JPH0360784B2 - - Google Patents
Info
- Publication number
- JPH0360784B2 JPH0360784B2 JP60095543A JP9554385A JPH0360784B2 JP H0360784 B2 JPH0360784 B2 JP H0360784B2 JP 60095543 A JP60095543 A JP 60095543A JP 9554385 A JP9554385 A JP 9554385A JP H0360784 B2 JPH0360784 B2 JP H0360784B2
- Authority
- JP
- Japan
- Prior art keywords
- glass
- crystals
- cao
- mgo
- sio
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C10/00—Devitrified glass ceramics, i.e. glass ceramics having a crystalline phase dispersed in a glassy phase and constituting at least 50% by weight of the total composition
- C03C10/0036—Devitrified glass ceramics, i.e. glass ceramics having a crystalline phase dispersed in a glassy phase and constituting at least 50% by weight of the total composition containing SiO2, Al2O3 and a divalent metal oxide as main constituents
- C03C10/0045—Devitrified glass ceramics, i.e. glass ceramics having a crystalline phase dispersed in a glassy phase and constituting at least 50% by weight of the total composition containing SiO2, Al2O3 and a divalent metal oxide as main constituents containing SiO2, Al2O3 and MgO as main constituents
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Ceramic Engineering (AREA)
- Crystallography & Structural Chemistry (AREA)
- Dispersion Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Geochemistry & Mineralogy (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Re-Forming, After-Treatment, Cutting And Transporting Of Glass Products (AREA)
- Glass Compositions (AREA)
Description
〔産業上の利用分野〕
本発明は輝石系結晶化ガラスの製造法に関す
る。
〔従来の技術〕
壁材等の建材として、大理石模様のあるウオラ
ストナイト系結晶化ガラス、フオルステライト系
結晶化ガラスが提案されている。ウオラストナイ
ト系結晶化ガラスは、熔融したガラスを板状に形
成し又は、所定の型に流し込み、これを結晶化さ
せると、ウオラストナイト結晶がガラスの表面に
垂直に発達し、かつその形状が針状であるので、
表面を研磨しても大理石模様が生じ難い。
それ故、かかる結晶化ガラスは、熔融したガラ
スを水冷等の手段により粉砕し、ガラス粒とし、
これを所定の型に入れ結晶化処理を行ない、次い
で研磨して模様を形成する、いわゆる集積法によ
り製造されている。しかしながら、集積法はガラ
ス粒の製造工程が必要であり、工程が複雑になる
難点がある。
一方、後者のフオルステライト系結晶化ガラス
は、失透温度が1350℃以上と高いため、溶融ガラ
スより所定形状の成形体を製造する際の作業が難
しいという難点がある。
〔発明の解決しようとする問題点〕
本発明は、ガラスの粉砕工程が不要で、失透温
度が1300℃以下である天然石模様のある輝石系結
晶化ガラスの製造法の提供を目的とする。
〔問題点を解決するための手段〕
本発明は、重量%表示で実質的にSiO255〜68,
Al2O33〜15,SiO2+Al2O362〜78,CaO3〜8,
MgO8〜13,CaO+MgO11〜19,Na2O4〜15,
Li2O0〜3,K2O0〜5,Na2O+Li2O+K2O4〜
15,TiO20.2〜3,ZnO0〜8,B2O30〜5,
P2O50〜5からなり、かつ重量比MgO/CaOが
2/3より大きい組成のガラスを所定形状に成形し、
該成形体を加熱し輝石系結晶を生成させる結晶化
ガラスの製造法を提供する。
本発明において製造される結晶化ガラスは、主
な結晶として、デイオプサイド(CaMgSi2O6),
デイオプサイドのMgSiの一部をAlで置換したア
ルミ含有デイオプサイド及びエンスタタイト
(MgSiO3)を生成したものである。かかる結晶
は重量で20〜50%程度含有する。
本発明において使用する成形体のガラス組成の
限定理由は下記の通りである。
SiO2は輝石類結晶の成分及びガラス相の成分
となる。SiO2<55% SiO2>68%では当該結晶
化ガラスの製品が得られ難く、また、粘性の点で
ロールアウト法等による板の成形が難かしくな
り、いずれも好ましくない。
Al2O3は、耐候性の向上の作用、結晶核発生を
助長する作用、及び輝石類結晶構成成分の1つで
ある。Al2O3<3%ではこれらの作用が不十分で
ある。Al2O3>15%では他の結晶、フオルステラ
イト、コーデイエライトが生成し、かつ熔融性が
悪くなり好ましくない。
SiO2+Al2O3>78%では、ガラスの熔融性が悪
くなり、SiO2+Al2O3<62%では、ガラスの耐候
性が低下し、いずれも好ましくない。
CaOは輝石類結晶の成分である。CaO>8%で
は結晶核の発生が抑制され、内部からの結晶成長
が成されないため好ましくない。CaO<3%では
上記結晶が析出し難いので好ましくない。
MgOは輝石類結晶の成分である。MgO<8%
では。当該結晶が生成し難く、当該結晶以外の結
晶(ウオラストナイト、アノーサイト)が生成
し、結晶核の発生が抑制され、内部からの結晶成
長が成されないため強度が低下する。MgO>12
%では、溶融ガラスを板状に成形する際にエンス
タタイトが生成し易く、当該成形が難しい。
CaO+MgO>19%では、ウオラストナイト結
晶が生成しクラツクが入り易く、他方CaO+
MgO>11%では、生成結晶の量が少なく強度が
低いのでいずれも好ましくない。CaO+MgOは
上記範囲中11〜19の範囲がより好ましい。
NaO2は原料の熔解性及び板状への成形性を向
上し、結晶成長を早める。Na2O<4%では熔解
性が悪く、粘性が高く当該成形性が低下する。
Na2O>15%以上では粘性が低く過ぎ、当該成形
性が逆に低下すると共に耐候性が低下する。
Na2Oは上記範囲中6〜12%が特に好ましい。
K2OはNa2Oと同様、熔解性及び板状への成形
性を向上し、複合アルカリ効果(Na2O+K2O)
により耐候性を向上する。K2O>5%は成形時の
結晶発生及び価格が高いため好ましくない。K2O
は上記範囲中0〜3%が特に好ましい。
Li2OはNa2Oと同様、熔融性及び板状への成形
性を向上し、複合アルカリ効果(Na2O+Li2O)
により耐候性を向上する。Li2O>3%は価格が
高いため好ましくない。Li2Oは上記範囲中0〜
2%が特に好ましい。
加えてNa2O+K2O+Li2Oは4〜15%がよく、
さらに6〜12%が特に好ましい。
TiO2は結晶核形成剤であり、ガラス内部より
結晶を発生させるため、、当該結晶化ガラスの強
度が向上する。さらにこの成分は、天然石模様と
しての外観に優れた大きさに結晶を成長させる作
用をする。HiO2<0.2%では、かかる効果がほと
んど得られず、TiO2>5%では結晶が灰紫色に
着色するため好ましくない。TiO2は上記範囲中
0.2〜3%が特に好ましい。
ZnOは耐薬品性を向上し、当該結晶化ガラスの
強度を向上させる。ZnO>8%は熔融性が悪くな
るため、さらに他の結晶(亜鉛スピネル)が生成
し暗青色に着色するため好ましくない。
B2O3は熔解性を促進し、粘度を低下させる。
B2O3>5%ではガラスの分相が生じやすく、成
形後のセラミング処理時間を遅らせるため好まし
くない。B2O3は上記範囲中0〜3%が特に好ま
しい。
P2O5は熔解性を促進し、結晶核形成を促進す
る。P2O5>5%は、逆に結晶の成長が遅くなり、
成形後のセラミング処理時間を遅らせるため好ま
しくない。P2O5は上記範囲中0〜3が特に好ま
しい。また、MgO/CaOの重量比が2/3より小さ
いとウオラストナイト結晶が生成しクラツクが入
り易くなるので好ましくない。
本発明においては、以上の成分の総量が96%以
上にするのが好ましく、残部4%未満については
MnO2,CaO,Fe2O3,NiO,Se等の着色剤を添
加し、好みの色調にすることができる。
かかる組成のガラスの成形体を製造するに当つ
ては、目標組成となるように各原料を調合してバ
ツチを調整し、熔融炉にて1400〜1500℃に加熱し
て熔融し清澄する。次いで熔融ガラスを1300℃程
度に冷却し所定形状に成形する。板ガラスを成形
する場合、特に限定されるものではないが、ロー
ルアウト法により連続的に所定厚味のリボンを成
形し、次いでこれを徐冷し所定の大きさに切断す
る方法が生産性の面から望ましい。
かかる成形体に結晶を生成するには次のような
熱処理を採用するのが望ましい。
成形体が破損しない程度の速度で結晶の成長す
る温度まで昇温し、通常の雰囲で3〜5時間保持
する。これによりガラス中に主結晶としてデイオ
プサイト、アルミ含有デイオプサイト、エンスタ
タイトが生成する。結晶の成長する温度は950〜
1050℃である。昇温工程中650〜780℃で120〜240
分間保持し、又は当該温度域の昇温速度を下げる
と微細な結晶を生成することができる。微細な結
晶を生成するにはガラス原料に少量の炭素を添加
して熔融し、この熔融ガラスを成形した成形体を
結晶化処理しても達成される。かかる方法によつ
て生成する結晶の大きさは0.1〜4mm程度であり、
また、最終的に生成する結晶の量は30〜40重量%
である。
〔実施例〕
常法に従い表1の目標組成(重量%)になる様
に、SiO2源とし珪砂、Al2O3源としアルミナ粉、
CaO源とし石灰石、MgO源とし水酸化マグネシ
ウム、Na2O源としソーダ灰、K2O源とし炭酸カ
リ、Li2O源とし炭酸リチウム、TiO2源とし二酸
化チタン粉、ZnO源とし亜鉛華、B2O3源とし硼
砂、R2O3源しリン酸カルシウム、を使用し、更
に清澄剤とし芒硝及びカーボンを使用し目的とす
るガラス組成に従つてバツチを調合した。このバ
ツチ5Kgを白金坩堝に入れ1450℃5時間で熔融
し、板状にプレス成形し冷却した。成形された板
ガラスを、アルミナ粉を散布した耐火物で作られ
た基台に載置し、熱処理炉に入れ、50℃/hrで昇
温し1000℃4時間の結晶化処理を行なつた。
次いで、この板ガラス表面を珪砂にて粗磨し、
アルミナ微粉で光沢を出した。これらのガラスに
ついて測定した失透温度、曲げ強度及び結晶型を
同表に併記した。表中の結晶型Aはテイプサイ
ト、Bはアルミ含有デイプサイト、Cはエンスタ
タイトをそれぞれ示す。同表より明らかなように
本発明において使用するガラスの失透温度は1300
℃以下と低いため、ガラスの成形体が容易であ
る。また、かかるガラスの成形体を結晶化したも
のについて表面を観察したが、クラツクの発生は
全つたくなかつた。また、そのガラスは天然石模
様が見られ、壁材として充分使用できるものであ
つた。
〔発明の効果〕
本発明による結晶化ガラスは、ガラス表面とは
関係なく、種々の方向に結晶が発達するのでロー
ルアウト法等により熔融ガラスを板状に形成し、
結晶化させそのまま研磨することにより製造でき
る。このため、ガラスを粒化し、型に入れる工程
が簡略化される。
更に失透温度が1250℃程度と低いため、通常の
ロールアウト法により成形できるため、製造条件
の制約が少ない。
加えて結晶化処理も1000℃以下の950℃〜1000
℃の可能なため、基台等の材質も価格の安いもの
を使用できる利点もある。
[Industrial Field of Application] The present invention relates to a method for producing pyroxene-based crystallized glass. [Prior Art] Wollastonite-based crystallized glass and forsterite-based crystallized glass with marble patterns have been proposed as building materials such as wall materials. Wollastonite-based crystallized glass is produced by forming molten glass into a plate shape or pouring it into a predetermined mold and crystallizing it, so that wollastonite crystals grow perpendicular to the surface of the glass and its shape is needle-like, so
Even if the surface is polished, marble patterns are unlikely to occur. Therefore, such crystallized glass is produced by crushing molten glass by water cooling or other means to obtain glass particles.
It is manufactured by the so-called stacking method, in which it is placed in a predetermined mold, subjected to crystallization treatment, and then polished to form a pattern. However, the accumulation method requires a glass grain manufacturing process, which has the disadvantage of complicating the process. On the other hand, the latter forsterite-based crystallized glass has a high devitrification temperature of 1350° C. or higher, so it has the disadvantage that it is more difficult to produce a molded body of a predetermined shape than molten glass. [Problems to be Solved by the Invention] The object of the present invention is to provide a method for producing pyroxene-based crystallized glass with a natural stone pattern, which does not require a glass crushing step and has a devitrification temperature of 1300° C. or less. [Means for solving the problem] The present invention provides SiO 2 55 to 68% by weight,
Al 2 O 3 3 ~ 15, SiO 2 + Al 2 O 3 62 ~ 78, CaO 3 ~ 8,
MgO8~13, CaO+MgO11~19, Na2O4 ~15,
Li 2 O0~3, K 2 O0~5, Na 2 O+Li 2 O+K 2 O4~
15, TiO2 0.2~3, ZnO0~8, B2O3 0 ~5,
Forming glass into a predetermined shape, consisting of P 2 O 5 0 to 5 and having a weight ratio of MgO/CaO of more than 2/3,
A method for producing crystallized glass is provided, in which the molded body is heated to generate pyroxene crystals. The crystallized glass produced in the present invention contains diopside (CaMgSi 2 O 6 ),
Aluminum-containing diopside and enstatite (MgSiO 3 ) are produced by replacing a portion of MgSi in diopside with Al. The content of such crystals is about 20 to 50% by weight. The reasons for limiting the glass composition of the molded body used in the present invention are as follows. SiO 2 becomes a component of pyroxene crystals and a component of the glass phase. When SiO 2 <55% and SiO 2 >68%, it is difficult to obtain the crystallized glass product, and the viscosity makes it difficult to form a plate by a roll-out method or the like, and both are unfavorable. Al 2 O 3 has the effect of improving weather resistance, the effect of promoting crystal nucleation, and is one of the constituent components of pyroxene crystals. When Al 2 O 3 <3%, these effects are insufficient. When Al 2 O 3 >15%, other crystals such as forsterite and cordierite are formed, and the meltability deteriorates, which is not preferable. When SiO 2 +Al 2 O 3 >78%, the meltability of the glass deteriorates, and when SiO 2 +Al 2 O 3 <62%, the weather resistance of the glass decreases, both of which are unfavorable. CaO is a component of pyroxene crystals. CaO>8% is not preferable because the generation of crystal nuclei is suppressed and crystal growth from inside is not achieved. CaO<3% is not preferable because the above crystals are difficult to precipitate. MgO is a component of pyroxene crystals. MgO<8%
Well then. The crystals are difficult to form, crystals other than the crystals (wollastonite, anorthite) are formed, the generation of crystal nuclei is suppressed, and crystal growth from the inside is not achieved, resulting in a decrease in strength. MgO>12
%, enstatite is likely to be generated when molten glass is molded into a plate shape, making the molding difficult. When CaO+MgO>19%, wollastonite crystals are formed and cracks are likely to occur;
If MgO>11%, the amount of formed crystals is small and the strength is low, which is not preferable. Among the above ranges, CaO+MgO is more preferably in the range of 11 to 19. NaO 2 improves the solubility and formability of raw materials into plate shapes, and accelerates crystal growth. When Na 2 O is less than 4%, the solubility is poor, the viscosity is high, and the moldability is reduced.
When Na 2 O>15% or more, the viscosity is too low, and the moldability and weather resistance are reduced.
The content of Na 2 O is particularly preferably 6 to 12% within the above range. Like Na 2 O, K 2 O improves solubility and formability into plate shapes, and has a composite alkali effect (Na 2 O + K 2 O)
Improves weather resistance. K 2 O > 5% is not preferable because crystals occur during molding and the price is high. K2O
is particularly preferably 0 to 3% within the above range. Like Na 2 O, Li 2 O improves meltability and formability into plate shapes, and has a composite alkali effect (Na 2 O + Li 2 O).
Improves weather resistance. Li 2 O > 3% is undesirable because it is expensive. Li 2 O is 0 to 0 in the above range
2% is particularly preferred. In addition, 4 to 15% of Na 2 O + K 2 O + Li 2 O is good;
Furthermore, 6 to 12% is particularly preferred. TiO 2 is a crystal nucleating agent and generates crystals from within the glass, thereby improving the strength of the crystallized glass. Furthermore, this component acts to grow crystals to a size that provides an excellent appearance as a natural stone pattern. When HiO 2 <0.2%, this effect is hardly obtained, and when TiO 2 >5%, the crystals are colored grayish-purple, which is not preferable. TiO 2 is within the above range
Particularly preferred is 0.2-3%. ZnO improves chemical resistance and improves the strength of the crystallized glass. ZnO>8% is undesirable because the meltability deteriorates and other crystals (zinc spinel) are formed and colored dark blue. B2O3 promotes solubility and reduces viscosity.
If B 2 O 3 >5%, phase separation of the glass tends to occur, which is undesirable because it delays the ceraming treatment time after molding. B 2 O 3 is particularly preferably 0 to 3% within the above range. P 2 O 5 promotes solubility and promotes crystal nucleation. On the other hand, when P 2 O 5 >5%, crystal growth slows down,
This is not preferred because it delays the ceramicing treatment time after molding. P 2 O 5 is particularly preferably 0 to 3 in the above range. Furthermore, if the weight ratio of MgO/CaO is less than 2/3, wollastonite crystals are formed and cracks are likely to occur, which is not preferable. In the present invention, the total amount of the above components is preferably 96% or more, and the remaining amount is less than 4%.
Coloring agents such as MnO 2 , CaO, Fe 2 O 3 , NiO, Se, etc. can be added to create the desired color tone. In producing a glass molded body having such a composition, each raw material is mixed and batched so as to have a target composition, and the mixture is heated to 1400 to 1500°C in a melting furnace to melt and clarify. Next, the molten glass is cooled to about 1300°C and formed into a predetermined shape. When forming plate glass, there are no particular limitations, but in terms of productivity, it is best to continuously form a ribbon of a predetermined thickness using a roll-out method, then slowly cool it and cut it into a predetermined size. desirable. In order to generate crystals in such a molded body, it is desirable to employ the following heat treatment. The temperature is raised to a temperature at which crystals grow at a rate that does not damage the molded body, and the temperature is maintained in a normal atmosphere for 3 to 5 hours. As a result, diopsite, aluminum-containing diopsite, and enstatite are formed as main crystals in the glass. The temperature at which crystals grow is 950~
The temperature is 1050℃. 120-240 at 650-780℃ during heating process
Fine crystals can be generated by holding the temperature for a minute or by lowering the heating rate in the temperature range. The generation of fine crystals can also be achieved by adding a small amount of carbon to a glass raw material and melting it, and then crystallizing a molded body made from this molten glass. The size of the crystals produced by this method is about 0.1 to 4 mm,
In addition, the amount of crystals ultimately produced is 30 to 40% by weight.
It is. [Example] According to a conventional method, silica sand was used as the SiO 2 source, alumina powder was used as the Al 2 O 3 source, and
Limestone as CaO source, magnesium hydroxide as MgO source, soda ash as Na 2 O source, potassium carbonate as K 2 O source, lithium carbonate as Li 2 O source, titanium dioxide powder as TiO 2 source, zinc white as ZnO source, A batch was prepared according to the desired glass composition using borax as a B 2 O 3 source and calcium phosphate as an R 2 O 3 source, and further using Glauber's salt and carbon as a fining agent. 5 kg of this batch was placed in a platinum crucible and melted at 1450°C for 5 hours, press-molded into a plate shape and cooled. The formed plate glass was placed on a base made of refractory material sprinkled with alumina powder, placed in a heat treatment furnace, heated at a rate of 50°C/hr, and crystallized at 1000°C for 4 hours. Next, the surface of this plate glass is roughly polished with silica sand,
Alumina fine powder gives it a shine. The devitrification temperature, bending strength, and crystal type measured for these glasses are also listed in the same table. Crystal type A in the table represents tapesite, B represents aluminum-containing dipsite, and C represents enstatite. As is clear from the table, the devitrification temperature of the glass used in the present invention is 1300
Since the temperature is as low as ℃ or less, it is easy to form glass products. Furthermore, when the surface of a crystallized glass molded article was observed, no cracks were observed at all. In addition, the glass had a natural stone pattern and could be used as a wall material. [Effects of the Invention] Since the crystallized glass according to the present invention develops crystals in various directions regardless of the glass surface, it is possible to form molten glass into a plate shape by a roll-out method or the like.
It can be manufactured by crystallizing and polishing as is. Therefore, the process of granulating the glass and placing it into a mold is simplified. Furthermore, since the devitrification temperature is as low as approximately 1250°C, it can be molded using the normal roll-out method, so there are fewer restrictions on manufacturing conditions. In addition, the crystallization treatment is also below 1000℃, from 950℃ to 1000℃.
℃, it also has the advantage of being able to use inexpensive materials for the base and the like.
【表】【table】
Claims (1)
〜15,SiO2+Al2O3 62〜78,CaO3〜8,MgO
8〜13,CaO+MgO11〜19,Na2O4〜15,
Li2O0〜3,K2O0〜5、Na2O+Li2O+K2O4〜
15,TiO20.2〜3,ZnO0〜8,B2O30〜5,
P2O50〜5からなり、かつ重量比MgO/CaOが
2/3より大きい組成のガラスを所定形状に成形し、
該成形体を加熱し輝石系結晶を生成させる結晶化
ガラスの製造法。 1 Substantially SiO 2 55 to 68 , Al 2 O 3 in weight %
~ 15 , SiO 2 + Al 2 O 3 62 ~ 78 , CaO 3 ~ 8 , MgO
8-13 , CaO+ MgO 11-19 , Na2O4-15 ,
Li 2 O0~3, K 2 O0~5, Na 2 O+Li 2 O+K 2 O4~
15, TiO2 0.2~ 3 , ZnO0~ 8 , B2O3 0 ~5,
Forming glass into a predetermined shape, consisting of P 2 O 5 0 to 5 and having a weight ratio of MgO/CaO of more than 2/3,
A method for producing crystallized glass, which comprises heating the molded body to generate pyroxene crystals.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9554385A JPS61256940A (en) | 1985-05-07 | 1985-05-07 | Production of pyroxene crystallized glass |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9554385A JPS61256940A (en) | 1985-05-07 | 1985-05-07 | Production of pyroxene crystallized glass |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS61256940A JPS61256940A (en) | 1986-11-14 |
JPH0360784B2 true JPH0360784B2 (en) | 1991-09-17 |
Family
ID=14140477
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP9554385A Granted JPS61256940A (en) | 1985-05-07 | 1985-05-07 | Production of pyroxene crystallized glass |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS61256940A (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105330142B (en) * | 2010-10-27 | 2018-11-23 | Agc株式会社 | glass plate and its manufacturing method |
CN103739202B (en) * | 2013-12-17 | 2016-06-29 | 朱晓明 | A kind of devitrified glass and production method thereof |
EP3945078A1 (en) * | 2020-07-30 | 2022-02-02 | Sibelco Nederland N.V. | A glass-ceramic material, a method of forming a glass-ceramic material and uses of a glass-ceramic material |
CN115108727A (en) * | 2021-03-23 | 2022-09-27 | 华为技术有限公司 | Glass-ceramic, cover glass and electronic equipment |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS517014A (en) * | 1974-07-08 | 1976-01-21 | Hiroshima Garasu Kogyo Kk | TENNENDAIRISEKINIRUIJISHITA KETSUSHOKAGARASU |
-
1985
- 1985-05-07 JP JP9554385A patent/JPS61256940A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS61256940A (en) | 1986-11-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN100564296C (en) | Li2O-Al2O3-SiO2-MgO-K2O-F series microcrystalline glass, microcrystalline glass, and manufacturing method thereof | |
CN111592224A (en) | Magnesium aluminum silicate nanocrystalline transparent ceramic, preparation method and product thereof | |
CN105601115A (en) | Microcrystalline glass by taking spinel as main component and preparation method thereof | |
JP2628006B2 (en) | Glass ceramic, method for producing the same, and method for changing the color thereof | |
JPH08198639A (en) | Colored glass ceramic and its preparation | |
JPS6049145B2 (en) | Method for manufacturing crystallized glass | |
JPH08253346A (en) | Opaque glass ceramic with ivory color and method for controlling its color | |
JPH03199136A (en) | Production method of pyroxene crystallized glass | |
WO2006135049A1 (en) | Natural marble like crystallized glass and process for production thereof | |
JP3269416B2 (en) | Crystallized glass and method for producing the same | |
JPH0360784B2 (en) | ||
KR100385371B1 (en) | Crystallized glass for building material having natural marbly pattern and manufacturing method thereof | |
JP5041324B2 (en) | Natural marble-like crystallized glass and method for producing the same | |
JPH0692257B2 (en) | Method for producing pyroxene-based crystallized glass | |
JPH069245A (en) | Crystallized glass article and its production | |
JPH04338131A (en) | Crystallized glass | |
JPS5817133B2 (en) | translucent glass | |
JP3014139B2 (en) | Crystallized glass | |
JPH0449498B2 (en) | ||
JPH09263424A (en) | Crystallized glass and its production | |
CN111439932B (en) | Jade-like microcrystalline glass and preparation method thereof | |
JP3126558B2 (en) | Crystallized glass | |
KR900003139B1 (en) | Natural marble patterned crystallized glass | |
JPH0776110B2 (en) | Natural stone-like crystallized glass article | |
US5455207A (en) | Colored glass-ceramics and method |