore, it is desirable to process or treat the inner surface of the tube by some method. Conventional methods for processing or treating the inner surface of corrugated pipes include (a) inserting a smooth tube into the corrugated pipe to create a double pipe, (b) lining the inner surface of the corrugated pipe with a thermally expandable tube. There are methods such as (c) coating the inner surface of the corrugated pipe with liquid synthetic resin, and (d) painting the inner surface of the corrugated pipe with powder resin paint. However, these methods
Disadvantages include (a) significantly deteriorating the flexibility, which is the most important feature of corrugated pipes, (b) increasing costs, and (c) impracticability when the length of corrugated pipes exceeds a certain level. However, since corrugated pipes have at least one type of restriction, they are currently used in an untreated state in many cases in order to make the most of their characteristics as corrugated pipes. The present inventor has conducted various experiments and research in order to obtain a resin composition for lining that does not substantially impair the flexibility, which is the greatest characteristic of corrugated pipes, and has found that such a resin composition is as follows. We found that it should have the following properties. A: Before lining and immediately after lining (1) It has a viscosity (plastic viscosity = 2 x 10 5 cps or less) that makes it easy to mix and prepare the lining resin and to line (coat) the inner surface of the corrugated pipe, and it can also be used during lining work. maintain a suitable viscosity. (2) There should be no skin irritation, toxicity, or irritating odor due to the volatile components of the resin, and there should be no hygienic problems. (3) From the viewpoint of simplifying work and construction equipment, it should be cured at room temperature. (4) It must have thixotropy to prevent the applied material from dripping until the resin hardens after lining with a spherical pig driven by pressurized air. B After the lining resin hardens (1) The lining adheres closely to the inner surface of the corrugated pipe, smoothing the inside of the pipe, greatly reducing fluid friction resistance, and completely covering the inner surface to prevent corrosion from the inner surface. (2) It must have an elongation rate (500% or more) that can be deformed in response to the expansion, contraction and bending of corrugated pipes, and a mechanical strength that does not cause damage to the lining layer due to expansion, contraction and bending. (3) The lining layer has good resistance to pipe fluids such as city gas and tap water, as well as various components that may be contained in these fluids. (4) Young's modulus (50Kg/
cm2 or less). (5) Annual temperature change in the construction environment (0 to 35℃)
There is little change in mechanical properties, etc., and there is no low-temperature brittleness. As a result of repeated experiments and research on various resins in order to find a lining material that satisfies the above requirements, the inventor found that epoxy resin satisfies the above requirements better than other resins and is less toxic. It was also found that there were few drawbacks such as flammability. However, conventionally known cured epoxy resins do not exhibit elongation corresponding to the expansion/contraction and bending of corrugated pipes.
It was also found that it could not be put to practical use because it easily breaks and does not maintain low Young's modulus and high elongation at low temperatures. Therefore, as a result of further research in search of a resin composition that satisfies the above requirements, the inventor of the present invention discovered that a combination of a specific base resin and curing agent shown below satisfies the purpose, and finally The present invention has now been completed. Each component constituting the resin composition of the present invention will be described in detail below. A Main resin Epoxy resin The epoxy resin used in the present invention in an amount of 95 to 45 parts by weight based on 100 parts by weight of the main resin is liquid at room temperature, and the main resins are as follows. (1) Glycidyl ether-type epoxy resins of bisphenol A such as bisphenol A diglycidyl ether and bisphenol A diβ-methylglycidyl ether (2) Dimer acid diglycidyl ester, polyalkylene glycol glycidyl ester, diglycidyl hexahydrophthalate Glycidyl ester type epoxy resin such as ester (3) Polyalkylene glycol diglycidyl ether type epoxy resin such as polyethylene glycol diglycidyl ether and pentaerythritol diglycidyl ether (4) Linear aliphatic epoxy resin such as epoxidized polybutadiene In the present invention In this case, one kind of these liquid epoxy resins or a mixture of two or more kinds thereof is used as necessary. For example, the above (1) bisphenol A
Glycidyl ether type epoxy resins have particularly excellent shape retention immediately after coating film formation, whereas (2) glycidyl ester type epoxy resins and (3) polyalkylene glycol glycidyl ether type epoxy resins have excellent shape retention properties immediately after coating film formation. Since it has particularly excellent flexibility, the effect can be further improved by appropriately mixing and using these materials. The amount of epoxy resin is 80 parts by weight in 100 parts by weight of the main resin.
More preferably, the amount is 50 parts by weight. Terminal carboxyl-type butadiene-acrylonitrile copolymer The butadiene-acrylonitrile copolymer having a terminal carboxyl group, which is used in the present invention in an amount of 5 to 55 parts by weight, more preferably 20 to 50 parts by weight, in 100 parts by weight of the main ingredient, can be used at room temperature. It is a liquid, has a structure represented by the general formula (1) below, and has a molecular weight of
It has a viscosity of about 490 to 580 cp and a normal temperature viscosity of about 8000 to 14000 cp. [However, x = 1 to 10, y = 1 to 10, z = 1 to 10
It is. ] Copolymer represented by general formula (1) (hereinafter
If the amount of CTBN (referred to as CTBN) is less than 5% of the weight of the main resin, the resin after curing will not exhibit sufficient flexibility, while if it exceeds 55%, curing will be incomplete. Furthermore, CTBN and the above-mentioned epoxy resin are
It may be used in a state where it has been subjected to an esterification reaction in advance. B Curing agent Polybutadiene oligomer The polybutadiene oligomer used in the present invention at a ratio of 0.15 to 0.8 times the equivalent of the main resin has a structure represented by the following general formula (2), has a molecular weight of about 2000 to 3000, and a viscosity at room temperature of 20000.
~24000cp. [However, m=1-4, n=10-20. ] Since the polybutadiene oligomer represented by general formula (2) contains a large amount of rubber component,
It provides the resin composition of the present invention with excellent rubber physical properties and significantly improves the adhesion of the composition. Furthermore, since the polybutadiene oligomer has acrylonitrile introduced into the main chain, it has excellent compatibility with other materials and produces a uniform cured product with excellent durability. The amount of the above polybutadiene oligomer used is
When the amount is less than 0.15 times, the amount of the other amine curing agent described below to be used together increases, and the flexibility of the cured composition decreases, and the adhesive strength also decreases.
On the other hand, if it exceeds 0.8 times, the amount of other amine curing agents listed below will decrease significantly.
The curing reaction becomes extremely slow, resulting in a cured product that contains uncured parts and has poor properties. Amine Hardening Agent In the present invention, a known amine hardening agent is used in combination with the polybutadiene oligomer of general formula (2) above as a hardening agent in an amount corresponding to the remainder of the base equivalent. Among the known amine curing agents, especially those of general formula (3) Polyamines modified with linear aliphatic polyamines such as diethylenetriamine and triethylenetetramine reduce the viscosity of the entire composition, and reduce the viscosity of the entire composition. It is advantageously used for reasons such as greatly improving toughness. Such an amine curing agent may be used in such a proportion that the total amount with the polybutadiene oligomer of the general formula (2) is equal to the equivalent of the main agent, but an excessive amount may be used. C. Optional Additive Components The following known fillers, non-reactive diluents, etc. can be added to the resin composition of the present invention, if necessary, within a range that does not impede the desired physical properties. (1) A filler can be added in order to maintain a predetermined lining film thickness until the resin hardens after lining and to impart thixotropy to the extent that the coating amount does not sag. As the filler, asbestos powder, which exhibits excellent effects when added in small amounts, is particularly preferred, but powdered materials such as alumina, graphite, and silica can also be used. The amount of filler used is based on the total of 100 parts by weight of the main agent and hardening agent.
It is usually preferable to use about 0.3 to 5 parts by weight. (2) A non-reactive diluent can be added to reduce the viscosity of the resin composition and improve the workability of lining. Examples of the non-reactive diluent include terpene alcohol, benzyl alcohol, dibutyl phthalate, dioctyl phthalate, n-butyl glycidyl ether, and methyl alcohol. The amount of non-reactive diluent used is also not particularly limited, but it is usually 3 to 3 parts by weight per 100 parts by weight of the base agent and curing agent.
It is about 30 parts by weight. (3) A curing accelerator can be added to improve workability by rapidly curing the resin composition after lining treatment.
Examples of the curing accelerator include phenols such as 2,4,6-tris(dimethylaminomethyl)phenol. The amount of curing accelerator used is 100 parts by weight of the base resin and curing agent.
Usually, it is preferably about 0.3 to 3 parts by weight. The flexible resin composition for treating the inner surface of a corrugated pipe according to the present invention has all of the above-mentioned properties before and after curing, and is therefore extremely useful. Examples will be shown below to further clarify the features of the present invention. The meanings of the abbreviations used below are as follows. Epoxy resin...Bisphenol A diglycidyl ether type epoxy resin, trademark "AER331",
Manufactured by Asahi Kasei Corporation. Epoxy resin...dimer acid diglycidyl ester type epoxy resin, trademark "Epicote 871",
Manufactured by Yuka Ciel Co., Ltd. Epoxy resin...Fatty acid diglycidyl ester type epoxy resin, trademark "IPU22G", Okamura Oil Co., Ltd.
Manufactured by Co., Ltd. CTBN copolymer: A copolymer represented by the above general formula (1) modified with an epoxy resin, trademark "EXA992", manufactured by Ube Industries, Ltd. Polybutadiene oligomer...Polybutadiene oligomer represented by the above general formula (2), trademark "Hycar ATBN", manufactured by Ube Industries, Ltd. Modified polyamine: A product obtained by modifying the pisspirocyclic diamine represented by the above general formula (3) with a linear aliphatic polyamine such as diethylenetriamine or triethylenetetramine, trademark "LX-2S", manufactured by Yuka Ciel Co., Ltd. . TAP...2,4,6-tris(dimethylaminomethyl)phenol Example 1 A resin composition of the present invention is made from a main agent and a curing agent obtained by mixing each component in the proportions (parts by weight) shown in Table 1 below. (No. 1) was obtained. The Young's modulus and elongation of the resin composition after curing are also shown in Table 1. Table 1 shows that when the proportion of the polybutadiene oligomer represented by the general formula (2) is less than 0.15 times the equivalent weight on the main resin side (No. 2), the curing agent contains the polybutadiene oligomer represented by the general formula (2). If not included (No.
3) and the case where CTBN in the base agent exceeds 55% by weight (No. 4) are shown for comparison.

【表】 尚、第1表中の物性は、以下の様にして測定し
た。 ヤング率……JIS K6301「加硫ゴム物理試験方法」
に準じて、ダンベル型2号試験片を引張速度
100mm/分で引張試験に供した。 伸び……ヤング率の場合と同様。 実施例 2 下記第2表に示す割合(重量部及び当量比)で
各成分を混合して得た主剤と硬化剤とから本発明
樹脂組成物(No.5〜8)を得た。各組成物の物性
(測定方法は実施例1と同じ)を第2表に併せて
示す。 尚、第2表には、主剤がCTBNを含まない場
合(No.9)、硬化剤が一般式(2)で示されるポリブ
タジエンオリゴマーを含まない場合(No.10)、及
び硬化剤中の一般式(2)で示されるポリブタジエン
オリゴマーが主剤側当量の0.15未満である場合
(No.11)を併せて示す。
[Table] The physical properties in Table 1 were measured as follows. Young's modulus...JIS K6301 "Vulcanized rubber physical test method"
According to
A tensile test was performed at 100 mm/min. Elongation...Same as Young's modulus. Example 2 Resin compositions (Nos. 5 to 8) of the present invention were obtained from a main agent and a curing agent obtained by mixing each component in the proportions (parts by weight and equivalent ratio) shown in Table 2 below. The physical properties of each composition (measurement method is the same as in Example 1) are also shown in Table 2. Table 2 shows cases in which the base agent does not contain CTBN (No. 9), cases in which the curing agent does not contain the polybutadiene oligomer represented by general formula (2) (No. 10), and cases in which the curing agent does not contain CTBN (No. 10), and A case (No. 11) in which the polybutadiene oligomer represented by formula (2) has an equivalent weight of less than 0.15 of the base resin side is also shown.

【表】 実験例 1 実施例2の樹脂組成物No.5を板状に成型し、硬
化させた後、打抜き加工によりJIS2号ダンベル型
試験片とした。 次いで、得られたダンベル型試験片を(イ)室温か
ら1時間かけて80℃に加熱、(ロ)80℃で2時間保
持、(ハ)80℃から2時間かけて−5℃に冷却、(ニ)−
5℃で2時間保持、(ホ)−5℃から1時間かけて室
温に昇温という各段階を一サイクルとする冷熱繰
返し試験に供した。所定サイクル経過後のダンベ
ル型試験片をインストロン万能試験機に装着し、
チヤツク間距離40mm、引張速度200mm/分、温度
23℃、温度60%の条件下に引張試験を行なつた。
結果は、第1図に示す通りである。 本発明組成物が、極めて苛酷な温度変動条件下
にも優れた耐久性及び安定性を発揮することが明
らかである。 実験例 2 外径16.3mm、内径13.8mm、山ピツチ3.75mmのス
テンレススチールコルゲート管内面に実施例2の
樹脂組成物No.5を均一に塗布し、内径13.4mmの平
滑な円筒状流路を形成させた。樹脂組成物の硬化
後、該コルゲート管を第2図に示す如く軸方向に
切断し、次いで第3図に示す如く展開した状態で
矢印A−Bの方向(軸方向)に引張つて樹脂硬化
物に歪を与えた。 第3図に示す引張り前の状態の歪量を0%と
し、引張りによつて直管となつた状態の歪量を
100%とした場合の各歪量における各サンプルつ
いて、実験例1と同様の冷熱繰返し試験を行なつ
た。その結果、歪量0%、25%、50%、75%及び
100%の全てのサンプルにおいて、80サイクル後
にも樹脂のはがれ、亀裂等の異常は認められなか
つた。 実験例 3 (i) 実験例1と同様のJIS2号ダンベル型試験片を
湿度90%、温度23℃の条件下に50日間放置した
後、実験例1と同様にして引張試験に供したと
ころ、ヤング率が当初に比して約55%低下して
いた。又、50日間放置後の試験片に体積変化は
生じなかつた。 (ii) 実験例1と同様のJIS2号ダンベル型試験片を
ベンゼン濃度1%の雰囲気に50日間放置したと
ころ、ヤング率が約20%低下し、体積が1%増
加したのみであつた。 実験例 4 (i) 実験例2と同様にして得た歪量100%のサン
プルを実験例3の(i)と同様の条件で放置した
後、樹脂とステンレススチールとの接着状況を
観察したが、異常は認められなかつた。 (ii) 実験例2と同様にして得た歪量100%のサン
プルを実験例3の(ii)と同様の条件で放置した
後、樹脂とステンレススチールとの接着状況を
観察したが、異常は全く認められなかつた。
[Table] Experimental Example 1 Resin composition No. 5 of Example 2 was molded into a plate shape, cured, and then punched into JIS No. 2 dumbbell-shaped test pieces. Next, the obtained dumbbell-shaped test piece was (a) heated from room temperature to 80°C over 1 hour, (b) held at 80°C for 2 hours, (c) cooled from 80°C to -5°C over 2 hours, (d)−
It was subjected to a cold/heat cycle test in which each cycle consisted of holding at 5°C for 2 hours and raising the temperature from (e) -5°C to room temperature over 1 hour. After the specified cycle, the dumbbell-shaped test piece was attached to the Instron universal testing machine.
Distance between chucks 40mm, tensile speed 200mm/min, temperature
A tensile test was conducted at 23°C and a temperature of 60%.
The results are shown in FIG. It is clear that the compositions of the present invention exhibit excellent durability and stability even under extremely severe temperature fluctuation conditions. Experimental Example 2 Resin composition No. 5 of Example 2 was evenly applied to the inner surface of a stainless steel corrugated tube with an outer diameter of 16.3 mm, an inner diameter of 13.8 mm, and a pitch of 3.75 mm to form a smooth cylindrical channel with an inner diameter of 13.4 mm. formed. After the resin composition is cured, the corrugated pipe is cut in the axial direction as shown in FIG. 2, and then stretched in the direction of arrow A-B (axial direction) as shown in FIG. 3 to obtain a cured resin product. caused distortion. The amount of strain in the state before tension shown in Figure 3 is assumed to be 0%, and the amount of strain in the state that becomes a straight pipe due to tension is
The same cold/heat cycling test as in Experimental Example 1 was conducted for each sample at each strain amount when the strain was set to 100%. As a result, the amount of distortion is 0%, 25%, 50%, 75% and
In all 100% samples, no abnormality such as resin peeling or cracking was observed even after 80 cycles. Experimental Example 3 (i) A JIS No. 2 dumbbell-shaped test piece similar to Experimental Example 1 was left for 50 days at a humidity of 90% and a temperature of 23°C, and then subjected to a tensile test in the same manner as Experimental Example 1. The Young's modulus had decreased by approximately 55% compared to the initial value. Further, no volume change occurred in the test piece after being left for 50 days. (ii) When a JIS No. 2 dumbbell-shaped test piece similar to Experimental Example 1 was left in an atmosphere with a benzene concentration of 1% for 50 days, the Young's modulus decreased by about 20% and the volume increased by only 1%. Experimental Example 4 (i) A sample with 100% strain obtained in the same manner as Experimental Example 2 was left under the same conditions as in Experimental Example 3 (i), and the adhesion between the resin and stainless steel was observed. , no abnormality was observed. (ii) A sample with 100% strain obtained in the same manner as Experimental Example 2 was left under the same conditions as in Experimental Example 3 (ii), and the adhesion between the resin and stainless steel was observed, but no abnormality was found. It was not recognized at all.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明樹脂組成物の冷熱サイクル条
件下における優れた耐久性を示すグラフ、第2図
及び第3図は、本願実験例で使用するステンレス
スチールコルゲート管及び該コルゲート管から得
られる試験用サンプルを示す斜面図である。
FIG. 1 is a graph showing the excellent durability of the resin composition of the present invention under thermal cycle conditions. FIG. 3 is a perspective view showing a test sample.

Claims (1)

【特許請求の範囲】 1 A. エポキシ樹脂45〜95重量%及び 一般式 (上式中x=1〜10、y=1〜10、z=1〜
10である) で示される分子量490〜580の末端カルボキシ
ル基ブタジエンアクリロニトリルコポリマー
55〜5重量% からなる主剤と B. 一般式 (式中m=1〜4、n=10〜20である) で示される分子量2000〜3000のポリブタジエ
ンオリゴマー15〜80%(主剤側当量に対し
て)及び 上記以外のアミン系硬化剤85〜20%(主
剤側当量に対して) からなる硬化剤 とからなることを特徴とするコルゲート管内面処
理用可撓性樹脂組成物。
[Claims] 1 A. Epoxy resin 45 to 95% by weight and general formula (In the above formula, x = 1 to 10, y = 1 to 10, z = 1 to
10) Butadiene acrylonitrile copolymer with a terminal carboxyl group and a molecular weight of 490 to 580
Main agent consisting of 55 to 5% by weight and B. General formula (In the formula, m = 1 to 4, n = 10 to 20) 15 to 80% (based on the equivalent weight on the main resin side) of a polybutadiene oligomer with a molecular weight of 2000 to 3000 and 85 to 20% of an amine curing agent other than the above A flexible resin composition for treating the inner surface of a corrugated pipe, comprising a curing agent of
JP21449482A 1982-12-07 1982-12-07 Flexible resin composition for treating inside of corrugated pipe Granted JPS59105016A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21449482A JPS59105016A (en) 1982-12-07 1982-12-07 Flexible resin composition for treating inside of corrugated pipe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21449482A JPS59105016A (en) 1982-12-07 1982-12-07 Flexible resin composition for treating inside of corrugated pipe

Publications (2)

Publication Number Publication Date
JPS59105016A JPS59105016A (en) 1984-06-18
JPH036930B2 true JPH036930B2 (en) 1991-01-31

Family

ID=16656631

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21449482A Granted JPS59105016A (en) 1982-12-07 1982-12-07 Flexible resin composition for treating inside of corrugated pipe

Country Status (1)

Country Link
JP (1) JPS59105016A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5109380B2 (en) * 2006-03-29 2012-12-26 日立化成工業株式会社 Polyamideimide resin, polyamideimide resin composition, paint, can or tube inner surface coating paint, and can or tube using this paint

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5730721A (en) * 1980-07-30 1982-02-19 Osaka Gas Co Ltd Epoxy resin lining material
JPS57108124A (en) * 1980-12-24 1982-07-06 Nitto Electric Ind Co Ltd Two-component epoxy resin composition

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5730721A (en) * 1980-07-30 1982-02-19 Osaka Gas Co Ltd Epoxy resin lining material
JPS57108124A (en) * 1980-12-24 1982-07-06 Nitto Electric Ind Co Ltd Two-component epoxy resin composition

Also Published As

Publication number Publication date
JPS59105016A (en) 1984-06-18

Similar Documents

Publication Publication Date Title
JP3294268B2 (en) Reactive hot melt adhesive
US4009224A (en) Epoxy resin powder including ethylene vinyl acetate
JP6440686B2 (en) Multiple accelerator systems for epoxy adhesives.
AU595768B2 (en) Rubber-modified epoxy adhesive compositions
JPH0441708B2 (en)
US5567782A (en) Bonding with polyepoxide-polyoxyalkylenemonoamines product
CA2145589A1 (en) Elastic epoxy resin/hardener system
US3847726A (en) Vibration-damping sheet metal laminates
JPS62179524A (en) Epoxy resin composition
US4661539A (en) Sag resistant two-component epoxy structural adhesive
MXPA97001950A (en) Ep adhesive composition
JPH036930B2 (en)
US3509230A (en) Thermosettable epoxy resin adhesive compositions containing flexibilizing amounts of a thermoplastic polymeric modifier based on a polymerized alkyl ester of acrylic acid
EP0675912A1 (en) Rapid cure thermosetting functional powder coatings
JPH02123184A (en) Self-adhesive for bonding of structure
JP3175338B2 (en) Vulcanized adhesive compound
JPH0488065A (en) Resin composition for primer
JPH1121430A (en) Liquid epoxy resin composition and repair and reinforcement of concrete structure
US4446176A (en) Fluoroelastomer film compositions containing phenoxy resins and method for the preparation thereof
JPS6136774B2 (en)
JPS594657A (en) Epoxy resin lining material for gas piping
JPS6339615B2 (en)
JPH0617448B2 (en) Low temperature curable epoxy resin composition
JP3354707B2 (en) Epoxy resin composition
JPH0320410B2 (en)