[go: up one dir, main page]

JPH036477B2 - - Google Patents

Info

Publication number
JPH036477B2
JPH036477B2 JP23680184A JP23680184A JPH036477B2 JP H036477 B2 JPH036477 B2 JP H036477B2 JP 23680184 A JP23680184 A JP 23680184A JP 23680184 A JP23680184 A JP 23680184A JP H036477 B2 JPH036477 B2 JP H036477B2
Authority
JP
Japan
Prior art keywords
iodine
radioactive iodine
treatment
liquid
stage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP23680184A
Other languages
Japanese (ja)
Other versions
JPS61116695A (en
Inventor
Kazunori Suzuki
Daisuke Taneda
Takeshi Tateishi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KAGAKU GIJUTSUCHO
Original Assignee
KAGAKU GIJUTSUCHO
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KAGAKU GIJUTSUCHO filed Critical KAGAKU GIJUTSUCHO
Priority to JP23680184A priority Critical patent/JPS61116695A/en
Publication of JPS61116695A publication Critical patent/JPS61116695A/en
Publication of JPH036477B2 publication Critical patent/JPH036477B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/44Processing the detected response signal, e.g. electronic circuits specially adapted therefor
    • G01N29/4463Signal correction, e.g. distance amplitude correction [DAC], distance gain size [DGS], noise filtering

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

(目的及び背景) 本発明は放射性ヨウ素を含有する水溶液、特に
使用済原子炉燃料の再処理工程より発生する放射
性ヨウ素含有廃液を処理して、大部分の廃液を放
射性ヨウ素が低減した透過液とし、ヨウ素が濃縮
した少量の濃縮液を分離する処理法に関するもの
である。 使用済燃料よりウラン、プラトニウムを回収す
る再処理施設では燃料体を切断、溶解した上、複
雑で長い化学分離処理を行うので、これにともな
つて大量のプロセス廃液が発生する。この廃液に
はヨウ素、特に長半減期の129Iが含まれている。
従来再処理工場から発生する低放射能レベルの廃
液は蒸発濃縮処理され、蒸発・凝縮した処理液は
一定の条件のもとで環境に放出され、一方濃縮液
はアスフアルト固化処理されている。 上記のプロセス廃液には放射性核種としてのヨ
ウ素核種、Ce核種、Ru核種、Cs核種等以外に、
核分裂性物質のU核種及びPu核種も微量ながら
含有されている。これまでの蒸発濃縮処理は一般
にPu核種の臨界問題等の安全性を確保するため
に処理液のPHが弱酸性〜中性領域で実施されてい
る。水中のヨウ素核種はアルカリ性領域ではイオ
ン状で不揮発性の化学形態になるが、弱酸性〜中
性では揮発性を持つ分子状ヨウ素になりやすい。
従つて中性〜弱酸性の廃水蒸発濃縮処理ではヨウ
素が水蒸気とともに揮発し、凝縮液側に移行する
ために放射性ヨウ素を水から効果的に分離するこ
とができない。 このような欠点を補うため銀吸着活性炭を使用
した吸着処理法が紹介されている(特開昭58−
156898)。この処理法は常温、常圧で運転するの
で蒸発処理より省エネルギー的であるが、ヨウ素
の濃度が低い場合に銀の使用量が比較的多いこ
と、また使用済活性炭が多量に発生し、その処理
が難しいことなどの難点がある。 近年放射性廃液処理に関しては逆浸透膜処理技
術が広く用いられてきている。本発明者等は放射
性ヨウ素の除去を目的としてその技術について研
究した。その結果放射性ヨウ素の除去効率がヨウ
素の化学形態に大きく依存することを見出し、イ
オン状の化学形態では効率よく除去できるが、分
子状ヨウ素は除去が難しいことがわかつた。 そこで本発明者らは上記のような状況に鑑み、
省エネルギー的な常温処理で、かつ2次廃棄物量
が極力少なく、さらに放出する処理液中の放射性
ヨウ素量を充分低減する処理法について鋭意研究
を行なつた結果本発明を完結するに至つた。 (発明の構成) 即ち本発明は、放射性ヨウ素を含有する水溶液
に還元剤を添加した後逆浸透膜装置で処理し、放
射性ヨウ素量が低減した透過液とそれが増加した
濃縮液とに分離することによりなる。 本発明において放射性ヨウ素を含有する水溶液
に添加する還元剤は、亜硫酸、亜硫酸塩、ヒドラ
ジン(含水物、硫酸塩)が適当である。また添加
処理時のPHは4〜7の弱酸性〜中性領域が適して
いる。 還元剤の添加量は、原理的には水溶液中に存在
するヨウ素の化学当量より過剰であればよいが、
好ましくは2〜10倍当量とするのがよい。 本発明において使用する逆浸透膜装置は、市販
されている逆浸透膜で構成されたモジユールが使
用できる。なかでも好ましい逆浸透膜は、酢酸セ
ルロース系逆浸透膜、PBIL逆浸透膜などである。 モジユールの構造は、チユーブラ型、スパイラ
ル型、ホローフアイバー型、リボン型モジユール
などが使用でき、特に1モジユール当りの膜面積
が大きいホローフアイバー型モジユールが好まし
い。 本発明の処理法を実施する場合、逆浸透膜装置
を2段以上を用いた多段システムとして組み立て
る方がヨウ素の分離が効果的である。その1例と
して3段の場合を添付図面により説明する。 第1図において記号1,2,3はそれぞれ第1
段、第2段、第3段の逆浸透膜装置のモジユール
である。還元剤を添加された放射性ヨウ素含有水
溶液は加圧されて原料供給ライン4から第1段の
モジユール1に供給され、ヨウ素の低減した透過
液はライン11から、そしてヨウ素の増加した濃
縮液はライン12から取り出される。 ライン11から取り出された第1段の透過液は
第2段のモジユール2に供給され、第1段の透過
液よりもさらにヨウ素が低減した透過液がライン
21から取り出される。一方ライン22から取り
出された第2段の濃縮液は原料供給ライン4に循
環されて第1段のモジユールで再度処理される。 またライン12から取り出された第1段の濃縮
液は第3段のモジユール3に供給され、第1段の
濃縮液よりも更にヨウ素の増加した濃縮液がライ
ン32から取り出され、別の処理系、例えばアス
フアルト固化処理系等に移送される。ライン31
から取り出された第3段の透過液は原料供給ライ
ン4に循環されて第1段のモジユールで再度処理
される。このような3段処理を行う場合には、供
給廃水の約90%を処理液とし、そのヨウ素濃度を
供給廃水の1/50〜1/100にすることが可能である。 以上はシステムの基本的原理を説明したもので
あつて、第1段の濃縮液中の塩類濃度が十分高い
場合にはそのままアスフアルト処理を行う場合も
あり、また第2段の透過液でも放射性ヨウ素濃度
がまだ高い場合にはさらに別のモジユールで処理
する場合もある。 本発明は、従来の蒸発濃縮処理法の欠点である
Puの臨界制限等による廃液PHの制約のために放
射性ヨウ素の十分な濃縮ができないことなどの問
題をすべて解決する処理法を提供するものであ
り、常温、弱酸性〜中性領域で処理でき、環境に
放出処理が許容される程度に放射性ヨウ素量を低
減する処理方法を実現たものである。さらに本発
明に必要なエネルギーは水溶液の加圧に要するも
のだけなので、蒸発濃縮処理に比べて著しく省エ
ネルギーである等の利点も有する。 また本発明は、吸着処理と異なり、ヨウ素の処
理量が吸着剤の能力に応じた一定限度に制約され
たり、多量の2次廃棄物を発生することがない。 以下実施例に基づいて本発明の効果を示す。 実施例 1 10-3μCi/Ml129I濃度に相当する安定同位体ヨ
ウ素(I2)5ppm、NaNO3500ppmを含有する再
処理低レベル廃液の模擬液に亜硫酸ナトリウムを
10ppmの濃度になるように添加した。この添加量
はI2の約5倍当量に相当する。この前処理された
模擬液を、50Kg/cm2に加圧し、酢酸セルロース半
透膜(東洋紡HR−5255)のホローフアイバー型
モジユールで逆浸透処理した。半透膜を透過した
液量が供給液量の80%になるまで処理し、その時
の透過液及び濃縮液のヨウ素濃度を測定した。 比較例 1 亜硫酸ナトリウムを添加しない以外は、すべて
実施例1と同じ条件で実施した。 実施例1及び比較例1について、PHの異なる条
件下での透過液ヨウ素濃度及び除染係数の値を第
1表に示す。 実施例 2 亜硫酸ナトリウム10ppmの代りにヒドラジンを
2ppm添加した以外は、実施例1と同様な試験を
行つた。結果を第2表に示す。
(Purpose and Background) The present invention processes an aqueous solution containing radioactive iodine, particularly a radioactive iodine-containing waste liquid generated from the reprocessing process of spent nuclear fuel, and converts most of the waste liquid into a permeated liquid with reduced radioactive iodine. , relates to a treatment method for separating a small amount of concentrated liquid containing iodine. At reprocessing facilities that recover uranium and platonium from spent fuel, the fuel bodies are cut and melted, and then a complex and lengthy chemical separation process is performed, which generates a large amount of process waste liquid. This waste liquid contains iodine, especially 129I , which has a long half-life.
Conventionally, waste liquid with low radioactivity levels generated from reprocessing plants is evaporated and concentrated, and the evaporated and condensed treated liquid is released into the environment under certain conditions, while the concentrated liquid is solidified with asphalt. In addition to the radionuclides such as iodine, Ce, Ru, and Cs, the process waste liquid mentioned above contains
It also contains small amounts of U and Pu nuclides, which are fissile materials. Conventional evaporation concentration processing is generally carried out in a pH range of slightly acidic to neutral to ensure safety, such as the criticality problem of Pu nuclides. Iodine nuclides in water become ionic and non-volatile chemical forms in alkaline conditions, but tend to become volatile molecular iodine in weakly acidic to neutral conditions.
Therefore, in the evaporative concentration treatment of neutral to weakly acidic wastewater, iodine volatilizes together with water vapor and transfers to the condensate, making it impossible to effectively separate radioactive iodine from water. In order to compensate for these drawbacks, an adsorption treatment method using silver-adsorbing activated carbon has been introduced (Japanese Patent Application Laid-Open No. 1983-1999).
156898). This treatment method operates at room temperature and pressure, so it is more energy-saving than evaporation treatment. However, when the concentration of iodine is low, the amount of silver used is relatively large, and a large amount of used activated carbon is generated. There are some drawbacks, such as the difficulty of In recent years, reverse osmosis membrane treatment technology has been widely used for radioactive waste liquid treatment. The present inventors conducted research on the technology for the purpose of removing radioactive iodine. As a result, they found that the removal efficiency of radioactive iodine largely depends on the chemical form of iodine, and found that while ionic chemical forms can be efficiently removed, molecular iodine is difficult to remove. Therefore, in view of the above situation, the inventors of the present invention
As a result of intensive research into a treatment method that is energy-saving, room-temperature treatment, produces as little secondary waste as possible, and sufficiently reduces the amount of radioactive iodine in the emitted treatment solution, we have completed the present invention. (Structure of the Invention) That is, in the present invention, a reducing agent is added to an aqueous solution containing radioactive iodine, which is then treated with a reverse osmosis membrane device, and separated into a permeated liquid with a reduced amount of radioactive iodine and a concentrated liquid with an increased amount of radioactive iodine. It depends. Suitable reducing agents to be added to the aqueous solution containing radioactive iodine in the present invention include sulfurous acid, sulfites, and hydrazine (hydrates, sulfates). Further, the pH during the addition treatment is preferably in the weakly acidic to neutral range of 4 to 7. In principle, the amount of reducing agent added may be in excess of the chemical equivalent of iodine present in the aqueous solution;
Preferably, the amount is 2 to 10 times equivalent. As the reverse osmosis membrane device used in the present invention, a module composed of a commercially available reverse osmosis membrane can be used. Among these, preferred reverse osmosis membranes include cellulose acetate-based reverse osmosis membranes and PBIL reverse osmosis membranes. The structure of the module may be a tubular type, a spiral type, a hollow fiber type module, a ribbon type module, etc., and a hollow fiber type module having a large membrane area per module is particularly preferred. When implementing the treatment method of the present invention, it is more effective to separate iodine by assembling the reverse osmosis membrane device as a multi-stage system using two or more stages. As an example, a case of three stages will be explained with reference to the accompanying drawings. In Figure 1, symbols 1, 2, and 3 are the first
This is a module for a stage, second stage, and third stage reverse osmosis membrane device. The radioactive iodine-containing aqueous solution to which a reducing agent has been added is pressurized and supplied to the first stage module 1 from the raw material supply line 4, the permeate with reduced iodine is sent from the line 11, and the concentrated liquid with increased iodine is sent to the line 1. It is taken out from 12. The first-stage permeate taken out from the line 11 is supplied to the second-stage module 2, and the permeate containing even less iodine than the first-stage permeate is taken out from the line 21. On the other hand, the second-stage concentrate taken out from the line 22 is circulated to the raw material supply line 4 and processed again by the first-stage module. In addition, the first stage concentrate taken out from line 12 is supplied to the third stage module 3, and the concentrate containing even more iodine than the first stage concentrate is taken out from line 32 and sent to another processing system. , for example, to an asphalt solidification treatment system. line 31
The permeate from the third stage taken out is circulated to the raw material supply line 4 and processed again by the first stage module. When performing such three-stage treatment, it is possible to use approximately 90% of the supplied wastewater as a treatment liquid, and to reduce the iodine concentration to 1/50 to 1/100 of that of the supplied wastewater. The above is an explanation of the basic principle of the system; if the concentration of salts in the concentrated liquid in the first stage is high enough, asphalt treatment may be performed as is, and the permeated liquid in the second stage may also contain radioactive iodine. If the concentration is still high, further treatment may be performed with another module. The present invention overcomes the drawbacks of conventional evaporative concentration treatment methods.
It provides a treatment method that solves all problems such as the inability to sufficiently concentrate radioactive iodine due to restrictions on waste liquid PH due to Pu criticality limitations, etc. It can be treated at room temperature in a weakly acidic to neutral range, This method realizes a treatment method that reduces the amount of radioactive iodine to an extent that allows release into the environment. Furthermore, since the energy required for the present invention is only that required for pressurizing the aqueous solution, it also has advantages such as significant energy savings compared to evaporative concentration treatment. Furthermore, unlike adsorption treatment, the present invention does not limit the amount of iodine treated to a certain limit depending on the capacity of the adsorbent, and does not generate a large amount of secondary waste. The effects of the present invention will be described below based on Examples. Example 1 Sodium sulfite was added to a simulated reprocessing low-level waste liquid containing 5 ppm of stable isotope iodine (I 2 ) corresponding to a concentration of 10 -3 μCi/Ml 129 I and 500 ppm of NaNO 3
It was added to a concentration of 10 ppm. This amount added corresponds to about 5 times the equivalent of I 2 . This pretreated simulated liquid was pressurized to 50 kg/cm 2 and subjected to reverse osmosis treatment using a hollow fiber type module of a cellulose acetate semipermeable membrane (Toyobo HR-5255). The treatment was continued until the amount of liquid that permeated through the semipermeable membrane became 80% of the amount of the supplied liquid, and the iodine concentrations of the permeated liquid and concentrated liquid at that time were measured. Comparative Example 1 All experiments were carried out under the same conditions as in Example 1 except that sodium sulfite was not added. Table 1 shows the iodine concentration and decontamination coefficient values of the permeate under different pH conditions for Example 1 and Comparative Example 1. Example 2 Hydrazine instead of 10 ppm sodium sulfite
The same test as in Example 1 was conducted except that 2 ppm was added. The results are shown in Table 2.

【表】 供給液中の濃度
除染係数(DF)=
[Table] Concentration in supply liquid Decontamination factor (DF) =

Claims (1)

【特許請求の範囲】 1 放射性ヨウ素を含有する水溶液に還元剤を添
加した後逆浸透膜装置で処理し、放射性ヨウ素量
が低減した透過液とそれが増加した濃縮液とに分
離することよりなる放射性ヨウ素含有水溶液の処
理法。 2 還元剤として亜硫酸ナトリウム又はヒドラジ
ンを使用することよりなる特許請求の範囲第1項
記載の処理法。 3 逆浸透膜装置を2段以上使用することよりな
る特許請求の範囲第1項又は第2項記載の処理
法。
[Claims] 1. A reducing agent is added to an aqueous solution containing radioactive iodine, which is then treated with a reverse osmosis membrane device, and separated into a permeated liquid with a reduced amount of radioactive iodine and a concentrated liquid with an increased amount of radioactive iodine. A method for treating aqueous solutions containing radioactive iodine. 2. The treatment method according to claim 1, which comprises using sodium sulfite or hydrazine as a reducing agent. 3. The treatment method according to claim 1 or 2, which comprises using two or more stages of reverse osmosis membrane devices.
JP23680184A 1984-11-12 1984-11-12 Treatment method for aqueous solutions containing radioactive iodine Granted JPS61116695A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23680184A JPS61116695A (en) 1984-11-12 1984-11-12 Treatment method for aqueous solutions containing radioactive iodine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23680184A JPS61116695A (en) 1984-11-12 1984-11-12 Treatment method for aqueous solutions containing radioactive iodine

Publications (2)

Publication Number Publication Date
JPS61116695A JPS61116695A (en) 1986-06-04
JPH036477B2 true JPH036477B2 (en) 1991-01-30

Family

ID=17005986

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23680184A Granted JPS61116695A (en) 1984-11-12 1984-11-12 Treatment method for aqueous solutions containing radioactive iodine

Country Status (1)

Country Link
JP (1) JPS61116695A (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63205105A (en) * 1987-02-20 1988-08-24 Nitto Electric Ind Co Ltd Concentration of aqueous solution of low molecular weight organic compound by means of membrane
JP2540401B2 (en) * 1991-11-05 1996-10-02 動力炉・核燃料開発事業団 Method for precipitating and separating radioactive iodine compounds
JPH0631271A (en) * 1992-07-16 1994-02-08 Japan Organo Co Ltd Film treatment device
WO2012144384A1 (en) * 2011-04-21 2012-10-26 東レ株式会社 Method for purifying water containing radioactive halogen, process for producing filtrate water, and device for purifying water containing radioactive halogen
JP5712107B2 (en) * 2011-10-27 2015-05-07 株式会社神鋼環境ソリューション Water treatment method and water treatment equipment
JP2014020962A (en) * 2012-07-19 2014-02-03 Hitachi-Ge Nuclear Energy Ltd Radioactive wastewater treatment method and treatment device for the same
CN106448787B (en) * 2014-01-09 2018-10-02 清华大学 A kind of method and apparatus of Spent Radioactive water process

Also Published As

Publication number Publication date
JPS61116695A (en) 1986-06-04

Similar Documents

Publication Publication Date Title
Haefner Methods of gas phase capture of iodine from fuel reprocessing off-gas: a literature survey
US4275045A (en) Method of extraction, trapping and storage of radioactive iodine contained in irradiated nuclear fuels
KR102416164B1 (en) In particular a method for producing an iodine radioisotope fraction of I-131, in particular an iodine radioisotope fraction of I-131
JPH036477B2 (en)
JPH0125818B2 (en)
CA1239799A (en) Process for the separation of large amounts of uranium from small amounts of radioactive fission products, which are present in basic, aqueous carbonate containing solutions
DE3634180A1 (en) Process for recovering boric-acid solutions that can be re-used in nuclear power stations from radioactive wastes and solutions arising in nuclear power stations
JPH0319520B2 (en)
JP5845478B2 (en) Method and apparatus for treating radioactive material-containing wastewater
JPH0634891B2 (en) Adsorption property
US5252258A (en) Method of recovering and storing radioactive iodine by freeze vacuum drying process
US4206048A (en) Process for purification of contaminated water
Paviet-Hartmann et al. Treatment of gaseous effluents issued from recycling–A review of the current practices and prospective improvements
JP2002031697A (en) Method for treating radioactive waste liquid
US4526658A (en) Method for improving ruthenium decontamination efficiency in nitric acid evaporation treatment
USH808H (en) Removal of I, Rn, Xe and Kr from off gas streams using PTFE membranes
JPS61254899A (en) Method of processing radioactive ion exchange resin
JPS5852199B2 (en) How to use trilithium
RU2112289C1 (en) Method for recovery of liquid radioactive wastes
JPS62110195A (en) Method of processing radioactive concentrated waste liquor
RU2817393C1 (en) Method of processing liquid radioactive wastes
JP2610453B2 (en) Concentration method of nitric acid waste liquid
JP3152982B2 (en) Method for removing ruthenium contained in uranium-containing solution
RU2817393C9 (en) Method of processing liquid radioactive wastes
JP2005049173A (en) Processing method for radioactive ion-exchange resin and processing apparatus thereby

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term