JPH0361169B2 - - Google Patents
Info
- Publication number
- JPH0361169B2 JPH0361169B2 JP58246068A JP24606883A JPH0361169B2 JP H0361169 B2 JPH0361169 B2 JP H0361169B2 JP 58246068 A JP58246068 A JP 58246068A JP 24606883 A JP24606883 A JP 24606883A JP H0361169 B2 JPH0361169 B2 JP H0361169B2
- Authority
- JP
- Japan
- Prior art keywords
- conductive film
- display
- electrode
- electrical resistance
- counter electrode
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/15—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on an electrochromic effect
- G02F1/153—Constructional details
- G02F1/155—Electrodes
Landscapes
- Physics & Mathematics (AREA)
- Nonlinear Science (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Devices For Indicating Variable Information By Combining Individual Elements (AREA)
- Electrochromic Elements, Electrophoresis, Or Variable Reflection Or Absorption Elements (AREA)
Description
産業上の利用分野
本発明は例えば、電卓、時計、各種の数字表
示、家電機器関係の各種表示等に利用されるエレ
クトロクロミツク表示素子に関するものである。
従来例の構成とその問題点
液晶と比較して、エレクトロクロミツクデイス
プレイは視角依存性がなく、色が明かるく鮮明で
あるという特徴がある。エレクトロクロミツク材
料としては、無機物としてはWO3がよく知られ
ている、有機物としてはビオローゲン、ピラゾリ
ン、アニトラキノン、スチリル系類似化合物の色
素などが知られている。
WO3は透明電極上に蒸着法などにより薄膜が
形成されて、対極間に電解液や誘電体膜などが設
けられることによつて素子が形成される。WO3
の実用上の問題としては、表示寿命のほかに、表
示セグメント間の色ムラ、着色の色の種類がブル
ー系の一色である。また、対極反応の安定化のた
めに、特に対極材料に工夫がいるし、反射板等も
素子の中に組み込まなければならないという問題
がある。ビオローゲン系などの有機色素は、還元
で発色し、それを酸化すると消色状態にもどる。
ビオローゲン系の色素の問題点としては、表示寿
命が短いということである。その理由は、発色状
態色素が溶媒に不溶化するため、消発色に応じ
て、色素の可溶と不溶の現象が伴うわけである
が、この可逆性に問題があるということである。
また、これらの酸化還元反応にはイオンが関与し
ているので、このイオン透明電極に悪影響を及ぼ
す場合があり、かつ消費電力が大きいという問題
がある。現状のエレクトロクロミツクデイスプレ
イが液晶と比較して劣る特性は表示寿命と応答速
度の特性である。
本出願人は前にエレクトロクロミツク材料とし
てスチリル類似化合物の一種である色素を用いた
エレクトロクロミツク表示素子を提案した。
そのエレクトロクロミツク表示素子の基本構造
を第1図にしめす。1はガラス基板、2は表示電
極、3は対向電極、4は封着材、5は封孔材、6
は表示可能物質をしめす。ガラス基板1は少くと
も一方が透明である材料であればよい。表示電極
2、及び対向電極3の電極材料としては、In2O3
やSnO2のような透明電極が用いられる。面積と
しては表示電極2の方が対向電極3より小さい。
封着材4、及び封孔材5としてはエポキシ樹脂や
低融点ガラス半田などが使われる。表示可能物質
6としては色素を非水系有機溶媒に支持電解質と
ともに溶解した溶液である。エレクトロクロミツ
ク材料としてはスチリル系類似化合物の色素を用
いた。
このようなエレクトロクロミツク表示素子にお
いて表示電極2と対向電極3間に表示電極2側が
+になるように直流電圧V1を印加した場合の電
流と着色濃度の電圧印加時間に対する変化を第2
図に示す。aは印加電圧、bは電流値、cは発色
濃度の時間的変化を示す。かかる構成の場合、素
子を流れる電流値iLが大きくなり、また着色濃度
DOの高いものが得られない欠点があつた。
発明の目的
本発明は上記従来の欠点を解決するもので、エ
レクトロクロミツク表示素子の表示寿命と応答速
度を改善し、表示品位の向上、表示電極パターン
の忠実再現を目的とするものである。
発明の構成
本発明は上記目的を達成するもので互いに対向
して設けられた二枚の透明基板の一方に表示電
極、他方に対向電極を設け、前記表示電極及び対
向電極がともに透明電導膜よりなり、前記対向電
極の、表示電極に対向する第1の領域を電導膜の
電気抵抗を106Ω/口以下、対向しない第2の領
域の電導膜の電気抵抗を第1の領域の電導膜の電
気抵抗より1桁以上低くしたことを特徴とするエ
レクトロクロミツク表示素子を提供するものであ
る。
実施例の説明
以下に本発明の実施例を図面を用いて説明す
る。第3図は本発明の一実施例であるエレクトロ
クロミツク表示素子の構造を示す。aは側面断面
図でありbは対向電極の平面図である。
図において1はガラス等の透明基板、2は表示
電極、3は対向電極、4は封着材、6は表示可能
物質であり、本実施例の特徴は表示電極2、対向
電極3がともに透明電極よりなり、対向電極3が
第1の電導膜7と第2の電導膜8のような電気抵
抗の異なる2種の電導膜から構成されている点に
ある。
表示素子内部に封入される表示可能物質6とし
ては次のような構成からなる溶液を用いた。
エレクトロクロミツク材料としては、スチリル
類似化合物の色素の一つである3,3−ジメチル
−2−(P−ジメチルアミノスチリル)−インドリ
ノ〔1,2−b〕−オキサゾリン(略称IRPDM)
を用い、これを支持電解質であるテトラブチルア
ンモニウムパークロレイトとともに濃度をそれぞ
れ0.03M/、0.3M/の濃度にプロピレンカ
ーボネートの溶液に溶解した。IRPDMは電気的
な刺激を与えられないうちは、無色状態である
が、電気的な刺激を与えると、550nm付近に光吸
収ピークをもつ赤色に着色する。
対向電極3の第1の電導膜7としてSnO2膜又
はIn2O3−SnO2(ITO)、第2の電導膜8として
In2O3−SnO2(ITO)を用い、特性の比較のため
に第1及び第2の電導膜7,8が同一のITO膜だ
けの場合も含めて次の3種の対極を用いて実験を
行つた。以下の第1表にその内容を示す。
この場合、第1の電導膜7の領域な表示電極2
と全く同様か少し大き目で、対向する位置にある
ものとする。表示電極2と対向電極3の面積比は
1/2以上はあるものとする。
INDUSTRIAL APPLICATION FIELD The present invention relates to an electrochromic display element used, for example, in calculators, watches, various numeric displays, various displays related to home appliances, and the like. Conventional configurations and their problems Compared to liquid crystal displays, electrochromic displays have no viewing angle dependence, and their colors are bright and clear. As electrochromic materials, WO 3 is well known as an inorganic material, and viologen, pyrazoline, anitraquinone, and dyes of styryl-based analog compounds are well known as organic materials. A thin film of WO 3 is formed on a transparent electrode by vapor deposition or the like, and an electrolytic solution, a dielectric film, etc. are provided between the counter electrodes to form an element. WO 3
Practical problems include the display life, color unevenness between display segments, and the type of coloring, which is a single blue color. In addition, in order to stabilize the counter electrode reaction, special efforts must be made in the material of the counter electrode, and there are also problems in that a reflector or the like must be incorporated into the element. Organic pigments such as viologen-based pigments develop color when reduced, and return to their decolored state when oxidized.
The problem with viologen dyes is that they have a short display life. The reason for this is that since the dye in the coloring state becomes insolubilized in the solvent, the phenomenon of soluble and insoluble dyes occurs depending on whether the color fades or develops, but there is a problem with the reversibility of this phenomenon.
Furthermore, since ions are involved in these redox reactions, there are problems in that they may have an adverse effect on the ionic transparent electrode and that power consumption is large. The characteristics that current electrochromic displays are inferior to liquid crystal displays are display life and response speed. The present applicant has previously proposed an electrochromic display element using a dye, which is a type of styryl-like compound, as an electrochromic material. The basic structure of the electrochromic display element is shown in Figure 1. 1 is a glass substrate, 2 is a display electrode, 3 is a counter electrode, 4 is a sealing material, 5 is a sealing material, 6
indicates a displayable substance. The glass substrate 1 may be made of a material in which at least one side is transparent. As the electrode material for the display electrode 2 and the counter electrode 3, In 2 O 3
A transparent electrode such as SnO 2 or SnO 2 is used. In terms of area, the display electrode 2 is smaller than the counter electrode 3.
As the sealing material 4 and the pore sealing material 5, epoxy resin, low melting point glass solder, etc. are used. The displayable substance 6 is a solution in which a dye is dissolved in a non-aqueous organic solvent together with a supporting electrolyte. As the electrochromic material, a styryl-based compound dye was used. In such an electrochromic display element, when a DC voltage V 1 is applied between the display electrode 2 and the counter electrode 3 so that the display electrode 2 side is positive, the changes in current and coloring density with respect to voltage application time are expressed as a second equation.
As shown in the figure. a represents the applied voltage, b represents the current value, and c represents the temporal change in color density. In such a configuration, the current value i L flowing through the element increases, and the coloring density decreases.
There was a drawback that high D O could not be obtained. OBJECTS OF THE INVENTION The present invention solves the above-mentioned conventional drawbacks, and aims to improve the display life and response speed of electrochromic display elements, improve display quality, and faithfully reproduce display electrode patterns. Structure of the Invention The present invention achieves the above-mentioned object by providing a display electrode on one side of two transparent substrates facing each other and a counter electrode on the other, wherein both the display electrode and the counter electrode are made of a transparent conductive film. The electrical resistance of the conductive film in the first region facing the display electrode of the counter electrode is equal to or less than 10 6 Ω/unit, and the electrical resistance of the conductive film in the second region not opposed to the conductive film in the first region is The object of the present invention is to provide an electrochromic display element characterized in that the electrical resistance is lower by one order of magnitude or more than the electrical resistance of . DESCRIPTION OF EMBODIMENTS Examples of the present invention will be described below with reference to the drawings. FIG. 3 shows the structure of an electrochromic display element which is an embodiment of the present invention. A is a side sectional view, and b is a plan view of the counter electrode. In the figure, 1 is a transparent substrate such as glass, 2 is a display electrode, 3 is a counter electrode, 4 is a sealing material, and 6 is a displayable substance.The feature of this embodiment is that both the display electrode 2 and the counter electrode 3 are transparent. The counter electrode 3 is composed of two types of conductive films having different electrical resistances, such as a first conductive film 7 and a second conductive film 8. A solution having the following configuration was used as the displayable substance 6 sealed inside the display element. As an electrochromic material, 3,3-dimethyl-2-(P-dimethylaminostyryl)-indolino[1,2-b]-oxazoline (abbreviated as IRPDM), which is one of the dyes of styryl-like compounds, is used.
This was dissolved in a propylene carbonate solution together with tetrabutylammonium perchlorate as a supporting electrolyte to a concentration of 0.03M/ and 0.3M/, respectively. IRPDM is colorless until electrical stimulation is applied, but when electrical stimulation is applied, it becomes colored red with a light absorption peak around 550 nm. SnO 2 film or In 2 O 3 −SnO 2 (ITO) is used as the first conductive film 7 of the counter electrode 3, and as the second conductive film 8
In 2 O 3 -SnO 2 (ITO) was used, and the following three types of counter electrodes were used to compare the characteristics, including the case where the first and second conductive films 7 and 8 were only the same ITO film. I conducted an experiment. The contents are shown in Table 1 below. In this case, the area of the first conductive film 7 is the display electrode 2.
It shall be exactly the same as, or slightly larger than, and located in the opposite position. It is assumed that the area ratio between the display electrode 2 and the counter electrode 3 is 1/2 or more.
【表】
これら3種の表示素子について、第2図に示した
直流電圧で1.3Vを3分間印加した後の、電流値iL
とい着色濃度は550nmにおける光吸収率を測定し
た。また、表示寿命については60℃において、
1.3Vを連続印加試験を行つて検討した。その特
性結果を第2表にしめす。[Table] For these three types of display elements, the current value i L after applying 1.3V for 3 minutes at the DC voltage shown in Figure 2
The color density was determined by measuring the light absorption rate at 550 nm. In addition, the indicated lifespan is at 60℃.
We performed a continuous application test of 1.3V and investigated. The characteristic results are shown in Table 2.
【表】
第1の電導膜7の電気抵抗が第2の電導膜8の
それと等しくROである従来の場合(No.1)から、
第1の電導膜7の電気抵抗をR1(No.2)、R2(No.
3)と高くすると、電流と着色濃度の時間特性は
第4図a,bのようになる。つまり、もれ電流iL
は第1の電導膜7の電気抵抗が高くなるに従い、
小さくなり、着色濃度は逆に大きくなる。表示素
子の特性としては、消費電力と着色コントラスト
から望ましい傾向となるわけである。第1の電導
膜7の電気抵抗が絶縁状態の場合が最も電流値が
小さく、着色濃度は高いものが得られるわけであ
るが、この場合表示パターンが表示電極パターン
で一義的に決まらず対向電極パターン(第1の電
導膜7のパターン)の影響がでてくる。従つて、
この影響を考えると、第1の電導膜7の電気抵抗
は106Ω/口より小さいものがよい。また第2表
に示すように第1電導膜7の電気抵抗が大きくな
るにつれて表示寿命も長くなる。
次に第2の実施例について述べる。
表示可能物質6としては第1の実施例と同じも
のを用いた。対向電極3しては、第3図における
第1の電導膜7としてはSnO2(10KΩ/口)のも
のを用いて、第2の電導膜8として電気抵抗の異
なる3種のITOを用いた。以下の第3表にその内
容を示す。[Table] From the conventional case (No. 1) in which the electrical resistance of the first conductive film 7 is equal to that of the second conductive film 8 and is R O ,
The electrical resistance of the first conductive film 7 is R 1 (No. 2) and R 2 (No. 2).
3), the time characteristics of the current and coloring density become as shown in FIGS. 4a and 4b. In other words, the leakage current i L
As the electrical resistance of the first conductive film 7 increases,
On the contrary, the coloring density becomes larger. The characteristics of the display element tend to be desirable in terms of power consumption and coloring contrast. When the electrical resistance of the first conductive film 7 is in an insulating state, the current value is the smallest and the coloring density is the highest. However, in this case, the display pattern is not uniquely determined by the display electrode pattern, but the counter electrode The influence of the pattern (the pattern of the first conductive film 7) appears. Therefore,
Considering this influence, the electrical resistance of the first conductive film 7 is preferably smaller than 10 6 Ω/hole. Furthermore, as shown in Table 2, as the electrical resistance of the first conductive film 7 increases, the display life also increases. Next, a second embodiment will be described. As the displayable substance 6, the same substance as in the first example was used. For the counter electrode 3, SnO 2 (10KΩ/hole) was used as the first conductive film 7 in FIG. 3, and three types of ITO with different electrical resistances were used as the second conductive film 8. . The contents are shown in Table 3 below.
【表】
この3種の表示素子に直流電圧1.3Vを印加した
場合の着色の立ち上がり特性を調べた。立り上が
り特性は飽和着色濃度の90%に達する時間で比較
した。その結果を第4表に示す。[Table] The coloring start-up characteristics were investigated when a DC voltage of 1.3 V was applied to these three types of display elements. The rise characteristics were compared based on the time it takes to reach 90% of the saturated color density. The results are shown in Table 4.
【表】
本実施例は第1の電導膜7の電気抵抗を一定にし
て、第2の電導膜8の電気抵抗をRO′(No.4)か
らR1′(No.5)、R2′(No.6)と低くしていつた場合
であるが、電流と着色濃度の時間特性はほとんど
変化しない。ただし、第5図a,bに示すように
応答特性に変化がでる。
すなわち第2の電導膜8の電気抵抗が低くなるに
従い、立ち上がり特性はよくなる。
第1と第2の電導膜の電気抵抗の差が一けたよ
り小さくなるに従い、飽和着色濃度が低くなつて
しまい、コントラストが低下する。従つて表示品
位を考えると、第1と第2の電導膜の電気抵抗は
一けた以上異なつていることが必要である。
この傾向は電圧の印加の正負を表示電極2と対
向電極3間で逆にして消色を行う場合も同様とな
る。
本発明の第3の実施例におけるエレクトロクロ
ミツク素子の側面断面図を第6図に示す。
本実施例は対向電極の構成を除いては第1及び
第2の実施例と同じ構成である。
本実施例の対向電極3は、電気抵抗の高い第1
の電導膜7を電気抵抗の低い第2の電導膜8に埋
め込まれた構成になつており、この場合にも前記
実施例とまつたく同様な特性がえられる。
これら実施例により電気的な着色効率が高くな
り、電圧印加時のもれ電流が小さくなり、電気化
学的な副反応(着色反応と直接関係のない反応)
が減少し、表示寿命も大幅に改善できる。
なお本発明の対向電極に使用される透明電極材
料としては、本実施例で示したSnO2、In2O3−
SnO2(ITO)の他に、In2O3、V2O5、TiO2、
InO2、MoO3、WO3などの金属酸化物などの一種
あるいは二種以上の複合物が用いられる。
発明の効果
以上要するに本発明は互いに対向して設けられ
た二枚の透明基板の一方に表示電極、他方に対向
に対向電極を設け、前記表示電極及び対向電極が
ともに透明電導膜よりなり、前記対向電極の、表
示電極に対向する第1の領域の電導膜の電気抵抗
106Ω/口以下、対向しない第2の領域の電導膜
の電気抵抗を第1の領域の電導膜の電気抵抗より
1桁以上低くしたことを特徴とするエレクトロク
ロミツク表示素子を提供するもので、表示寿命が
長く、消費電力の低減下が図れ、応答特性が改善
され、着色コントラストが良くなり、表示電極パ
ターンの忠実再現性が改善される利点を有する。[Table] In this embodiment, the electrical resistance of the first conductive film 7 is kept constant, and the electrical resistance of the second conductive film 8 is varied from R O ′ (No. 4) to R 1 ′ (No. 5), R 2 ' (No. 6), the time characteristics of the current and coloring density hardly change. However, as shown in FIGS. 5a and 5b, the response characteristics change. That is, as the electrical resistance of the second conductive film 8 becomes lower, the rise characteristics become better. As the difference in electrical resistance between the first and second conductive films becomes smaller than an order of magnitude, the saturated coloring density becomes lower and the contrast decreases. Therefore, in view of display quality, it is necessary that the electrical resistances of the first and second conductive films differ by at least one order of magnitude. This tendency holds true even when decoloring is performed by reversing the polarity of the applied voltage between the display electrode 2 and the counter electrode 3. A side sectional view of an electrochromic device according to a third embodiment of the present invention is shown in FIG. This example has the same configuration as the first and second examples except for the configuration of the counter electrode. The counter electrode 3 of this embodiment is a first electrode with high electrical resistance.
The second conductive film 7 is embedded in a second conductive film 8 having low electrical resistance, and in this case as well, the same characteristics as in the embodiment described above can be obtained. These examples increase electrical coloring efficiency, reduce leakage current when voltage is applied, and cause electrochemical side reactions (reactions not directly related to coloring reactions).
, and the display life can be greatly improved. Note that the transparent electrode materials used for the counter electrode of the present invention include SnO 2 and In 2 O 3 − shown in this example.
In addition to SnO 2 (ITO), In 2 O 3 , V 2 O 5 , TiO 2 ,
One or more composites of metal oxides such as InO 2 , MoO 3 , and WO 3 are used. Effects of the Invention In summary, the present invention provides a display electrode on one of two transparent substrates provided facing each other and a counter electrode on the other, both of the display electrode and the counter electrode being made of a transparent conductive film, and Electrical resistance of the conductive film in the first region of the counter electrode facing the display electrode
To provide an electrochromic display element, characterized in that the electrical resistance of the electrically conductive film in the non-opposing second region is lower than the electrical resistance of the electrically conductive film in the first region by at least one order of magnitude, 10 6 Ω/unit or less. This has the advantages of long display life, reduced power consumption, improved response characteristics, improved color contrast, and improved faithful reproducibility of display electrode patterns.
第1図は従来のエレクトロクロミツク表示素子
の基本構造を示す側面断面図、第2図a〜cは前
記表示素子における印加電圧、電流、発色濃度の
時間に対する変化を示す図、第3図aは本発明の
一実施例におけるエレクトロクロミツク表示素子
の側面断面図、第3図bは同表示素子の対向電極
の平面図、第4図a,bは同表示素子において第
2の電導膜の電気抵抗を一定にして、第1の電導
膜の電気抵抗を高くしていつた場合の電流と着色
濃度の時間特性を示す図、第5図a,bは同表示
素子において第1の電導膜の電気抵抗を一定にし
て、第2の電導膜の電気抵抗を低くしていつた場
合の電流と着色濃度の時間的特性を示す図、第6
図は本発明の他の実施例におけるエレクトロクロ
ミツク表示素子の側面断面図である。
1……透明基板、2……表示電極、3……対向
電極、4……封着材、6……表示可能物質、7…
…第1の電導膜、8……第2の電導膜。
Figure 1 is a side sectional view showing the basic structure of a conventional electrochromic display element, Figures 2 a to c are diagrams showing changes in applied voltage, current, and color density over time in the display element, and Figure 3 a. 3 is a side sectional view of an electrochromic display element according to an embodiment of the present invention, FIG. 3b is a plan view of a counter electrode of the same display element, and FIGS. Figures 5a and 5b show the time characteristics of current and coloring density when the electrical resistance of the first conductive film is increased while keeping the electrical resistance constant. Figure 6 shows the temporal characteristics of current and coloring density when the electrical resistance is kept constant and the electrical resistance of the second conductive film is lowered.
The figure is a side sectional view of an electrochromic display element according to another embodiment of the present invention. DESCRIPTION OF SYMBOLS 1...Transparent substrate, 2...Display electrode, 3...Counter electrode, 4...Sealing material, 6...Displayable substance, 7...
...First conductive film, 8...Second conductive film.
Claims (1)
一方に表示電極、他方に対向電極を設け、前記表
示電極及び対向電極がともに透明電導膜よりな
り、前記対向電極の、表示電極に対向する第1の
領域の電導膜の電気抵抗を106Ω/口以下、対向
しない第2の領域の電導膜の電気抵抗を第1の領
域の電導膜の電気抵抗より1桁以上低くしたこと
を特徴とするエレクトロクロミツク表示素子。1 A display electrode is provided on one of two transparent substrates provided facing each other, and a counter electrode is provided on the other, the display electrode and the counter electrode are both made of a transparent conductive film, and the display electrode of the counter electrode is opposed to the display electrode. The electrical resistance of the electrically conductive film in the first region is 10 6 Ω/mouth or less, and the electrical resistance of the electrically conductive film in the non-opposed second region is lower than the electrical resistance of the electrically conductive film in the first region by at least one order of magnitude. Electrochromic display element.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP58246068A JPS60135921A (en) | 1983-12-23 | 1983-12-23 | Electrochromic display device |
US06/647,490 US4660939A (en) | 1983-09-08 | 1984-09-05 | Electrochromic display device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP58246068A JPS60135921A (en) | 1983-12-23 | 1983-12-23 | Electrochromic display device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS60135921A JPS60135921A (en) | 1985-07-19 |
JPH0361169B2 true JPH0361169B2 (en) | 1991-09-19 |
Family
ID=17142983
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP58246068A Granted JPS60135921A (en) | 1983-09-08 | 1983-12-23 | Electrochromic display device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS60135921A (en) |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS58139129A (en) * | 1982-02-12 | 1983-08-18 | Matsushita Electric Ind Co Ltd | Electrochromic display element |
-
1983
- 1983-12-23 JP JP58246068A patent/JPS60135921A/en active Granted
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS58139129A (en) * | 1982-02-12 | 1983-08-18 | Matsushita Electric Ind Co Ltd | Electrochromic display element |
Also Published As
Publication number | Publication date |
---|---|
JPS60135921A (en) | 1985-07-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Bonhote et al. | Nanocrystalline electrochromic displays | |
US4752119A (en) | Electrochromic display devices | |
JPS59113422A (en) | Total solid-state electrochromic display | |
JPH0361169B2 (en) | ||
JPS6057320A (en) | Electrochromic display element | |
JPH0145895B2 (en) | ||
JP2910172B2 (en) | Electrochromic display device | |
JPS59219723A (en) | electrochromic display device | |
JPH0518737Y2 (en) | ||
JPH0462051B2 (en) | ||
JP4470451B2 (en) | Method for producing electrochemical dimmer and method for producing polymer electrolyte | |
JP3227762B2 (en) | Electrochromic display device | |
JPS60140216A (en) | Electrochromic display element | |
JPS63286826A (en) | Electrochromic display element | |
JPH0549969B2 (en) | ||
JPS59219775A (en) | Electrochromic display | |
JPH0361170B2 (en) | ||
JPH0361171B2 (en) | ||
JPS59219779A (en) | Electrochromic display | |
JPS6147934A (en) | electrochromic display device | |
KR980009422A (en) | Multicolor electrochromic composition and multicolor electrochromic device | |
JPS61147235A (en) | Electrochromic display element | |
JPS59219778A (en) | Electrochromic display | |
JPH0454209B2 (en) | ||
JPS6061727A (en) | Electrochromic display device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |