JPH0360862B2 - - Google Patents
Info
- Publication number
- JPH0360862B2 JPH0360862B2 JP30965987A JP30965987A JPH0360862B2 JP H0360862 B2 JPH0360862 B2 JP H0360862B2 JP 30965987 A JP30965987 A JP 30965987A JP 30965987 A JP30965987 A JP 30965987A JP H0360862 B2 JPH0360862 B2 JP H0360862B2
- Authority
- JP
- Japan
- Prior art keywords
- epoxy resin
- glass
- laminate
- varnish
- type epoxy
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 239000003822 epoxy resin Substances 0.000 claims description 34
- 229920000647 polyepoxide Polymers 0.000 claims description 34
- 239000011521 glass Substances 0.000 claims description 26
- IISBACLAFKSPIT-UHFFFAOYSA-N bisphenol A Chemical compound C=1C=C(O)C=CC=1C(C)(C)C1=CC=C(O)C=C1 IISBACLAFKSPIT-UHFFFAOYSA-N 0.000 claims description 25
- 239000002966 varnish Substances 0.000 claims description 14
- 239000011256 inorganic filler Substances 0.000 claims description 11
- 229910003475 inorganic filler Inorganic materials 0.000 claims description 11
- 239000010410 layer Substances 0.000 claims description 11
- 229920003986 novolac Polymers 0.000 claims description 11
- 229920005989 resin Polymers 0.000 claims description 10
- 239000011347 resin Substances 0.000 claims description 10
- 239000004593 Epoxy Substances 0.000 claims description 9
- 239000004745 nonwoven fabric Substances 0.000 claims description 8
- 239000002344 surface layer Substances 0.000 claims description 8
- WNROFYMDJYEPJX-UHFFFAOYSA-K aluminium hydroxide Chemical compound [OH-].[OH-].[OH-].[Al+3] WNROFYMDJYEPJX-UHFFFAOYSA-K 0.000 claims description 7
- 239000003795 chemical substances by application Substances 0.000 claims description 7
- 238000000034 method Methods 0.000 claims description 7
- 150000004984 aromatic diamines Chemical class 0.000 claims description 4
- 239000004744 fabric Substances 0.000 claims description 4
- 238000004519 manufacturing process Methods 0.000 claims description 3
- 239000002759 woven fabric Substances 0.000 description 12
- 239000002131 composite material Substances 0.000 description 11
- 239000000463 material Substances 0.000 description 8
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 7
- 229910001679 gibbsite Inorganic materials 0.000 description 7
- 239000000203 mixture Substances 0.000 description 6
- 238000007747 plating Methods 0.000 description 5
- 230000035939 shock Effects 0.000 description 5
- 230000000052 comparative effect Effects 0.000 description 4
- 238000000465 moulding Methods 0.000 description 4
- 230000008569 process Effects 0.000 description 4
- 238000012545 processing Methods 0.000 description 4
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 3
- 238000010521 absorption reaction Methods 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- LNEPOXFFQSENCJ-UHFFFAOYSA-N haloperidol Chemical compound C1CC(O)(C=2C=CC(Cl)=CC=2)CCN1CCCC(=O)C1=CC=C(F)C=C1 LNEPOXFFQSENCJ-UHFFFAOYSA-N 0.000 description 3
- 239000000377 silicon dioxide Substances 0.000 description 3
- 238000005476 soldering Methods 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 2
- 238000005452 bending Methods 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 238000004132 cross linking Methods 0.000 description 2
- 238000005553 drilling Methods 0.000 description 2
- 239000000945 filler Substances 0.000 description 2
- 230000009477 glass transition Effects 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 150000004682 monohydrates Chemical class 0.000 description 2
- 239000002904 solvent Substances 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 150000004684 trihydrates Chemical class 0.000 description 2
- XNWFRZJHXBZDAG-UHFFFAOYSA-N 2-METHOXYETHANOL Chemical compound COCCO XNWFRZJHXBZDAG-UHFFFAOYSA-N 0.000 description 1
- QTWJRLJHJPIABL-UHFFFAOYSA-N 2-methylphenol;3-methylphenol;4-methylphenol Chemical compound CC1=CC=C(O)C=C1.CC1=CC=CC(O)=C1.CC1=CC=CC=C1O QTWJRLJHJPIABL-UHFFFAOYSA-N 0.000 description 1
- ULKLGIFJWFIQFF-UHFFFAOYSA-N 5K8XI641G3 Chemical compound CCC1=NC=C(C)N1 ULKLGIFJWFIQFF-UHFFFAOYSA-N 0.000 description 1
- WKBOTKDWSSQWDR-UHFFFAOYSA-N Bromine atom Chemical compound [Br] WKBOTKDWSSQWDR-UHFFFAOYSA-N 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 229910001680 bayerite Inorganic materials 0.000 description 1
- 208000002352 blister Diseases 0.000 description 1
- 229910001593 boehmite Inorganic materials 0.000 description 1
- GDTBXPJZTBHREO-UHFFFAOYSA-N bromine Substances BrBr GDTBXPJZTBHREO-UHFFFAOYSA-N 0.000 description 1
- 229910052794 bromium Inorganic materials 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 239000011889 copper foil Substances 0.000 description 1
- 229930003836 cresol Natural products 0.000 description 1
- 230000006378 damage Effects 0.000 description 1
- 229910001648 diaspore Inorganic materials 0.000 description 1
- QGBSISYHAICWAH-UHFFFAOYSA-N dicyandiamide Chemical compound NC(N)=NC#N QGBSISYHAICWAH-UHFFFAOYSA-N 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000011888 foil Substances 0.000 description 1
- 238000009472 formulation Methods 0.000 description 1
- 239000003365 glass fiber Substances 0.000 description 1
- 150000004677 hydrates Chemical class 0.000 description 1
- FAHBNUUHRFUEAI-UHFFFAOYSA-M hydroxidooxidoaluminium Chemical compound O[Al]=O FAHBNUUHRFUEAI-UHFFFAOYSA-M 0.000 description 1
- 238000007654 immersion Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 150000007529 inorganic bases Chemical class 0.000 description 1
- 238000003475 lamination Methods 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229910001682 nordstrandite Inorganic materials 0.000 description 1
- 239000005416 organic matter Substances 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 238000004080 punching Methods 0.000 description 1
- 229910000679 solder Inorganic materials 0.000 description 1
- 229920003002 synthetic resin Polymers 0.000 description 1
- 239000000057 synthetic resin Substances 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K1/00—Printed circuits
- H05K1/02—Details
- H05K1/03—Use of materials for the substrate
- H05K1/0313—Organic insulating material
- H05K1/0353—Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement
- H05K1/036—Multilayers with layers of different types
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K1/00—Printed circuits
- H05K1/02—Details
- H05K1/03—Use of materials for the substrate
- H05K1/0313—Organic insulating material
- H05K1/0353—Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement
- H05K1/0366—Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement reinforced, e.g. by fibres, fabrics
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K1/00—Printed circuits
- H05K1/02—Details
- H05K1/03—Use of materials for the substrate
- H05K1/0313—Organic insulating material
- H05K1/0353—Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement
- H05K1/0373—Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement containing additives, e.g. fillers
Landscapes
- Reinforced Plastic Materials (AREA)
- Laminated Bodies (AREA)
Description
〔産業上の利用分野〕
本発明は高周波特性及び加工性、スルーホール
メツキの信頼性に優れた印刷回路用積層板の製造
方法に関するものである。
〔従来技術〕
印刷回路用銅張積層板として、ガラス不織布を
中間層基材としてガラス織布を表面層基材とした
構成でエポキシ樹脂を含浸させ加熱加圧した積層
板(以下、コンポジツト積層板という)が多量に
使用されるようになつた。ガラス織布基材のみに
エポキシ樹脂を含浸させた積層板は機械的強度、
寸法安定性、耐湿性、耐熱性に優れスルーホール
メツキの信頼性が高いので、電子計算機、通信
機、電子交換機等の産業用電子機器に多く使用さ
れている。
しかし、基材にガラス織布のみを使用するの
で、印刷回路板の加工工程の一つである孔あけ工
程では打抜加工が不可能であり、ドリル加工され
ているのが実情である。
一方、コンポジツト積層板はガラス織布基材の
積層板より経済的に安価で、かつ打抜き孔あけ加
工が可能な点が優れており、加工性の良いガラス
基材積層板として注目をあびたが、スルーホール
メツキの信頼性がガラス織布基材積層板より低い
と評価されていた。その理由として、ガラス織布
基材エポキシ積層版の構成は、有機物であるエポ
キシ樹脂と無機物であるガラス織布の重量比率が
約40:60である。この場合エポキシ樹脂が主に各
種電気性能を優れたものにし、ガラス織布が曲げ
強度寸法安定性などの機械的性能を良好にしてい
ると考えられる。
ところで、一般のコンポジツト積層板は機械的
性能に寄与する無機基材、即ちガラス織布とガラ
ス不織布の合計量がガラス織布積層板より少な
い。有機物と無機物の比率が約60:40であり、ガ
ラス織布積層板とはその比率が逆転しているた
め、寸法安定性やスルーホールメツキの信頼性が
低いとされていた。
本発明者等はコンポジツト積層板の優れた特徴
をいかしながら、これらの欠点を改良すべく検討
し、一般のコンポジツト積層板の構成に更に無機
充填剤を大量に配合することにより、単一組成で
は得られない特徴ある新規コンポジツト積層板を
得ている。(特願昭58−115118号)。この無機充填
剤として用いるアルミナ水和物(いわゆる水酸化
アルミニウム)には、結晶性水和物としてギブサ
イト(α型3水和物Al2O3・3H2O)、バイヤライ
ト(β型3水和物)、ノルトストランダイト、ベ
ーマイト(α型1水和物Al2O3・H2O)、ダイア
スポア(β型1水和物)、トーダイト(5Al2O3・
H2O)が知られている。
ギブサイト型水酸化アルミニウム(以下、ギブ
サイトという)は200℃から500℃の範囲で水を放
出する。この時の吸熱量が大きいので、これを利
用して一般の合成樹脂では難燃性を保たせるため
に充填剤として用いられている。しかし積層板は
印刷回路及び組立て工程において高熱状態にさら
される頻度が高く、例えばはんだ工程では通常
260℃のはんだ浴に浸るので、ギブサイトを充填
剤として用いたコンポジツト積層板は浸漬時間が
長くなるとふくれによる不良が発生する。この原
因はギブサイトからの水の放出である。
本発明者等はこの欠点を解消するためにコンポ
ジツト積層板用樹脂に加熱処理したギブサイトを
充填することによりはんだ耐熱性を著しく向上さ
せた積層板を得ている(特願昭59−59501号)。し
かし近年積層板の加工技術の発達、回路の高密度
化、用途の多様化が図られてきており、更により
高い信頼性高周波特性を要求されるようになつ
た。
〔発明の目的〕
本発明は従来のコンポジツト積層板では得られ
なかつた高周波特性に優れ、更に高信頼性を有し
た加工性の良い印刷回路用積層板を提供すること
を目的とする。
〔発明の構成〕
本発明は、表面層はエポキシ樹脂成分としてエ
ポキシ当量700〜1200を有するビスフエノールA
型エポキシ樹脂及びノボラツク型エポキシ樹脂を
主成分とし、硬化剤として芳香族ジアミン硬化剤
を加えたワニスを含浸したガラス織布からなり、
中間層は前記エポキシ樹脂を主成分としたワニス
に無機充填剤として水酸化アルミニウムを含有し
たワニスを含浸したガラス不織布からなり、これ
ら表面層と中間層とを加熱加圧成形することを特
徴とする印刷回路用積層板の製造方法である。
本発明において用いられるビスフエノールA型
エポキシ樹脂はエポキシ当量700乃至1200のもの
である。低分子量のエポキシ樹脂を用いた積層板
では、加工工程において機械的、熱的衝撃を吸収
できず破壊へとつながることが多い。そこで用い
るエポキシ樹脂の分子量を上げて700以上のエポ
キシ当量のものを用いると、従来より架橋点間の
分子量が大きくなり、上述の加工時の機械的、熱
的衝撃を分子運動として吸収し積層板に破壊が生
じにくくなる。一方、ビスフエノールA型エポキ
シ樹脂の分子量を上げてゆくと、加圧成形時に加
熱しても粘度が低下せず、ガラス繊維や金属箔と
の界面に樹脂が浸透しにくく、気泡が残り接着強
度を下げる。
そこで高分子量化に伴う架橋密度の低下をノボ
ラツク型エポキシ樹脂を併用することにより抑え
ることができる。このノボラツク型エポキシ樹脂
を併用した場合、エポキシ当量1200以下のビスフ
エノールA型エポキシ樹脂を用い得る。これ以上
の高分子量のエポキシ樹脂を用いると、たとえノ
ボラツク型エポキシ樹脂を併用しても、耐溶剤性
等の実用性の面で耐えるものが得られない。
本発明において、ビスフエノール型エポキシ樹
脂は臭素化型のものが通常使用され、臭素含有率
は15〜30%(重量%、以下同じ)が好ましい。
本発明においては、ノボラツク型エポキシ樹脂
としてビスフエノールAノボラツク型のものを使
用するのが好ましい。ビスフエノールAノボラツ
ク型エポキシ樹脂を使用すると、通常のフエノー
ル又はクレゾールノボラツク型エポキシ樹脂を使
用する場合に比較して、可撓性が増し、硬化時の
歪みをより少なくすることができるので、成形性
が良く、得られた積層板は、高周波特性、耐熱
性、耐熱衝撃性、耐溶剤性等の特性が非常にすぐ
れたものとなる。ビスフエノールAノボラツク型
エポキシ樹脂は分子量450〜1400のものが上記特
性の点で好ましい。
又、ビスフエノールA型エポキシ樹脂との配合
の割合は特に限定されないが、ビスフエノールA
型エポキシ樹脂60〜90部(重量部、以下同じ)に
対しビスフエノールAノボラツク型エポキシ樹脂
40〜10部が好ましい。本発明においてエポキシ当
量700ないし1200のビスフエノールA型エポキシ
樹脂の一部を、これよりもエポキシ当量の低いエ
ポキシ化合物に置換しても、本発明の目的とする
高周波特性耐熱性、耐熱衝撃性、寸法安定性にお
いて有効な改善が認められるのでこの場合も本発
明に含まれる。
本発明に用いられる芳香族ジアミン硬化剤はエ
ポキシ樹脂の0.3〜0.7当量含まれることが望まし
い。この範囲を上回つても下回つても耐熱性、成
形性の面で低下し実用性の面で好ましくない。硬
化促進剤の種類及び量で適宜のゲルタイムが得ら
れ本発明で用いるワニスは120〜240秒/170℃が
成形性のめで好ましい。
本発明に用いられる水酸化アルミニウムは中間
層の樹脂に対して好ましくは10〜200%、特に好
ましくは20〜200%含まれる。
10%以下では耐熱性向上の効果が小さく、200
%以上ではギブサイト混合時の樹脂粘度が高くな
り過ぎてガラス不織布基材への含浸が困難とな
る。20%以上の場合、耐熱性向上効果がより確実
なものとなる。
中間層において、水酸化アルミニウム以外の無
機質充填剤(例えばシリカ)を用いることもでき
る。無機充填剤全体の中間層樹脂に対する割合は
80〜200%が好ましい。80%以下では、寸法安定
性やスルーホールメツキの信頼性が低下して好ま
しくない。200%以上では、無機充填剤を樹脂に
混合したとき粘度が高くなり過ぎて、ガラス不織
布への含浸が困難となる。
〔発明の効果〕
本発明の印刷回路用積層板は次のような特長を
有している。
(1) 従来の芳香族ジアミン硬化剤を用いた積層板
に比較して高周波特性及び吸湿ドリフト性が大
幅に向上している。
(2) ガラス転移温度の向上により熱衝撃性が改善
され信頼性が大幅に向上している。
〔実施例〕
本発明の実施例及び比較例(従来例)を示す。
エポキシ樹脂配合ワニスの組成は次の通りであ
る。
[Industrial Application Field] The present invention relates to a method for producing a printed circuit laminate having excellent high frequency characteristics, workability, and reliability of through-hole plating. [Prior art] As a copper-clad laminate for printed circuits, a laminate (hereinafter referred to as a composite laminate) is impregnated with epoxy resin and heated and pressurized with a structure in which a nonwoven glass fabric is used as an intermediate layer base material and a glass woven fabric is used as a surface layer base material. ) has come to be used extensively. The laminate, which is made by impregnating only the woven glass fabric base material with epoxy resin, has excellent mechanical strength and
It has excellent dimensional stability, moisture resistance, heat resistance, and high reliability for through-hole plating, so it is widely used in industrial electronic equipment such as computers, communications equipment, and electronic exchanges. However, since only glass woven fabric is used as the base material, punching is not possible in the drilling process, which is one of the processing steps for printed circuit boards, and the reality is that drilling is required. On the other hand, composite laminates are economically cheaper than woven glass fabric laminates and have the advantage of being able to be punched and punched, and have attracted attention as glass-based laminates with good workability. The reliability of through-hole plating was evaluated to be lower than that of glass woven fabric base laminates. The reason for this is that the structure of the glass woven fabric base epoxy laminate plate has a weight ratio of about 40:60 between the epoxy resin, which is an organic substance, and the glass woven fabric, which is an inorganic substance. In this case, it is thought that the epoxy resin mainly provides excellent electrical performance, and the glass woven fabric provides excellent mechanical performance such as bending strength and dimensional stability. By the way, in general composite laminates, the total amount of inorganic base materials that contribute to mechanical performance, ie, glass woven fabric and glass nonwoven fabric, is smaller than that in glass woven fabric laminates. The ratio of organic matter to inorganic matter is approximately 60:40, which is the opposite of that of glass woven laminates, so it was thought that dimensional stability and reliability of through-hole plating were low. The present inventors have studied how to improve these drawbacks while taking advantage of the excellent characteristics of composite laminates, and by adding a large amount of inorganic filler to the composition of general composite laminates, we have created a composite laminate that is of a single composition. We have obtained a new composite laminate with characteristics that cannot be obtained previously. (Special Application No. 115118/1982). The alumina hydrate (so-called aluminum hydroxide) used as this inorganic filler contains gibbsite (α-type trihydrate Al 2 O 3 3H 2 O) and bayerite (β-type trihydrate) as crystalline hydrates. ), nordstrandite, boehmite (α-type monohydrate Al 2 O 3・H 2 O), diaspore (β-type monohydrate), toadite (5Al 2 O 3・
H2O ) is known. Gibbsite-type aluminum hydroxide (hereinafter referred to as gibbsite) releases water in the range of 200°C to 500°C. Since the amount of heat absorbed at this time is large, it is used as a filler in general synthetic resins to maintain flame retardancy. However, laminates are frequently exposed to high heat conditions during printed circuit and assembly processes, such as soldering processes, which typically
Since it is immersed in a solder bath at 260°C, composite laminates using gibbsite as a filler will suffer from blistering if the immersion time is too long. The cause of this is the release of water from the gibbsite. In order to overcome this drawback, the present inventors have obtained a laminate with significantly improved soldering heat resistance by filling the resin for composite laminates with heat-treated gibbsite (Japanese Patent Application No. 59501/1982). . However, in recent years, advances in processing technology for laminated plates, higher circuit densities, and diversification of applications have led to demands for even higher reliability and high-frequency characteristics. [Object of the Invention] An object of the present invention is to provide a printed circuit laminate that has excellent high frequency characteristics that cannot be obtained with conventional composite laminates, has high reliability, and has good workability. [Structure of the Invention] In the present invention, the surface layer contains bisphenol A having an epoxy equivalent of 700 to 1200 as an epoxy resin component.
It consists of a glass woven fabric impregnated with a varnish containing type epoxy resin and novolac type epoxy resin as the main components, and an aromatic diamine curing agent added as a curing agent.
The intermediate layer is made of a glass nonwoven fabric impregnated with a varnish mainly composed of the epoxy resin and containing aluminum hydroxide as an inorganic filler, and the surface layer and the intermediate layer are molded under heat and pressure. This is a method for manufacturing a laminate for printed circuits. The bisphenol A type epoxy resin used in the present invention has an epoxy equivalent of 700 to 1,200. Laminated plates using low molecular weight epoxy resins are unable to absorb mechanical and thermal shocks during the processing process, often leading to breakage. If the molecular weight of the epoxy resin used is increased and an epoxy equivalent of 700 or more is used, the molecular weight between the crosslinking points will be larger than before, which will absorb the mechanical and thermal shock during processing as molecular movement, and the laminate will be Destruction is less likely to occur. On the other hand, when the molecular weight of bisphenol A type epoxy resin is increased, the viscosity does not decrease even when heated during pressure molding, and the resin is difficult to penetrate into the interface with glass fibers and metal foil, leaving bubbles to strengthen the bond. lower. Therefore, the decrease in crosslinking density due to increase in molecular weight can be suppressed by using a novolak type epoxy resin in combination. When this novolac type epoxy resin is used in combination, a bisphenol A type epoxy resin having an epoxy equivalent of 1200 or less can be used. If an epoxy resin with a higher molecular weight than this is used, even if a novolak type epoxy resin is used in combination, it will not be possible to obtain a material that has practical properties such as solvent resistance. In the present invention, a brominated bisphenol epoxy resin is usually used, and the bromine content is preferably 15 to 30% (weight %, the same hereinafter). In the present invention, it is preferable to use a bisphenol A novolak type epoxy resin as the novolak type epoxy resin. The use of bisphenol A novolac type epoxy resins provides increased flexibility and less distortion during curing compared to the use of regular phenol or cresol novolac type epoxy resins, making molding easier. The resulting laminate has excellent properties such as high frequency properties, heat resistance, thermal shock resistance, and solvent resistance. The bisphenol A novolac type epoxy resin preferably has a molecular weight of 450 to 1,400 from the viewpoint of the above characteristics. In addition, the ratio of blending with bisphenol A type epoxy resin is not particularly limited, but bisphenol A
Bisphenol A novolak type epoxy resin for 60 to 90 parts (parts by weight, same below) of type epoxy resin
40 to 10 parts is preferred. In the present invention, even if a part of the bisphenol A type epoxy resin having an epoxy equivalent of 700 to 1200 is replaced with an epoxy compound having a lower epoxy equivalent, the high frequency properties, heat resistance, thermal shock resistance, and Since a useful improvement in dimensional stability is observed, this case is also included in the invention. The aromatic diamine curing agent used in the present invention is preferably contained in an amount of 0.3 to 0.7 equivalents of the epoxy resin. If it is above or below this range, the heat resistance and moldability will deteriorate, which is undesirable from the practical point of view. An appropriate gel time can be obtained depending on the type and amount of the curing accelerator, and the varnish used in the present invention preferably has a gel time of 120 to 240 seconds/170°C for moldability. The content of aluminum hydroxide used in the present invention is preferably 10 to 200%, particularly preferably 20 to 200%, based on the resin of the intermediate layer. Below 10%, the effect of improving heat resistance is small;
% or more, the resin viscosity when mixed with gibbsite becomes too high, making it difficult to impregnate the glass nonwoven fabric base material. When the content is 20% or more, the effect of improving heat resistance becomes more reliable. Inorganic fillers other than aluminum hydroxide (eg silica) can also be used in the intermediate layer. The ratio of the entire inorganic filler to the intermediate layer resin is
80-200% is preferred. If it is less than 80%, the dimensional stability and reliability of through-hole plating decreases, which is not preferable. If it is 200% or more, the viscosity becomes too high when the inorganic filler is mixed with the resin, making it difficult to impregnate the glass nonwoven fabric. [Effects of the Invention] The printed circuit laminate of the present invention has the following features. (1) Compared to laminates using conventional aromatic diamine curing agents, high frequency characteristics and moisture absorption drift properties are significantly improved. (2) Improved glass transition temperature improves thermal shock resistance and significantly improves reliability. [Example] Examples of the present invention and comparative examples (conventional examples) will be shown.
The composition of the epoxy resin-containing varnish is as follows.
【表】
上記材料を混合して均一なワニスを作製し
た。
次に表面層用として配合した該ワニスをガラス
織布(日東紡製WE−18K−RB84)に樹脂含有
量が42〜45%になるように含浸乾燥し、ガラス織
布プリプレグを得た。続いて、中間層用として同
様に配合したワニスに樹脂分100部に対し次の配
合の無機充填剤を添加し、撹拌混合し無機充填剤
含有ワニスを作製した。
シリカ(龍森製 クリスタライトVX−3) 25部
ギブサイト型水酸化アルミニウム(Al2O3・
2.4H2O) 70部
超微粉末シリカ(シオノギ製薬製 カープレツク
ス) 5部
この無機充填剤含有ワニスをガラス不織布(日
本バイリーン製 Ep−4075)に樹脂及び無機充
填剤の含有量が90%になるように含浸乾燥して、
ガラス不織布プリプレグを得た。
次に前記ガラス不織布プリプレグを中間層と
し、上・下表面層に前記ガラス織布プリプレグを
配置し、さらにその上に銅箔を重ね、成形温度
165℃、圧力60Kg/cm2で90分間積層成形して、厚
さ1.6mmの銅張積層板を得た。
〔比較例(従来例)〕
表面層及び中間層用のエポキシ樹脂配合ワニス
の組成を
臭素化エポキシ樹脂(油化シエル製 Ep−1046)
100部
ジシアンジアミド 4
2エチル4メチルイミダゾール 0.15
メチルセロソルブ 36
アセトン 60
とした以外は実施例と同様にして銅張積層板を得
た。
以上の実施例及び比較例において、各特性の比
較結果を第2表に示す。[Table] A uniform varnish was prepared by mixing the above materials.
Next, the varnish blended for the surface layer was impregnated into a glass woven fabric (WE-18K-RB84 manufactured by Nittobo Co., Ltd.) to a resin content of 42 to 45% and dried to obtain a glass woven fabric prepreg. Subsequently, an inorganic filler in the following formulation was added to 100 parts of resin to a varnish similarly formulated for the intermediate layer, and the mixture was stirred and mixed to produce an inorganic filler-containing varnish. Silica (Tatsumori Crystallite VX-3) 25 parts Gibbsite type aluminum hydroxide (Al 2 O 3
2.4H 2 O) 70 parts ultrafine powder silica (Carplex, manufactured by Shionogi Pharmaceuticals) 5 parts This inorganic filler-containing varnish is applied to glass nonwoven fabric (Ep-4075, manufactured by Nippon Vilene) so that the content of resin and inorganic filler is 90%. Impregnated and dried,
A glass nonwoven fabric prepreg was obtained. Next, the glass nonwoven fabric prepreg is used as an intermediate layer, the glass woven fabric prepreg is placed on the upper and lower surface layers, and a copper foil is layered on top of that, and the molding temperature is
Lamination molding was carried out for 90 minutes at 165° C. and a pressure of 60 kg/cm 2 to obtain a copper-clad laminate with a thickness of 1.6 mm. [Comparative example (conventional example)] The composition of the epoxy resin-containing varnish for the surface layer and intermediate layer was a brominated epoxy resin (Ep-1046 manufactured by Yuka Ciel)
A copper-clad laminate was obtained in the same manner as in the example except that the following ingredients were used: 100 parts dicyandiamide 4 2 ethyl 4 methylimidazole 0.15 methyl cellosolve 36 acetone 60. Table 2 shows the comparison results of each characteristic in the above Examples and Comparative Examples.
【表】
測定方法
はんだ耐熱性、熱時曲げ強さ=JIS C 6481に
よる。ガラス転位温度=粘弾性法によりtanδのピ
ーク値の温度を求める。
誘電率、誘電正接=JIS C 6481による。
耐湿ドリフト性=表面にくし型電極(間隔0.5対
向長160mm)を印刷配線した試験片を用いて吸湿
処理し(C−240/60/90)吸湿処理による静電
容量変化を求める(周波数1MHz)。尚、その他一
般特性項目等も測定したが、実施例と比較例との
間に差は見られなかつた。
以上のように、本発明の印刷回路用積層板はコ
ンポジツト積層板の特徴を維持しつつ、高周波特
性を著しく向上している優れた積層板であること
がわかつた。[Table] Measurement method Soldering heat resistance, bending strength when heated = according to JIS C 6481. Glass transition temperature = Find the temperature of the peak value of tan δ using the viscoelastic method. Dielectric constant, dielectric loss tangent = according to JIS C 6481. Moisture drift resistance = Moisture absorption treatment is performed using a test piece with comb-shaped electrodes (interval 0.5 opposite length 160mm) printed and wired on the surface (C-240/60/90) to determine capacitance change due to moisture absorption treatment (frequency 1MHz) . In addition, other general property items were also measured, but no differences were found between the examples and comparative examples. As described above, it has been found that the printed circuit laminate of the present invention is an excellent laminate that maintains the characteristics of a composite laminate and has significantly improved high frequency characteristics.
Claims (1)
1200を有するビスフエノールA型エポキシ樹脂及
びノボラツク型エポキシ樹脂を主成分とし、硬化
剤として芳香族ジアミン硬化剤を加えたワニスを
含浸したガラス織布を表面層とし、前記樹脂を主
成分としたワニスに無機充填剤として水酸化アル
ミニウムを含有したワニスを含浸したガラス不織
布を中間層として、これら表面層と中間層を加熱
加圧成形することを特徴とする印刷回路用積層板
の製造方法。1 Epoxy equivalent as epoxy resin component 700~
A varnish whose surface layer is a glass woven cloth impregnated with a varnish containing a bisphenol A type epoxy resin and a novolac type epoxy resin having a hardening agent of 1200 and an aromatic diamine hardening agent added thereto as a hardening agent, and a varnish whose main component is the above-mentioned resin. A method for manufacturing a laminate for printed circuits, characterized in that the intermediate layer is a glass nonwoven fabric impregnated with a varnish containing aluminum hydroxide as an inorganic filler, and the surface layer and the intermediate layer are heated and press-molded.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP30965987A JPH01152138A (en) | 1987-12-09 | 1987-12-09 | Production of laminate for printed circuit |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP30965987A JPH01152138A (en) | 1987-12-09 | 1987-12-09 | Production of laminate for printed circuit |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH01152138A JPH01152138A (en) | 1989-06-14 |
JPH0360862B2 true JPH0360862B2 (en) | 1991-09-18 |
Family
ID=17995717
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP30965987A Granted JPH01152138A (en) | 1987-12-09 | 1987-12-09 | Production of laminate for printed circuit |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH01152138A (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08276532A (en) * | 1995-04-03 | 1996-10-22 | Toshiba Chem Corp | Glass epoxy copper-clad laminate |
JP3119577B2 (en) * | 1996-02-29 | 2000-12-25 | 住友ベークライト株式会社 | Laminated board |
JP3855474B2 (en) * | 1998-07-10 | 2006-12-13 | 新神戸電機株式会社 | Composite metal foil laminate |
JP4496591B2 (en) * | 2000-03-09 | 2010-07-07 | 住友ベークライト株式会社 | Epoxy resin composition, prepreg and laminate using the same |
-
1987
- 1987-12-09 JP JP30965987A patent/JPH01152138A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPH01152138A (en) | 1989-06-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101677736B1 (en) | Thermosetting resin composition for semiconductor package and Prepreg and Metal Clad laminate using the same | |
JP4132703B2 (en) | Prepreg for copper-clad laminate and copper-clad laminate using the same | |
JP2003253018A (en) | Prepreg and printed wiring board using the same | |
JPS6059795A (en) | Laminated board for printed circuit | |
JPH0197633A (en) | Manufacture of laminated plate for printed circuit | |
JPH0360862B2 (en) | ||
JPH0573077B2 (en) | ||
JP5448414B2 (en) | Resin composition, prepreg, laminate, multilayer printed wiring board, and semiconductor device | |
JPH0722718A (en) | Epoxy resin composition for printed wiring board, manufacture of prepreg for printed wiring board, and manufacture of composite laminated sheet | |
JPH0573076B2 (en) | ||
JP3343443B2 (en) | Resin composition and prepreg | |
KR101513350B1 (en) | Insulating film for printed circuit board and products having the same | |
JPH06302926A (en) | Multilayered boad for printed circuit | |
JP2006036936A (en) | Epoxy resin composition, prepreg, and multilayer printed wiring board | |
JPS60203438A (en) | Laminated board for printed circuit | |
JPH07176843A (en) | Laminated board for printed circuit | |
JPH05261870A (en) | Laminated sheet for printed circuit board | |
JPH06112611A (en) | Laminated board for printed circuit | |
JPH05309789A (en) | Production of composite copper clad laminated sheet | |
JPH04259543A (en) | Manufacture of laminated board for printed circuit | |
JP2924966B2 (en) | Printed circuit laminate | |
JPH0571157B2 (en) | ||
JPS62169828A (en) | Production of substrate for printed circuit | |
JP3855474B2 (en) | Composite metal foil laminate | |
KR20140002354A (en) | Composition, insulating film made therefrom, and multilayer printed circuit boards having the same |