[go: up one dir, main page]

JPH0360916B2 - - Google Patents

Info

Publication number
JPH0360916B2
JPH0360916B2 JP58175479A JP17547983A JPH0360916B2 JP H0360916 B2 JPH0360916 B2 JP H0360916B2 JP 58175479 A JP58175479 A JP 58175479A JP 17547983 A JP17547983 A JP 17547983A JP H0360916 B2 JPH0360916 B2 JP H0360916B2
Authority
JP
Japan
Prior art keywords
target
sputtering
magnets
substrate
sputtering target
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58175479A
Other languages
Japanese (ja)
Other versions
JPS6067668A (en
Inventor
Tooru Takeuchi
Yasuhisa Sato
Katsuhiro Fujino
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP17547983A priority Critical patent/JPS6067668A/en
Publication of JPS6067668A publication Critical patent/JPS6067668A/en
Publication of JPH0360916B2 publication Critical patent/JPH0360916B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/34Gas-filled discharge tubes operating with cathodic sputtering
    • H01J37/3402Gas-filled discharge tubes operating with cathodic sputtering using supplementary magnetic fields
    • H01J37/3405Magnetron sputtering
    • H01J37/3408Planar magnetron sputtering

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Physical Vapour Deposition (AREA)
  • Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)

Description

【発明の詳細な説明】 (a) 発明の技術分野 本発明は改善された被着基板の表面に薄膜を形
成するスパツタリング装置に関する。
DETAILED DESCRIPTION OF THE INVENTION (a) Technical Field of the Invention The present invention relates to an improved sputtering apparatus for forming a thin film on the surface of a substrate.

(b) 従来技術と問題点 一般に、スパツタリング装置は陰極ターゲツト
(以下、ターゲツトと呼ぶ)にガスイオンを衝突
させることにより、ターゲツト材料を原子状にし
て陽極の被着基板面に付着堆積させ、面上に薄膜
を生成させるようにした装置である。
(b) Prior art and problems In general, sputtering equipment collides gas ions with a cathode target (hereinafter referred to as the target) to make the target material into atoms and deposit it on the surface of the substrate to which the anode is attached. This device is designed to generate a thin film on the top.

このようなスパツタリング装置は、例えば半導
体装置を製造する際に用いられており、アルミニ
ウム電極膜や絶縁膜の形成に必須の装置となつて
いる。そのわけは、スパツタ法で被着した膜が他
の方法の被着膜に比べて、均一な結晶粒の膜が得
られ、また合金膜の被着が容易であるなどのメリ
ツトがあるためで、特にアルミニウム電極膜の被
着には多用されている。且つインライン化(自動
化)の容易なことも、量産上から大きな利点とな
つている。
Such sputtering equipment is used, for example, when manufacturing semiconductor devices, and has become an essential equipment for forming aluminum electrode films and insulating films. This is because films deposited using the sputtering method have advantages over films deposited using other methods, such as a film with uniform crystal grains and ease of depositing alloy films. In particular, it is widely used for depositing aluminum electrode films. In addition, the ease of in-line (automation) is a major advantage in terms of mass production.

ところで、スパツタリング装置にも色々の型式
のものがあるが、半導体基板(半導体ウエハー)
に被膜を形成する場合は、プレーナ型スパツタリ
ング装置が用いられる。
By the way, there are various types of sputtering equipment, but they are suitable for semiconductor substrates (semiconductor wafers).
When forming a film on a surface, a planar sputtering device is used.

一方、半導体装置の進歩に伴つて半導体基板が
益々大口化されてくると、このようなスパツタリ
ング装置による被着膜の膜厚もバラツキが増加す
る。
On the other hand, as semiconductor substrates become increasingly larger with the advancement of semiconductor devices, the thickness of the film deposited by such a sputtering apparatus also increases.

ところで、装置全体が大型化するのを避けるた
めにウエハー1枚毎の処理を行なう傾向にある
が、通常の円板状ターゲツトを用いる場合、被着
基板が大きくなれば、陰陽両電極間の間隔を拡げ
ることによつて、被着膜厚の均一化を計る必要が
生じるが、これはスパツタリング装置を大型にす
る欠点があり、またターゲツトの使用効率も低下
する。
Incidentally, in order to avoid increasing the size of the entire device, there is a tendency to process each wafer individually, but when using a normal disc-shaped target, the larger the substrate to be deposited, the smaller the distance between the negative and positive electrodes. It is necessary to make the thickness of the deposited film uniform by widening the sputtering area, but this has the disadvantage of increasing the size of the sputtering apparatus and also reduces the efficiency of using the target.

(c) 発明の目的 本発明はこのような欠点を解消させて、コンパ
クトな形式の装置を構成し、且つ大きな被着基板
にも均一な膜厚の薄膜を形成することのできるス
パツタリング装置を提案するものである。
(c) Purpose of the Invention The present invention solves these drawbacks and proposes a sputtering device that is compact and capable of forming a thin film of uniform thickness even on a large substrate. It is something to do.

(d) 発明の構成 その目的は、スパツタリングターゲツト裏面側
に該スパツタリングターゲツトの中心部から周辺
部に向けて複数の磁石を配設し、該磁石のそれぞ
れに該スパツタリングターゲツトの裏面に対向す
るN極部及びS極部が設けられ、該スパツタリン
グターゲツトの中心部から周辺部に向かう方向で
隣り合う磁石は互いにN極部同士或いはS極部同
士が離隔対向するように配置し、該スパツタリン
グターゲツトの中心部から周辺部に向かう複数の
磁石に対応して該スパツタリングターゲツト表面
に複数のリング状の食刻領域が生じるように構成
したことを特徴とするスパツタリング装置によつ
て達成することができる。
(d) Structure of the invention The object of the invention is to arrange a plurality of magnets on the back side of the sputtering target from the center of the sputtering target toward the periphery, and to attach each of the magnets to the sputtering target. An N-pole portion and an S-pole portion are provided opposite to each other on the back surface, and adjacent magnets in the direction from the center to the periphery of the sputtering target are arranged such that the N-pole portions or the S-pole portions face each other and are separated from each other. A sputtering ring characterized in that a plurality of ring-shaped etched areas are formed on the surface of the sputtering target in correspondence with a plurality of magnets arranged from the center toward the periphery of the sputtering target. This can be achieved by a device.

(e) 発明の実施例 以下、図面を参照して実施例によつて詳細に説
明する。第1図は従来のスパツタ装置の一例の概
要断面図を図示しており、反応室1内において陽
極2側に被着基板3を保持し、これに平行に対向
して陰極4にターゲツト5を配置し、排気口6よ
り真空に排気して、ガス流入口7よりアルゴン
(Ar)ガスを流入する。その減圧度を10-1
10-3Torrとし、周波数13.56MHzの高周波電力8
を陰極4に印加し、被着基板3上にターゲツト材
料を被着する。その場合、ターゲツト裏面に1個
の磁石9を配設しており、そうすれば磁石の磁力
線によつて電極空間内の電子密度が高められ、そ
してAr+イオン密度が高まるので、スパツタ効率
が数倍に上がる。磁石9は例えば、第2図に示す
ようなリング状の永久磁石が使用される。このよ
うに、磁石9は生産性が向上して、スパツタリン
グ装置を極めて効率化する効果がある。
(e) Examples of the invention Hereinafter, examples will be described in detail with reference to the drawings. FIG. 1 shows a schematic sectional view of an example of a conventional sputtering apparatus, in which a substrate 3 to be deposited is held on the anode 2 side in a reaction chamber 1, and a target 5 is placed on a cathode 4 facing parallel to this. It is evacuated to vacuum through the exhaust port 6, and argon (Ar) gas is introduced through the gas inlet 7. The degree of pressure reduction is 10 -1 ~
10 -3 Torr, high frequency power of frequency 13.56MHz8
is applied to the cathode 4 to deposit the target material on the deposition substrate 3. In that case, one magnet 9 is placed on the back surface of the target, and the electron density in the electrode space is increased by the magnetic field lines of the magnet, and the Ar + ion density is increased, so the sputtering efficiency is increased by several points. It goes up twice. As the magnet 9, for example, a ring-shaped permanent magnet as shown in FIG. 2 is used. In this way, the magnet 9 has the effect of improving productivity and making the sputtering apparatus extremely efficient.

しかしながら、磁石9の存在は被着基板、ター
ゲツトが大きくなると被着膜の膜厚を不均一にし
易く、その状態を第3図で説明する。第3図は被
着基板3として4インチ径の半導体基板、ターゲ
ツト5として8インチ径のアルミニウム(Al)
板を用いて半導体基板上にアルミニウム膜を被着
させた例のデータで、横軸(x)は被着基板の中
心点からの距離、縦軸は膜厚を示し、同図aは被
着基板とターゲツトとの距離が40mm、同図bは60
mm、同図cは80mmの場合である。これより、被着
基板とターゲツトとの距離は60mmが最も適当であ
ることが判る。しかし、この装置では6インチの
ウエハーを均一に成長させることはできない。距
離が最も適切な同図bにおいても外周は被着膜厚
が薄くなる。従つて、更にターゲツトを大きく
し、被着基板とターゲツトとの間隙(距離)を更
に大きくしなければならないが、それはスパツタ
リング装置全体が大型化することになり、極めて
非効率的な装置になる。且つ、第4図に示すよう
にターゲツト5は裏面に磁石9を近接した表面部
分の食刻される部分の占める割合が小さくなつ
て、ターゲツトの使用効率が悪くなり、ターゲツ
トのランニングコストが高価になる。
However, the presence of the magnet 9 tends to make the thickness of the deposited film non-uniform when the substrate to be deposited or the target becomes large, and this situation will be explained with reference to FIG. Figure 3 shows a 4-inch diameter semiconductor substrate as the adherend substrate 3, and an 8-inch diameter aluminum (Al) as the target 5.
The data is an example of depositing an aluminum film on a semiconductor substrate using a plate. The horizontal axis (x) is the distance from the center of the substrate, the vertical axis is the film thickness, and a in the figure shows the deposit. The distance between the board and the target is 40mm, and the figure b is 60mm.
mm, and c in the figure is for 80 mm. From this, it can be seen that the most appropriate distance between the substrate and the target is 60 mm. However, this apparatus cannot uniformly grow a 6-inch wafer. Even in Figure b, where the distance is most appropriate, the thickness of the deposited film is thinner at the outer periphery. Therefore, it is necessary to further increase the size of the target and the gap (distance) between the target substrate and the target, but this results in an increase in the size of the entire sputtering apparatus, resulting in an extremely inefficient apparatus. In addition, as shown in FIG. 4, the ratio of the etched surface portion of the target 5 with the magnet 9 close to its back side decreases, resulting in poor target usage efficiency and increased target running costs. Become.

本発明はこのような欠点を取り除いたスパツタ
リング装置を提供するもので、第5図は本発明に
かかる一実施例としてターゲツトが直径が10イン
チのスパツタリング装置の概要断面図を示してい
る。第1図と同一部材には同一符号を付している
が、2個のリング状磁石11,12をターゲツト
5と同心円状に配置したものである。第6図は磁
石11,12の斜視図を示している。このスパツ
タリング装置によつて、第3図と同様の条件でア
ルミニウム膜を被着した実施例のデータを第7図
を示している。従来の装置では、最も適切な被着
基板とターゲツトとの距離、即ち最も均一な被着
膜が形成される間隙は90〜150mmとなる筈である
が、内側のリング状磁石11を設けたために、60
〜90mmの間隙とすることができる。そろデータを
第7図に示している。同図aは被着基板とターゲ
ツトとの距離が40mm、同図bは60mm、同図cは80
mm、同図dは100mmの場合であるが、距離60mmの
場合が最も均一な膜厚がえられ、距離が遠くなる
とかえつて分布が悪くなつている。
The present invention provides a sputtering apparatus that eliminates these drawbacks, and FIG. 5 shows a schematic sectional view of a sputtering apparatus in which the target has a diameter of 10 inches as an embodiment of the present invention. The same members as in FIG. 1 are given the same reference numerals, but two ring-shaped magnets 11 and 12 are arranged concentrically with the target 5. FIG. 6 shows a perspective view of the magnets 11 and 12. FIG. 7 shows data of an example in which an aluminum film was deposited using this sputtering apparatus under the same conditions as in FIG. 3. In conventional equipment, the most appropriate distance between the substrate and target, that is, the gap at which the most uniform deposited film is formed, is supposed to be 90 to 150 mm, but because the inner ring-shaped magnet 11 is provided, , 60
The gap can be ~90mm. The data is shown in Figure 7. In figure a, the distance between the adherend substrate and target is 40 mm, in figure b 60 mm, and in figure c 80 mm.
mm, Figure d shows the case of 100 mm, but the most uniform film thickness is obtained when the distance is 60 mm, and the distribution becomes worse as the distance increases.

このように、距離が近くて均一な膜厚がえられ
ることが、本発明の最大のメリツトであり、また
ターゲツトの使用効率も向上する。上記したよう
に、第1図に示すような1個のリング状磁石を用
いた従来装置では、両電極距離を90〜150mmとし
た時に均一な膜厚がえられるが、本発明にかかる
第5図に示すような2個のリング状磁石を用いた
装置では、両電極間の距離を60〜90mmとした時に
均一な膜厚がえられることが第7図より示されて
いる。
The greatest advantage of the present invention is that a uniform film thickness can be obtained due to the short distance, and the target usage efficiency is also improved. As mentioned above, in the conventional device using one ring-shaped magnet as shown in FIG. 1, a uniform film thickness can be obtained when the distance between the two electrodes is 90 to 150 mm. FIG. 7 shows that in a device using two ring-shaped magnets as shown in the figure, a uniform film thickness can be obtained when the distance between both electrodes is set to 60 to 90 mm.

且つ、ターゲツトは第8図に示すような状態で
複数の食刻領域(エロージヨンエリア)が形成さ
れて、平均的に摩耗するため、使用効率が向上す
る。
Further, the target is formed with a plurality of etched areas (erosion areas) in the state shown in FIG. 8, and is worn out evenly, so that the efficiency of use is improved.

更に、リング状磁石を2個だけでなく、個数を
増加すれば一層顕著な効果がある。また、リング
状磁石の代わりに第9図に示すようにターゲツト
中心点から二組の棒状磁石を放射状に並べても、
同様の効果がある。
Furthermore, if the number of ring-shaped magnets is increased instead of just two, a more significant effect can be obtained. Also, instead of ring magnets, two sets of bar magnets can be arranged radially from the center of the target as shown in Figure 9.
It has a similar effect.

(f) 発明の効果 以上の説明から明らかなように、本発明によれ
ば両電極間の距離を近くしても膜厚が均一化され
るために、スパツタリング装置が小型になつてス
パツタ効率が上がり、しかもターゲツトの使用効
率は良くなる。従つて、本発明にかかるスパツタ
リング装置は半導体製造の自動化工程に組み入れ
て、工程の高速処理に役立てることができる。
(f) Effects of the Invention As is clear from the above explanation, according to the present invention, the film thickness can be made uniform even if the distance between the two electrodes is shortened, so the sputtering device can be made smaller and the sputtering efficiency can be improved. Moreover, the efficiency of target usage improves. Therefore, the sputtering apparatus according to the present invention can be incorporated into an automated process of semiconductor manufacturing, and can be useful for high-speed processing of the process.

尚、上記例は高周波電源を用いたRFスパツタ
リング法で説明しているが、直流電源を用いたス
パツタリング法も同様であることはいうまでもな
い。
Note that although the above example is explained using an RF sputtering method using a high frequency power source, it goes without saying that a sputtering method using a DC power source is also similar.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来のスパツタ装置の概要断面図、第
2図はその磁石の斜視図、第3図は第1図に示す
装置によるデータ、第4図は従来のターゲツトの
使用後の断面図、第5図は本発明にかかるスパツ
タ装置の概要断面図、第6図はその磁石の斜視
図、第7図は第5図に示す装置によるデータ、第
8図は本発明にかかるターゲツトの使用後の断面
図、第9図は本発明にかかる他の磁石配列状態の
斜視図である。 図中、1は反応室、2は陽極、3は被着基板、
4は陰極、5はターゲツト、6は排気口、7はガ
ス流入口、8は高周波電力、9,11,12はタ
ーゲツトを示している。
Fig. 1 is a schematic sectional view of a conventional sputtering device, Fig. 2 is a perspective view of its magnet, Fig. 3 is data obtained from the device shown in Fig. 1, and Fig. 4 is a sectional view of a conventional target after use. FIG. 5 is a schematic sectional view of the sputtering device according to the present invention, FIG. 6 is a perspective view of its magnet, FIG. 7 is data obtained by the device shown in FIG. 5, and FIG. 8 is a diagram showing the target according to the present invention after use. FIG. 9 is a perspective view of another arrangement of magnets according to the present invention. In the figure, 1 is a reaction chamber, 2 is an anode, 3 is a substrate to be adhered to,
4 is a cathode, 5 is a target, 6 is an exhaust port, 7 is a gas inlet, 8 is a high frequency power, and 9, 11, and 12 are targets.

Claims (1)

【特許請求の範囲】 1 スパツタリングターゲツト裏面側に該スパツ
タリングターゲツトの中心部から周辺部に向けて
複数の磁石を配設し、 該磁石のそれぞれに該スパツタリングターゲツ
トの裏面に対向するN極部及びS極部が設けら
れ、 該スパツタリングターゲツトの中心部から周辺
部に向かう方向で隣り合う磁石は互いにN極部同
士或いはS極部同士が離隔対向するように配置
し、該スパツタリングターゲツトの中心部から周
辺部に向かう複数の磁石に対応して該スパツタリ
ングターゲツト表面に複数のリング状の食刻領域
が生じるように構成したことを特徴とするスパツ
タリング装置。
[Claims] 1. A plurality of magnets are arranged on the back side of the sputtering target from the center of the sputtering target toward the periphery, each of the magnets facing the back side of the sputtering target. N-pole portions and S-pole portions are provided, and adjacent magnets in the direction from the center to the peripheral portion of the sputtering target are arranged such that the N-pole portions or the S-pole portions face each other and are separated from each other, A sputtering apparatus characterized in that a plurality of ring-shaped etched areas are formed on the surface of the sputtering target in correspondence with a plurality of magnets extending from the center of the sputtering target toward the periphery thereof.
JP17547983A 1983-09-21 1983-09-21 sputtering equipment Granted JPS6067668A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17547983A JPS6067668A (en) 1983-09-21 1983-09-21 sputtering equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17547983A JPS6067668A (en) 1983-09-21 1983-09-21 sputtering equipment

Publications (2)

Publication Number Publication Date
JPS6067668A JPS6067668A (en) 1985-04-18
JPH0360916B2 true JPH0360916B2 (en) 1991-09-18

Family

ID=15996760

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17547983A Granted JPS6067668A (en) 1983-09-21 1983-09-21 sputtering equipment

Country Status (1)

Country Link
JP (1) JPS6067668A (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0718006B2 (en) * 1983-11-30 1995-03-01 日本テキサス・インスツルメンツ株式会社 Sputtering device
JPS61204371A (en) * 1985-03-06 1986-09-10 Ulvac Corp Magnetic circuit device for cathode sputtering
JPS6413123U (en) * 1987-07-13 1989-01-24
JPH0280565A (en) * 1988-09-16 1990-03-20 Tanaka Kikinzoku Kogyo Kk Magnet for magnetron sputtering
JPH02225666A (en) * 1989-02-27 1990-09-07 Tokuda Seisakusho Ltd Sputtering device
JPH11340165A (en) * 1998-05-20 1999-12-10 Applied Materials Inc Sputtering equipment and magnetron unit
DE102010049329A1 (en) * 2010-10-22 2012-04-26 Forschungszentrum Jülich GmbH Sputter sources for high-pressure sputtering with large targets and sputtering

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5474743U (en) * 1977-11-05 1979-05-28
JPS5887270A (en) * 1981-11-18 1983-05-25 Hitachi Ltd Planar magnetron sputtering electrode

Also Published As

Publication number Publication date
JPS6067668A (en) 1985-04-18

Similar Documents

Publication Publication Date Title
US5795451A (en) Sputtering apparatus with a rotating magnet array
JP2000144399A (en) Sputtering equipment
US4025410A (en) Sputtering apparatus and methods using a magnetic field
EP3880862B1 (en) Tilted magnetron in a pvd sputtering deposition chamber
JPH0669026B2 (en) Semiconductor processing equipment
JPH0360916B2 (en)
JPH0240739B2 (en) SUPATSUTASOCHI
JP3760652B2 (en) Multi-split sputtering target
JPS627852A (en) Formation of thin film
JP4274452B2 (en) Sputtering source and film forming apparatus
JPS59173265A (en) sputtering device
JPS6217175A (en) Sputtering device
JP4214806B2 (en) Sputtering equipment
KR20210096255A (en) Sputtering apparatus and sputtering method
JPS6357502B2 (en)
JPS6277477A (en) Thin film forming device
JPS63243272A (en) Magnetron sputtering method
JPH03240953A (en) Magnetron sputtering device
CN210012895U (en) Sputtering magnetic control system
JP2906163B2 (en) Sputtering equipment
JP2001207258A (en) Rotating magnet and in-line type sputtering equipment
JPH09241840A (en) Magnetron sputtering equipment
JPS6197838A (en) Formation of thin film
WO2005007924A1 (en) Sputtering target constructions
JPS61210190A (en) Thin film forming device