[go: up one dir, main page]

JPH0361898B2 - - Google Patents

Info

Publication number
JPH0361898B2
JPH0361898B2 JP21089783A JP21089783A JPH0361898B2 JP H0361898 B2 JPH0361898 B2 JP H0361898B2 JP 21089783 A JP21089783 A JP 21089783A JP 21089783 A JP21089783 A JP 21089783A JP H0361898 B2 JPH0361898 B2 JP H0361898B2
Authority
JP
Japan
Prior art keywords
light
optical fiber
polarization
wavelength
birefringence
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP21089783A
Other languages
Japanese (ja)
Other versions
JPS60104236A (en
Inventor
Yasuyuki Kato
Yoshio Kashima
Ryosuke Arioka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP21089783A priority Critical patent/JPS60104236A/en
Publication of JPS60104236A publication Critical patent/JPS60104236A/en
Publication of JPH0361898B2 publication Critical patent/JPH0361898B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M11/00Testing of optical apparatus; Testing structures by optical methods not otherwise provided for
    • G01M11/30Testing of optical devices, constituted by fibre optics or optical waveguides
    • G01M11/31Testing of optical devices, constituted by fibre optics or optical waveguides with a light emitter and a light receiver being disposed at the same side of a fibre or waveguide end-face, e.g. reflectometers
    • G01M11/3181Reflectometers dealing with polarisation

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Testing Of Optical Devices Or Fibers (AREA)
  • Light Guides In General And Applications Therefor (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は偏波保持光フアイバの伝送特性を把握
するうえで、最も重要なモード複屈折率の測定方
法およびその装置に関するものである。 従来のこの種の測定法は、被測定偏波保持光フ
アイバを1mm程度ずつ切断しながら、その度に偏
光度を測定し、偏光度Pがフアイバの長さlの関
数として、式(1)で表わせることからビート長Lを
求め、モード複屈折率Bを求めていた。 P=|COS(2π・B・l/λ)| (1) なお式(1)において、λは測定波長であり、ビー
ト長Lとモード複屈折率Bとの関係は、 L・B=λ (2) となる。この測定法では、少なくともビート長を
精度良く求めるためには、数十回程度被測定偏波
保持光フアイバを切断する必要があり、1mm程度
の長さを失敗なく切断してゆくのは非常に難しい
技術である。また切断の度に偏光度を測定しなけ
ればならず、作業性も悪い。 また1回のフアイバ切断でモード複屈折率を測
定するために、切断長ΔLに対する両モード間の
位相差を検出して測定する方法もある。 第1図はこの測定法の説明図であつて、光源1
から出た光は偏光子2によつて直線偏光され、被
測定用偏波保持光フアイバ3に入射される。この
とき、該光フアイバの複屈折軸に対し、45°の角
度で入射する。該光フアイバを伝搬した光は、フ
アイバの長さlおよびモード複屈折率Bによつて
適当な楕円偏波となつて出射する。この楕円偏波
光を1/4波長板4を通すことによつて直線偏光に
変え、この偏波面を検光子5を用いて、光パワー
メータ6で検出する。ここで、今、該光フアイバ
をわずかに切断し、この切断によつて、偏光子と
検光子の主軸の角度差φがφ′に変化したとする
と、モード複屈折率Bは、 B=2(φ−φ′)/KΔL (3) で与えられる。式(3)において、Kは2π/λであ
る。 この方法において、測定上重要なのは、ビート
長Lが未知な場合において、2ΔL>Lとなつてし
まうことがあり、やはり数回ΔLを変えて測定し
なければならないことである。 従つて、この方法においても前述の従来方法と
同様の測定上の困難さがあるほか、切断した光フ
アイバを元に戻す時、光フアイバにねじれが加わ
つたり、切断端面の不整によつて、φ′が変化して
しまい、正確な測定を行うには、かなりの熟練を
必要とする。 本発明はこれらの欠点を解決するために、被測
定フアイバの長さを変化させることなく、光源の
波長を変え、かつ反射を利用することによつて、
モード複屈折率を測定することを特徴とし、その
目的は測定時間の短縮と測定精度の向上にある。 第2図は本発明の一実施例の構成図であつて、
7は波長可変光源、8は平行光にするレンズ、9
は光チヨツパ、10は光検出器、11は集光レン
ズ、12は入射光と垂直な電界成分を有する反射
光、13は集光レンズ、14は偏光子(ロツチヨ
ンプリズム)2によつて直線偏光された入射光お
よび偏波保持光フアイバ3から反射して来た光、
15は平行光にされた光源からの光、16は光強
度信号、17は光チヨツパからの同期信号、18
はロツクンインアンプ、19はレコーダである。 第2図の動作はまず、波長可変光源7からの光
をレンズ8で平行光にし、これを光チヨツパ9を
用いて断続光とする。光チヨツパー9を用いる理
由は、検出光のレベルが微弱な場合にS/N比を
改善し、測定精度を向上させるためである。さ
て、平行光は偏光子(ロツシヨンプリズム)2に
よつて直線偏光され、集光レンズ13を通つて被
測定用偏波保持光フアイバ3に入射される。集光
レンズ13の端面および該光フアイバ3の入射端
で反射する光は、偏波面が入射光と同じであるの
で、偏光子2をそのまま通過するが、該光フアイ
バ3の出射端で反射してきた光は楕円偏波となる
ので、入射光と垂直な電界成分を有することにな
る。この反射光は偏光子2も通る時、光路を偏向
され、光検出器10に導かれる。もし該光フアイ
バ3の複屈折軸と入射光の偏波面が一致している
と、反射光と同じ偏波面となり、検出光は最小と
なる。そこで入射光の偏波面は該光フアイバ3の
複屈折軸に対してほぼ45°の角度で入射し、検出
器の受光、パワーが最大となるようにする。 一方、該光フアイバの長さが偶然に伝搬モード
間のビート長Lの1/2の整数倍になつている時、
該光フアイバ3から反射して来る光も常に直線偏
波となることがある。そこでこの測定法では、波
長可変光源7として、ハロゲンランプと分光器を
使用し、光源7のスペクトル幅も分光器のスリツ
トを変化させることによつて変えることができる
ようにし、前記の入射角設定の際には、光源7の
スペクトル幅を拡げ、入射光の偏波面が偏波保持
光フアイバ3の複屈折軸に一致している時以外で
該光フアイバ3の出射端からの反射光が直線偏波
にならないようにしている。従つて検出器10で
の受光パワーが最大となる該光フアイバ3の複屈
折軸の回転位置が入射光の偏波面に対して、ほぼ
45°となる。 次に、光源7のスペクトル幅を狭くし、波長を
変えて、その時の受光パワーをロツクインアンプ
18で同期検波し、レコーダ19で記録する。 第3図は第2図に示す測定系を用いて測定され
た受光パワーの波長に対する変化である。まず被
測定光フアイバは波長1.3μm帯用に製造されたも
のであるので、1.3μm付近の受光パワーの変化を
読み取ると、第3図において、λA=1.30054μm、
λB=1.30374μmとなる。さらにこの時のフアイバ
の長さは1.001mである。第3図の測定結果より
被測定フアイバのモード複屈折率Bを求めるには
以下の計算を用いる。 偏波保持光フアイバのビート長をLb、フアイ
バの長さをl、受光パワーが最低となる波長を
λA、λAの長波長側のとなりの最低部の波長をλB
とすると、次式の関係が得られる。 nLb(λA)=2l、(n−1)Lb(λB)=2l (4) 式(4)は、偏波保持光フアイバを往復する光路が
ビート長の整数倍になる波長において、入射光の
偏波面と反射光の偏波面が一致し、受光パワーが
最小になることを意味している。さらに式(2)の関
数から式(4)は、 nλA/B(λA)=2l、 (n−1)λB/B(λB)=2l (5) となり、 B(λA){λB−λAB(λB)/B(λA)}=λAλB
/2l(6) が得られる。一方、モード複屈折率Bは該光フア
イバの規格化周波数VがV>1.8なる条件では、
コア中心のモード複屈折率BSOの一致することか
ら、 BBSO=C(σX0−σy0) (V>1.8) (7) となり、コア中心における複屈折軸方向xとその
垂直方向yでの光弾性定数差Cと応力差(σX0
σy0)の積で表わされる。式(7)において波長依存
性を持つのはCであり、Cは次式で表わされる
(参考文献N.K.Sinha;“Normalised dispersion
of birefringence of quartz and stress optical
coefficient of fused silica and plate glass”、
Physics and Chemistry of Glasses、Vol.19、
No.4、Aug.1978)。 C(λ)=C(λ0)n(λ0)/n(λ)・λ2/λ0 2 ・(λ0 2−λ1 2)/(λ2−λ1 2)・(λ2−λ2 2)/
(λ0 2−λ2 2)(8) λ0=0.5461μm λ1=0.31215μm λ2=6.9μm C(λ0)−3.489868×10-5mm2/Kg・w n(λ)=〔0.6961663λ2/λ2−(0.0684043)2+0.407
9426λ2/λ2−(0.1162414)2 +0.8974794λ2/λ2−(9.896161)2+1〕1/2 (参考文献 I.H.malitson;“Interspecimen
Comparison of the Refractive Index of
Fused Silica”、Journal of the Optical
Society of America、Vol.55、No.10、
Oct.1965)。 従つて、式(7)と式(8)から
The present invention relates to a method and apparatus for measuring mode birefringence, which is the most important factor in understanding the transmission characteristics of polarization-maintaining optical fibers. In this conventional measurement method, the polarization-maintaining optical fiber to be measured is cut in 1 mm increments, and the degree of polarization is measured each time. Since it can be expressed as , the beat length L was determined, and the mode birefringence B was determined. P=|COS(2π・B・l/λ)| (1) In equation (1), λ is the measurement wavelength, and the relationship between the beat length L and the mode birefringence B is L・B=λ (2) becomes. With this measurement method, it is necessary to cut the polarization-maintaining optical fiber to be measured several dozen times in order to obtain at least the beat length with high accuracy, and it is extremely difficult to cut a length of about 1 mm without failure. This is a difficult technique. In addition, the degree of polarization must be measured every time cutting is performed, resulting in poor workability. Furthermore, in order to measure the mode birefringence by cutting the fiber once, there is also a method of detecting and measuring the phase difference between both modes with respect to the cutting length ΔL. FIG. 1 is an explanatory diagram of this measurement method, in which the light source 1
The light emitted from the polarizer 2 is linearly polarized by the polarizer 2, and is input to the polarization-maintaining optical fiber 3 to be measured. At this time, the light is incident at an angle of 45° to the birefringence axis of the optical fiber. The light propagated through the optical fiber becomes an appropriate elliptically polarized wave depending on the length l of the fiber and the mode birefringence B and is emitted. This elliptically polarized light is converted into linearly polarized light by passing through a quarter-wave plate 4, and the plane of polarization is detected by an optical power meter 6 using an analyzer 5. Now, if the optical fiber is cut slightly and the angular difference φ between the principal axes of the polarizer and analyzer changes to φ' due to this cutting, the mode birefringence B is B=2. It is given by (φ−φ′)/KΔL (3). In equation (3), K is 2π/λ. In this method, what is important in measurement is that when the beat length L is unknown, 2ΔL>L may hold, and it is necessary to measure by changing ΔL several times. Therefore, this method also has the same measurement difficulties as the conventional method described above, and when the cut optical fiber is put back together, the optical fiber may be twisted or the cut end surface may be irregular. φ' changes and requires considerable skill to make accurate measurements. The present invention solves these drawbacks by changing the wavelength of the light source and utilizing reflection without changing the length of the fiber to be measured.
It is characterized by measuring mode birefringence, and its purpose is to shorten measurement time and improve measurement accuracy. FIG. 2 is a configuration diagram of an embodiment of the present invention,
7 is a wavelength variable light source, 8 is a lens for parallelizing light, 9
is an optical chopper, 10 is a photodetector, 11 is a condensing lens, 12 is reflected light having an electric field component perpendicular to the incident light, 13 is a condensing lens, and 14 is a straight line by a polarizer (rotation prism) 2. polarized incident light and light reflected from the polarization-maintaining optical fiber 3;
15 is light from a parallel light source, 16 is a light intensity signal, 17 is a synchronization signal from an optical chopper, 18
is a lock-in amplifier, and 19 is a recorder. In the operation shown in FIG. 2, first, the light from the variable wavelength light source 7 is made into parallel light by the lens 8, and then made into intermittent light by using the optical chopper 9. The reason for using the optical chopper 9 is to improve the S/N ratio and improve measurement accuracy when the level of detection light is weak. Now, the parallel light is linearly polarized by a polarizer (rotation prism) 2, and is incident on the polarization-maintaining optical fiber 3 to be measured through a condenser lens 13. The light reflected at the end face of the condenser lens 13 and the input end of the optical fiber 3 has the same plane of polarization as the incident light, so it passes through the polarizer 2 as it is, but is reflected at the output end of the optical fiber 3. Since the light is elliptically polarized, it has an electric field component perpendicular to the incident light. When this reflected light also passes through the polarizer 2, its optical path is deflected and guided to the photodetector 10. If the birefringence axis of the optical fiber 3 matches the polarization plane of the incident light, the polarization plane will be the same as that of the reflected light, and the detected light will be minimum. Therefore, the polarization plane of the incident light is made to be incident at an angle of approximately 45° with respect to the birefringence axis of the optical fiber 3, so that the light reception and power of the detector are maximized. On the other hand, when the length of the optical fiber happens to be an integral multiple of 1/2 of the beat length L between propagation modes,
The light reflected from the optical fiber 3 may also always be linearly polarized. Therefore, in this measurement method, a halogen lamp and a spectrometer are used as the variable wavelength light source 7, and the spectral width of the light source 7 can also be changed by changing the slit of the spectrometer, and the incident angle can be set as described above. In this case, the spectral width of the light source 7 is expanded so that the reflected light from the output end of the optical fiber 3 is straight except when the polarization plane of the incident light coincides with the birefringence axis of the polarization-maintaining optical fiber 3. I try to avoid polarization. Therefore, the rotational position of the birefringence axis of the optical fiber 3 at which the received light power at the detector 10 is maximum is approximately equal to the polarization plane of the incident light.
It becomes 45°. Next, the spectral width of the light source 7 is narrowed and the wavelength is changed, and the received light power at that time is synchronously detected by the lock-in amplifier 18 and recorded by the recorder 19. FIG. 3 shows the change in received light power with respect to wavelength measured using the measurement system shown in FIG. 2. First, since the optical fiber to be measured was manufactured for a wavelength band of 1.3 μm, when reading the change in received light power around 1.3 μm, in Fig. 3, λ A = 1.30054 μm,
λ B =1.30374 μm. Furthermore, the length of the fiber at this time is 1.001 m. The following calculation is used to determine the mode birefringence B of the fiber to be measured from the measurement results shown in FIG. The beat length of the polarization-maintaining optical fiber is L b , the length of the fiber is l, the wavelength at which the received light power is the lowest is λ A , and the wavelength of the lowest part next to the long wavelength side of λ A is λ B
Then, the following relationship is obtained. nL bA ) = 2l, (n-1) L bB ) = 2l (4) Equation (4) is expressed as , which means that the polarization plane of the incident light and the polarization plane of the reflected light match, and the received light power is minimized. Furthermore, from the function of equation (2), equation (4) becomes nλ A /B (λ A ) = 2l, (n-1)λ B /B (λ B ) = 2l (5), and B (λ A ) {λ B −λ A B(λ B )/B(λ A )}=λ A λ B
/2l(6) is obtained. On the other hand, the mode birefringence B is under the condition that the normalized frequency V of the optical fiber is V>1.8.
Since the mode birefringence BSO at the center of the core matches, BBSO = C (σ The photoelastic constant difference C and the stress difference (σ X0
σ y0 ). In equation (7), C has wavelength dependence, and C is expressed by the following equation (Reference NKSinha; “Normalised dispersion
of birefringence of quartz and stress optical
coefficient of fused silica and plate glass”,
Physics and Chemistry of Glasses, Vol.19,
No. 4, Aug. 1978). C(λ)=C( λ0 )n( λ0 )/n( λ )・λ2 / λ02・( λ02 λ12 )/( λ2 λ12 )・( λ2 −λ 2 2 )/
0 2 −λ 2 2 )(8) λ 0 =0.5461μm λ 1 =0.31215μm λ 2 =6.9μm C(λ 0 )−3.489868×10 -5 mm 2 /Kg・w n(λ)=[ 0.6961663λ 22 −(0.0684043) 2 +0.407
9426λ 22 −(0.1162414) 2 +0.8974794λ 22 −(9.896161) 2 +1〕 1/2 (Reference IHmalitson; “Interspecimen
Comparison of the Refractive Index of
“Fused Silica”, Journal of the Optical
Society of America, Vol.55, No.10,
Oct.1965). Therefore, from equations (7) and (8),

【表】 が得られ、式(6)と式(9)より、 B(λA)=λAλB/2l・1/λB−δ・λA (10) モード複屈折率B(λ)B(λAとして、式(10)
のB(λA)からモード複屈折率を求めることがで
きる。ここにδはλAとλBにおける光弾性定数差
の比を表わす。 式(10)を用いて、第3図の測定に用いた偏波保持
光フアイバのモード複屈折率Bを求めると、B=
2.45×10-4となる。従来のフアイバ切断法を用い
て求めたモード複屈折率はB=2.2×10-4であり、
有効桁数および精度で、本発明の方法の方が優れ
ている。 なお、モード複屈折率は、コア形状による複屈
折率と応力による複屈折率の和として表わされる
が、コア形状の変化による複屈折率は、応力によ
る複屈折率に比較して、極めて小さいので上記の
計算では無視している。 一方、コア形状の変化による複屈折率が無視で
きない場合には、次のような計算法を用いる。第
3図のように対象とする波長λが (λA+λB)/2<λ<(λB+λC)/2となるよ
うに、測定波長λA、λB、λCをとる。まずλA〜λB
においてB(λA)=B(λB)=B1と仮定し、式(6)よ
りB1を求める。 B1=λA・λB/{2l(λB−λA)} (11) 同様にλB〜λCにおいて、B(λB)=B(λC)=B2
と仮定し、式(6)よりB2を求める。 B2=λB・λC/{2l(λC−λB)} (12) 式(11)と式(12)より、補間法を用いてモー
ド複屈折率B(λ)を求めることができる。 B(λ)=1/2l{2l−λA−λB/λC−λA (λBλC/λC−λB−λAλB/λB−λA)+λAλB
λB−λA}(13) このように、式(13)を用いることにより、コ
ア形状が円形でない偏波保持光フアイバのモード
複屈折率も求めることができる。 以上説明したように、本発明では被測定用偏波
保持光フアイバを切断することなく、波長を変え
るだけで、速やかに測定できる利点がある。また
従来の測定方法では1〜2桁の測定精度しか得ら
れなかつたのに対し、本発明では少なくとも3桁
の測定精度が得られる利点がある。
[Table] is obtained, and from equations (6) and (9), B (λ A ) = λ A λ B /2l・1/λ B −δ・λ A (10) Mode birefringence B (λ )B( λA , equation (10)
The mode birefringence can be determined from B(λ A ). Here, δ represents the ratio of the difference in photoelastic constants between λ A and λ B. Using equation (10) to find the mode birefringence B of the polarization-maintaining optical fiber used in the measurements in Figure 3, B=
It becomes 2.45×10 -4 . The mode birefringence determined using the conventional fiber cutting method is B = 2.2 × 10 -4 ,
The method of the present invention is superior in terms of number of significant digits and accuracy. Note that the mode birefringence is expressed as the sum of the birefringence due to core shape and the birefringence due to stress, but the birefringence due to changes in core shape is extremely small compared to the birefringence due to stress. It is ignored in the above calculation. On the other hand, when the birefringence due to changes in core shape cannot be ignored, the following calculation method is used. Measurement wavelengths λ A , λ B , and λ C are taken so that the target wavelength λ satisfies (λ A +λ B )/2<λ<( λ BC )/2 as shown in FIG. First, λ A ~ λ B
Assuming that B(λ A )=B(λ B )=B 1 , B 1 is obtained from equation (6). B 1 = λ A・λ B / {2l (λ B − λ A )} (11) Similarly, in λ B to λ C , B (λ B ) = B (λ C ) = B 2
Assuming that, B 2 is obtained from equation (6). B 2 = λ B・λ C / {2l (λ C − λ B )} (12) From equations (11) and (12), the mode birefringence B(λ) can be found using the interpolation method. can. B(λ)=1/2l{2l−λ A −λ BC −λ AB λ CC −λ B −λ A λ BB −λ A )+λ A λ B /
λ B −λ A } (13) In this way, by using equation (13), the mode birefringence of a polarization-maintaining optical fiber whose core shape is not circular can also be determined. As explained above, the present invention has the advantage that measurement can be performed quickly by simply changing the wavelength without cutting the polarization-maintaining optical fiber to be measured. Furthermore, while the conventional measuring method could only provide a measurement accuracy of 1 to 2 digits, the present invention has the advantage of obtaining a measurement accuracy of at least 3 digits.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来のモード複屈折率の測定方法の説
明図、第2図は本発明の一実施例の構成図、第3
図は第2図に示す測定系を用いて測定された受光
パワーの波長に対する変化を示す図である。 1……光源、2……偏光子、3……偏波保持光
フアイバ、4……1/4波長板、5……検光子、6
……光パワーメータ、7……波長可変光源、8…
…平行光にするレンズ、9……光チヨツパ、10
……光検出器、11……集光レンズ、12……入
射光と垂直な電界成分を有する反射光、13……
集光レンズ、14……偏光子2によつて直線偏光
された入射光および偏波保持光フアイバ3から反
射して来た光、15……平行光にされた光源から
の光、16……光強度信号、17……光チヨツパ
からの同期信号、18……ロツクインアンプ、1
9……レコーダ。
FIG. 1 is an explanatory diagram of a conventional method for measuring mode birefringence, FIG. 2 is a configuration diagram of an embodiment of the present invention, and FIG.
This figure is a diagram showing changes in received light power with respect to wavelength measured using the measurement system shown in FIG. 2. 1... Light source, 2... Polarizer, 3... Polarization maintaining optical fiber, 4... 1/4 wavelength plate, 5... Analyzer, 6
...Optical power meter, 7...Wavelength variable light source, 8...
...Lens for parallel light, 9...Lens for parallel light, 10
...Photodetector, 11...Condensing lens, 12...Reflected light having an electric field component perpendicular to the incident light, 13...
Condensing lens, 14... Incident light linearly polarized by polarizer 2 and light reflected from polarization-maintaining optical fiber 3, 15... Light from a light source made into parallel light, 16... Optical intensity signal, 17... Synchronization signal from optical chopper, 18... Lock-in amplifier, 1
9...Recorder.

Claims (1)

【特許請求の範囲】 1 偏波保持光フアイバの波長λにおけるモード
複屈折率を測定する方法において、光源として波
長を変えることができる光源を用い、該光源から
の光を直線偏波光とし、該偏波光の偏波面に対し
て被測定用偏波保持光フアイバの複屈折軸を傾け
た状態で、該偏波光を該光フアイバに入射して伝
搬させ、該光フアイバの出射端で反射し、再び入
射端に戻つて来る光の該入射光と垂直な電界成分
を検出しながら、該光源の波長の変化に対する該
検出光のパワーの周期的な変化を測定し、 該光フアイバのコア形状の変化による複屈折率
を無視できる場合は、 目的とする波長λに最も近い該周期の谷に相当
する波長λAを測定し、次にλAから長波長側へ1
周期目の波長をλBとするとき、λAとλBにおける
光弾性定数差の比をδ、被測定用偏波保持光フア
イバの長さをl、λAにおけるモード複屈折率を
B(λA)として、次式 B(λ)B(λA)=λAλB/2l・1/λB−δ・λA より、モード複屈折率B(λ)を求めるか、また
は該光フアイバのコア形状の変化による複屈折率
を無視できない場合は、 該周期の谷に相当する波長を長波長側へ1周期
ごとに順次λA、λBおよびλCとし、(λA+λB)/2
<λ<(λB+λC)/2の関係が成立するように
λA、λB、λCを測定し、次式 B(λ)=1/2l{2λ−λA−λB/λC−λA (λBλC/λC−λB−λAλB/λB−λA)+λAλB
λB−λA} より、モード複屈折率B(λ)を求めることを特
徴とする偏波保持光フアイバのモード複屈折率測
定方法。 2 波長可変光源と、該光源からの光を被測定偏
波保持光フアイバに導入するレンズ系と、レンズ
系の途中に設けた前記光源からの光を直線偏光と
し、かつ被測定偏波保持フアイバからの反射光中
の入射光と垂直な電界成分をもつ光を空間的に分
離する偏光と、該分離された光を受光する光検出
器とからなることを特徴とする偏波保持光フアイ
バのモード複屈折率測定装置。
[Claims] 1. A method for measuring the modal birefringence at wavelength λ of a polarization-maintaining optical fiber, in which a light source capable of changing the wavelength is used as a light source, the light from the light source is made into linearly polarized light, and the With the birefringence axis of the polarization-maintaining optical fiber to be measured tilted with respect to the polarization plane of the polarized light, the polarized light is incident on the optical fiber and propagated, and reflected at the output end of the optical fiber, While detecting the electric field component perpendicular to the incident light of the light returning to the input end, periodic changes in the power of the detected light with respect to changes in the wavelength of the light source are measured, and the core shape of the optical fiber is determined. If the birefringence caused by changes can be ignored, measure the wavelength λ A corresponding to the valley of the period closest to the desired wavelength λ, and then move from λ A to the longer wavelength side by 1.
When the wavelength of the period is λ B , the ratio of the photoelastic constant difference between λ A and λ B is δ, the length of the polarization-maintaining optical fiber to be measured is l, and the mode birefringence at λ A is B ( λ A ), find the mode birefringence B(λ) from the following formula B(λ)B(λ A )=λ A λ B /2l・1/λ B −δ・λ A , or If the birefringence due to changes in the fiber core shape cannot be ignored, the wavelength corresponding to the trough of the period is set to λ A , λ B and λ C sequentially in each period to the longer wavelength side, and (λ A + λ B ) /2
λ A , λ B , and λ C are measured so that the relationship <λ < (λ B + λ C )/2 holds, and the following formula B(λ)=1/2l{2λ−λ A −λ BC −λ AB λ CC −λ B −λ A λ BB −λ A )+λ A λ B /
A method for measuring the mode birefringence of a polarization-maintaining optical fiber, characterized by determining the mode birefringence B(λ) from λ B −λ A }. 2. A wavelength tunable light source, a lens system that introduces the light from the light source into the polarization-maintaining optical fiber to be measured, and a lens system that converts the light from the light source into linearly polarized light provided in the middle of the lens system, and introduces the light from the light source into the polarization-maintaining optical fiber to be measured. A polarization-maintaining optical fiber comprising a polarization device that spatially separates light having an electric field component perpendicular to the incident light in reflected light from the fiber, and a photodetector that receives the separated light. Modal birefringence measuring device.
JP21089783A 1983-11-11 1983-11-11 Method and device for measuring mode double refractive index of polarized wave maintaining optical fiber Granted JPS60104236A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21089783A JPS60104236A (en) 1983-11-11 1983-11-11 Method and device for measuring mode double refractive index of polarized wave maintaining optical fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21089783A JPS60104236A (en) 1983-11-11 1983-11-11 Method and device for measuring mode double refractive index of polarized wave maintaining optical fiber

Publications (2)

Publication Number Publication Date
JPS60104236A JPS60104236A (en) 1985-06-08
JPH0361898B2 true JPH0361898B2 (en) 1991-09-24

Family

ID=16596886

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21089783A Granted JPS60104236A (en) 1983-11-11 1983-11-11 Method and device for measuring mode double refractive index of polarized wave maintaining optical fiber

Country Status (1)

Country Link
JP (1) JPS60104236A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4854348B2 (en) * 2006-03-22 2012-01-18 旭有機材工業株式会社 Fluid mixing device
JP4854350B2 (en) * 2006-03-22 2012-01-18 旭有機材工業株式会社 Fluid mixing device
JP4778923B2 (en) * 2007-03-27 2011-09-21 大阪有機化学工業株式会社 Mixed gas production equipment
CN109580182B (en) * 2018-12-18 2020-07-31 北京理工大学 Method and device for measuring refractive index of curved optical element based on Brewster's law

Also Published As

Publication number Publication date
JPS60104236A (en) 1985-06-08

Similar Documents

Publication Publication Date Title
US5255075A (en) Optical sensor
US4928005A (en) Multiple-point temperature sensor using optic fibers
JPH10339668A (en) Light wavemeter and light wavelength regulator
CN106813901B (en) The measuring device and its measurement method of optical device phase-delay quantity
EP0085978B1 (en) Method of and apparatus for measuring the thickness and the refractive index of transparent materials
JPH0361898B2 (en)
JPS6352694B2 (en)
JPH08271337A (en) Spectroscope
JP2555726Y2 (en) Air refractive index measuring device
US5946096A (en) Heterodyne interferometry method for measuring physical parameters of medium
Bock et al. Characterization of highly birefringent optical fibers using interferometric techniques
JPH0617851B2 (en) Method and apparatus for measuring mode birefringence of birefringent fiber
JPH0755571A (en) Plarization dispersion measuring instrument
JP2592254B2 (en) Measuring device for displacement and displacement speed
JPS6071936A (en) Method and device for measuring circular double refraction
JPS6227603A (en) Optical measuring apparatus of displacement
Picherit et al. Interferometric—polarimetric force and temperature sensor using high and low birefringence fibres with a short coherence length source
JPS60135732A (en) Temperature measuring device
JPS59634A (en) Temperature measuring method using optical fiber preserving polarized wave surface
KR860000389B1 (en) Electric field detector
SU847018A1 (en) Displacement meter
RU2303237C2 (en) Interferometer device for measuring optical thickness of a transparent layer or a gap
JPS62182627A (en) Photoelastic constant measurement method
Juszczak et al. Fiber heterodyne interferometry
JPH0875599A (en) Device for evaluating polarization characterisitics of polarization-preserving optical fiber