[go: up one dir, main page]

JPH0360662B2 - - Google Patents

Info

Publication number
JPH0360662B2
JPH0360662B2 JP59201345A JP20134584A JPH0360662B2 JP H0360662 B2 JPH0360662 B2 JP H0360662B2 JP 59201345 A JP59201345 A JP 59201345A JP 20134584 A JP20134584 A JP 20134584A JP H0360662 B2 JPH0360662 B2 JP H0360662B2
Authority
JP
Japan
Prior art keywords
resin
fiber
fiber bundles
frp
twisted
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59201345A
Other languages
Japanese (ja)
Other versions
JPS6178628A (en
Inventor
Tadao Watanabe
Toshihiro Takehana
Atsushi Misumi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NHK Spring Co Ltd
Original Assignee
NHK Spring Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NHK Spring Co Ltd filed Critical NHK Spring Co Ltd
Priority to JP59201345A priority Critical patent/JPS6178628A/en
Publication of JPS6178628A publication Critical patent/JPS6178628A/en
Publication of JPH0360662B2 publication Critical patent/JPH0360662B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Springs (AREA)
  • Reinforced Plastic Materials (AREA)
  • Moulding By Coating Moulds (AREA)

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は、例えばトーシヨンバーやコイルばね
の素線などのように、ねじり力を受けるFRP部
材の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a method of manufacturing an FRP member that is subjected to torsional force, such as a torsion bar or a wire of a coil spring.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

トーシヨンバーやトルク伝達軸、あるいは引張
りコイルばねや圧縮コイルばねなどに用いられる
素材には、使用状態においてねじり力が加わる。
従つてこれらをFRP(繊維強化合成樹脂)によつ
て製造する場合には、第4図に概念的に示される
ように強化繊維a…を素材の長手方向(軸線o−
o)に対し45°程度傾けて配向するのが理想的で
ある。
Torsional force is applied to the materials used for torsion bars, torque transmission shafts, tension coil springs, compression coil springs, and the like during use.
Therefore, when manufacturing these from FRP (fiber-reinforced synthetic resin), the reinforcing fibers a... are aligned in the longitudinal direction of the material (axis o-
Ideally, the orientation should be at an angle of about 45° with respect to o).

そこで従来は、一般に第5図に示されるよう
に、含浸槽cに繊維束dを通過させて樹脂を含浸
させたのちに、芯材eのまわりに角度をもたせて
巻付けて成形する方法がとられている。ところが
この方法では成形できる部材の長さに制限があ
り、連続生産ができず量産性に問題がある。しか
もコイルばねの素線のように比較的線径の細い長
尺部材では、芯材eが細く剛性が不足し、巻付け
が困難な場合がある。
Conventionally, as shown in Fig. 5, a method has been adopted in which the fiber bundle d is passed through an impregnating tank c to be impregnated with resin, and then wrapped around the core material e at an angle to form the fiber bundle. It is taken. However, with this method, there is a limit to the length of the member that can be molded, and continuous production is not possible, resulting in problems with mass production. Moreover, in the case of a long member having a relatively small wire diameter, such as a coil spring wire, the core material e is thin and lacks rigidity, and winding may be difficult.

〔発明の目的〕[Purpose of the invention]

本発明は上記事情に基づきなされたものでその
目的とするところは、ねじり力を受けるFRP製
の長尺部材を能率よく生産することができ、かつ
芯材の有無、芯材の剛性などに関係なく安定して
成形できるようなFRP部材の製造方法を提供す
ることにある。
The present invention was made based on the above circumstances, and its purpose is to efficiently produce a long FRP member that is subjected to torsional force, and to make it possible to efficiently produce a long member made of FRP that is subjected to torsional force, and to be The purpose of the present invention is to provide a method for manufacturing FRP members that can be stably molded without any problems.

〔発明の概要〕[Summary of the invention]

本発明の要旨とするところは、繊維玉を乗せた
テーブルを回転させつつ、上記繊維玉から繊維束
を繰り出して含浸槽に導入し、これら繊維束に樹
脂を含浸させながら上記テーブルの回転中心軸側
に集めて撚り合わせ、撚り合わされた樹脂含浸繊
維束を引出して加熱硬化させることを特徴とする
ねじり力を受けるFRP部材の製造方法にある。
The gist of the present invention is to rotate a table on which fiber beads are placed, and feed out fiber bundles from the fiber balls and introduce them into an impregnation tank, and while impregnating these fiber bundles with resin, the rotation center axis of the table A method for manufacturing an FRP member that is subjected to torsion force, which comprises gathering the fibers together to one side and twisting them together, pulling out the twisted resin-impregnated fiber bundles, and heating and hardening them.

上記方法によれば、芯材を用いても用いなくて
も繊維束に所定の角度をもたせて長尺FRP部材
の連続成形を行なうことができる。また、例えば
上記テーブルを2段以上設け、繊維束の撚り方向
を交互に変えるか、または同一方向に2層以上撚
り重ねるようにすれば、太く長尺なFRP部材を
芯材の有無に関係なく能率よく連続成形すること
ができる。
According to the above method, a long FRP member can be continuously formed by giving the fiber bundle a predetermined angle, whether or not a core material is used. In addition, for example, if the above-mentioned table is installed in two or more stages, and the direction of twisting the fiber bundles is alternately changed, or two or more layers are twisted in the same direction, thick and long FRP members can be manufactured regardless of the presence or absence of a core material. Can be efficiently and continuously molded.

〔発明の実施例〕[Embodiments of the invention]

以下に本発明の一実施例につき、第1図および
第2図を参照して説明する。まず、本発明方法を
実施するための装置について説明する。第1図に
おいて図中1はテーブルであつて、このテーブル
1はローラ2…によつて支えられていて、水平面
内で回転可能である。そしてこのテーブル1は、
ギヤ3と変速機4を介してモータ5によつて回転
される。テーブル1の中心部にはセンター孔6が
形成されている。
An embodiment of the present invention will be described below with reference to FIGS. 1 and 2. First, an apparatus for carrying out the method of the present invention will be explained. In FIG. 1, reference numeral 1 denotes a table, which is supported by rollers 2 and is rotatable in a horizontal plane. And this table 1 is
It is rotated by a motor 5 via a gear 3 and a transmission 4. A center hole 6 is formed in the center of the table 1.

またテーブル1上に繊維玉7…が乗せられてい
る。これら繊維玉7…はテーブル1の回転周方向
と径方向に多数個配列されている。そして各繊維
玉7…から、FRPの強化繊維となる繊維束10
…が、ガイド11…を通過して含浸槽13の中に
引き出される。
Also, fiber beads 7 are placed on the table 1. A large number of these fiber beads 7 are arranged in the rotation circumferential direction and radial direction of the table 1. Then, from each fiber ball 7..., fiber bundle 10 becomes the reinforcing fiber of FRP.
... is drawn out into the impregnation tank 13 through the guides 11 ....

上記含浸槽13はテーブル1の下方に配置され
ている。含浸槽13内にはFRPのマトリツクス
となる熱硬化性の樹脂14が収容されており、か
つ底部には樹脂14が漏れないように樹脂を含浸
した繊維束10を軽く締付けるブツシユ16が設
けられている。このブツシユ16はテーブル1の
回転中心軸上に位置している。なお、マトリツク
ス樹脂として、例えばエポキシ樹脂や不飽和ポリ
エステル樹脂、フエノール樹脂、ビニルエステル
樹脂等を使用する。また強化繊維としては、ガラ
ス繊維、炭素繊維、有機高弾性繊維等を使用す
る。
The impregnation tank 13 is placed below the table 1. The impregnation tank 13 contains a thermosetting resin 14 that will become the FRP matrix, and a bush 16 is provided at the bottom to lightly tighten the resin-impregnated fiber bundle 10 to prevent the resin 14 from leaking. There is. This bush 16 is located on the rotation center axis of the table 1. Note that as the matrix resin, for example, epoxy resin, unsaturated polyester resin, phenol resin, vinyl ester resin, etc. are used. Further, as reinforcing fibers, glass fibers, carbon fibers, organic high elastic fibers, etc. are used.

更に上記含浸槽13の下方に、二段目のテーブ
ル21が配設されている。このテーブル21は上
記した一段目のテーブル1と同様に、ローラ22
…によつて支えられていて、水平面内で回転可能
である。そしてこのテーブル21は、ギヤ23と
変速機24を介してモータ25によつて回転され
る。またテーブル21の中心部には、撚り合わさ
れた樹脂含浸繊維束10を挿通させるセンター孔
26が形成されている。
Furthermore, a second table 21 is provided below the impregnating tank 13. This table 21 has a roller 22 similar to the first stage table 1 described above.
It is supported by... and is rotatable in the horizontal plane. This table 21 is rotated by a motor 25 via a gear 23 and a transmission 24. Further, a center hole 26 is formed in the center of the table 21, through which the twisted resin-impregnated fiber bundle 10 is inserted.

またテーブル21上に繊維玉27…が乗せられ
ている。そして各繊維玉27…から繊維束30…
が、ガイド31…を通過して含浸槽33の中に引
き出される。
Also, fiber beads 27 are placed on the table 21. And from each fiber ball 27... fiber bundle 30...
is drawn out into the impregnating tank 33 through the guides 31 .

上記含浸槽33はテーブル21の下方に配置さ
れている。含浸槽33内には第1の含浸槽13と
同様の種類の熱硬化性の樹脂34が収容されてお
り、かつ底部には樹脂34が漏れないように樹脂
を含浸した繊維束30を軽く締付けるブツシユ3
6が設けられている。このブツシユ36はテーブ
ル21の回転中心軸上に位置している。
The impregnating tank 33 is arranged below the table 21. The same kind of thermosetting resin 34 as in the first impregnation tank 13 is stored in the impregnation tank 33, and the resin-impregnated fiber bundle 30 is lightly tightened at the bottom so that the resin 34 does not leak. Butsuyu 3
6 is provided. This bush 36 is located on the rotation center axis of the table 21.

また、撚り合わされた繊維束10…,30…を
巻取るための芯型40が設けられている。この芯
型40は円筒状ないし円柱状をなし、その外周面
に螺旋状の溝41が形成されている。芯型40は
好ましくはヒータを内蔵している。そして芯型4
0は変速機42を介してモータ43によつて回転
される。上記変速機4,24,42は、マイクロ
コンピユータなどを用いた制御装置45によつて
各々独立して速度制御が可能であり、芯型40の
回転速度および軸方向の送り速さと各テーブル
1,21の回転速度を関連させて制御することに
より、強化繊維の撚り角度を所望の値に設定し得
るようになつている。なお、巻始めと巻終わりの
各動作を同期させることも当然必要である。
Further, a core mold 40 for winding up the twisted fiber bundles 10..., 30... is provided. This core mold 40 has a cylindrical or cylindrical shape, and has a spiral groove 41 formed on its outer peripheral surface. The core mold 40 preferably has a built-in heater. And core type 4
0 is rotated by a motor 43 via a transmission 42. The speed changers 4, 24, and 42 can each be independently controlled in speed by a control device 45 using a microcomputer or the like, and control the rotational speed and axial feed speed of the core die 40 and the speed of each table 1, By controlling the rotational speed of the reinforcing fibers in relation to each other, the twist angle of the reinforcing fibers can be set to a desired value. Note that it is naturally necessary to synchronize each operation at the beginning and end of winding.

上記構成の実施例装置を用いてFRP部材Aを
製造するには、テーブル1を例えば図示F1方向
に回転させつつ、繊維玉7…から繊維束10…を
繰り出して含浸槽13に導入する。そして繊維束
10…に樹脂14を含浸させながら繊維束10…
をテーブル1の回転中心側に集め、ブツシユ16
の所で撚り合せる。この時、繊維束10…を引出
す速さとテーブル1の回転速度を関連させて、撚
り角度が例えば45°程度となるように制御する。
To manufacture the FRP member A using the embodiment apparatus having the above configuration, the fiber bundles 10 are drawn out from the fiber balls 7 and introduced into the impregnation tank 13 while the table 1 is rotated, for example, in the F1 direction in the drawing. Then, while impregnating the fiber bundles 10 with the resin 14, the fiber bundles 10...
Collect it on the rotation center side of table 1, and press the button 16.
Twist together at . At this time, the speed at which the fiber bundles 10 are pulled out is related to the rotational speed of the table 1, and the twisting angle is controlled to be, for example, about 45 degrees.

また同時に二段目のテーブル21を反対方向
F2に回転させ、上記と同様に繊維玉27…から
繊維束30…を繰り出しつつ含浸槽33に導入す
る。そして、繊維束30…に樹脂34を含浸させ
ながら、テーブル21の回転中心軸側に集め、ブ
ツシユ36の所で、一方向の撚られている繊維束
10…の外側に、繊維束30…の層を反対方向に
例えば45°程度の撚り角度で撚り合せる。
At the same time, move the second table 21 in the opposite direction.
F2 is rotated, and the fiber bundles 30 are fed out from the fiber balls 27 and introduced into the impregnation tank 33 in the same manner as above. Then, the fiber bundles 30 are impregnated with the resin 34 and collected on the rotation center axis side of the table 21, and at the bush 36, the fiber bundles 30 are placed on the outside of the fiber bundles 10 that are twisted in one direction. The layers are twisted in opposite directions at a twist angle of, for example, 45°.

以上のようにして撚り合わされた繊維束10,
30は、芯型40の回転によつて含浸槽13,3
3から引出され、螺旋状の溝41に沿つてコイル
状に巻取られる。この時、芯型40は図示矢印
F3方向に回転されるとともに、F4方向に直線的
に送られる。
The fiber bundle 10 twisted together as described above,
30 is the impregnating tank 13, 3 by the rotation of the core mold 40.
3 and wound into a coil along the spiral groove 41. At this time, the core mold 40 is
It is rotated in the F3 direction and sent linearly in the F4 direction.

こうして芯型40に巻取られた樹脂含浸繊維束
10…,30…は、芯型40に内装されたヒータ
により加熱されるか、または別途に用意された加
熱装置に入いられて加熱硬化させられ、巻きばね
用のFRP部材Aが得られる。
The resin-impregnated fiber bundles 10 . Then, an FRP member A for a coiled spring is obtained.

上述の製造方法によれば、コイルばねのように
比較的線径の細い長尺FRP部材であつても、芯
材の有無あるいは芯材の剛性、太さなどに関係な
く安定して連続生産を行なうことができる。そし
てテーブル1,21の回転速度と繊維束10,3
0の引出し速度を適宜組合わせることにより、強
化繊維の巻付け角度すなわち配向角度を変化させ
ることができる。このためトーシヨンバーやトル
ク伝達軸、コイルばねなどのようにねじり力を受
ける部材において強化繊維をねじりに対し理想的
な方向に配向することができる。
According to the above manufacturing method, even long FRP members with a relatively small wire diameter, such as coil springs, can be produced stably and continuously, regardless of the presence or absence of a core material, or the rigidity or thickness of the core material. can be done. And the rotational speed of the tables 1 and 21 and the fiber bundles 10 and 3
By appropriately combining the drawing speeds of 0, the winding angle, that is, the orientation angle of the reinforcing fibers can be changed. Therefore, reinforcing fibers can be oriented in an ideal direction for torsion in members that receive torsional force, such as torsion bars, torque transmission shafts, coil springs, and the like.

また、中空のトーシヨンバーを製造したい場合
には、テーブル1のセンター孔6から芯材を挿入
し、上述したように樹脂を含浸させた繊維束を巻
付けて硬化後に芯材を抜き取ればよい。芯材を残
せば芯入りのトーシヨンバーとして使用できる。
Furthermore, if it is desired to manufacture a hollow torsion bar, a core material may be inserted through the center hole 6 of the table 1, a resin-impregnated fiber bundle may be wrapped around it as described above, and the core material may be pulled out after hardening. If the core material is left, it can be used as a torsion bar with a core.

なお、第1図の例ではテーブルと二段とした
が、テーブルは一段のみであつても本発明の所期
の目的は達成することができる。またテーブルを
3段以上設け、撚り方向を交互に変えるか、ある
いは同じ方向に撚り重ねて、径の太いFRP部材
を得るようにしてもよい。
In the example of FIG. 1, there are two levels of tables, but the intended purpose of the present invention can be achieved even if the table has only one level. Further, three or more tables may be provided, and the twisting direction may be alternately changed or the twisting may be repeated in the same direction to obtain a large diameter FRP member.

第3図は直線状のトーシヨンバーあるいはトル
ク伝達軸などを連続的に生産する例を示してい
る。含浸槽13の出口側には加熱装置50が設け
られており、硬化した直線状のFRP部材Aを引
出し装置51によつて所定の速さで連続的に引出
す。そして所定の長さの所で切断装置52が駆動
されてFRP部材Aが切断される。上記加熱装置
50としては、外部から熱を加えるものでもよい
が、高周波あるいはマイクロ波、レーザなどを使
用するものであつてもよい。また、芯材55を使
用しても勿論差支えない。
FIG. 3 shows an example of continuous production of linear torsion bars or torque transmission shafts. A heating device 50 is provided on the exit side of the impregnating tank 13, and the hardened linear FRP member A is continuously drawn out by a drawing device 51 at a predetermined speed. Then, the cutting device 52 is driven to cut the FRP member A at a predetermined length. The heating device 50 may be one that applies heat from the outside, but may also be one that uses high frequency, microwave, laser, or the like. Furthermore, it is of course possible to use the core material 55.

〔発明の効果〕〔Effect of the invention〕

上述したように本発明によれば、ねじり力を受
ける各種のFRP部材を連続的に生産することが
でき、量産性に優れ、かつ芯材の有無、太さ、芯
材の剛性などに左右されることなく、安定して長
尺FRP部材を成形することができる。
As described above, according to the present invention, it is possible to continuously produce various FRP members that are subjected to torsional force, which is excellent in mass production, and which is dependent on the presence or absence of a core material, its thickness, the rigidity of the core material, etc. It is possible to stably mold a long FRP member without any problems.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明方法を実施する装置の概略を示
す縦断面図、第2図は同装置のテーブル部分の平
面図である。第3図は本発明方法を実施する装置
の別の例を示す概略図、第4図はFRP部材の一
部を概念的に示す正面図、第5図は従来のFRP
部材の製造装置を示す概略斜視図である。 1,21……テーブル、7,27……繊維玉、
10,30……繊維束、13,33……含浸槽、
14,34……樹脂、40……芯型、A……
FRP部材。
FIG. 1 is a vertical sectional view schematically showing an apparatus for carrying out the method of the present invention, and FIG. 2 is a plan view of a table portion of the apparatus. Fig. 3 is a schematic diagram showing another example of an apparatus for implementing the method of the present invention, Fig. 4 is a front view conceptually showing a part of an FRP member, and Fig. 5 is a conventional FRP member.
FIG. 1 is a schematic perspective view showing a member manufacturing device. 1,21...table, 7,27...fiber ball,
10, 30... fiber bundle, 13, 33... impregnation tank,
14, 34...resin, 40...core type, A...
FRP parts.

Claims (1)

【特許請求の範囲】 1 繊維玉を乗せたテーブルを回転させつつ、上
記繊維玉から繊維束を繰り出して含浸槽に導入
し、これら繊維束に樹脂を含浸させながら上記テ
ーブルの回転中心軸側に集めて撚り合わせ、撚り
合わされた樹脂含浸繊維束を引出して加熱硬化さ
せることを特徴とするねじり力を受けるFRP部
材の製造方法。 2 撚り合わされた樹脂含浸繊維束を芯型にコイ
ル状に巻取つて加熱硬化させることを特徴とする
特許請求の範囲第1項記載のねじり力を受ける
FRP部材の製造方法。 3 上記テーブルは回転方向を互いに異ならせて
複数段設け、一方向に撚つた層の外側に更に別の
層を反対側に撚るようにしたことを特徴とする特
許請求の範囲第1項記載のねじり力を受ける
FRP部材の製造方法。
[Claims] 1. While rotating the table on which the fiber beads are placed, fiber bundles are fed out from the fiber beads and introduced into an impregnation tank, and while impregnating the fiber bundles with resin, the fiber bundles are impregnated with resin on the side of the rotation center axis of the table. A method for manufacturing an FRP member that is subjected to torsional force, characterized by gathering and twisting, pulling out the twisted resin-impregnated fiber bundles, and heating and hardening them. 2. The twisted resin-impregnated fiber bundle is wound into a coil around a core and subjected to the torsional force as set forth in claim 1, which is heated and hardened.
Manufacturing method for FRP parts. 3. The table is provided in a plurality of stages with different rotation directions, and another layer is further twisted on the outside of the layer twisted in one direction on the opposite side. subjected to torsional force of
Manufacturing method for FRP parts.
JP59201345A 1984-09-26 1984-09-26 Manufacture of frp member that will be placed under influence of torsion Granted JPS6178628A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59201345A JPS6178628A (en) 1984-09-26 1984-09-26 Manufacture of frp member that will be placed under influence of torsion

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59201345A JPS6178628A (en) 1984-09-26 1984-09-26 Manufacture of frp member that will be placed under influence of torsion

Publications (2)

Publication Number Publication Date
JPS6178628A JPS6178628A (en) 1986-04-22
JPH0360662B2 true JPH0360662B2 (en) 1991-09-17

Family

ID=16439490

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59201345A Granted JPS6178628A (en) 1984-09-26 1984-09-26 Manufacture of frp member that will be placed under influence of torsion

Country Status (1)

Country Link
JP (1) JPS6178628A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180114805A (en) * 2017-04-11 2018-10-19 (주)넥스컴스 A preform weaving device simultaneously performing resin impregnation

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63140139A (en) * 1986-11-28 1988-06-11 Tokai Rika Co Ltd Energy absorbing member and manufacture thereof
JPS63264306A (en) * 1987-04-22 1988-11-01 Sumitomo Chem Co Ltd Alumina fiber yarn prepreg
JPS6415833U (en) * 1987-07-15 1989-01-26
KR101150469B1 (en) * 2009-09-08 2012-06-01 (주)삼박 Forming apparatus and method of fiber reinforced thermoplastic composite material and product using the same
US10369754B2 (en) * 2017-02-03 2019-08-06 Oleksandr Biland Composite fibers and method of producing fibers

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180114805A (en) * 2017-04-11 2018-10-19 (주)넥스컴스 A preform weaving device simultaneously performing resin impregnation

Also Published As

Publication number Publication date
JPS6178628A (en) 1986-04-22

Similar Documents

Publication Publication Date Title
EP3271132B1 (en) A fiber-reinforced composite sports article and its method of manufacture
US6395210B1 (en) Pultrusion method and device for forming composites using pre-consolidated braids
JP4933584B2 (en) Manufacturing method of resin-impregnated composite material having multiple orientations
US3686855A (en) Cables having non-metallic cores
GB2056615A (en) Fiber-reinforced coil spring
DE10022663A1 (en) Fiber reinforced plastic pipe for propeller shafts, has helical wound layer made of reinforced fiber and bond portion of pipe has volume rate of fiber content lower than main body portion
CN112157926B (en) Fiber reinforced composite material winding forming equipment and winding forming process thereof
US4770832A (en) Process for manufacturing of structural reinforcing material
US4309865A (en) Method and apparatus for producing windings of fiber compound material on a core
JPH0360662B2 (en)
JP2007203723A (en) FIBER-REINFORCED PLASTIC TUBE AND METHOD FOR PRODUCING THE SAME
JP3475808B2 (en) Method of manufacturing fiber reinforced plastic pipe
JP2006226327A (en) FRP coil spring and production method thereof
US20170225383A1 (en) Method of manufacturing shaft-shape composite member
US3458374A (en) Method of making a braided tubular bearing having a polytetrafluoroethylene liner
JPH08290487A (en) Manufacture of frp cylinder
JPH06278216A (en) Production of tubular member such as golf shaft of fishing rod
KR102682762B1 (en) Rebar and its manufacturing device, which are designed to easily undergo shape deformation such as bending, and improve ease of use and application efficiency at the construction site
US7513970B2 (en) Method and apparatus for production of a reinforcement bar
EP3966022B1 (en) Fibre-reinforced composite tubular shafts and method of manufacturing thereof
JP3760994B2 (en) FRP spring
GB2213461A (en) Manufacture of shafts of fibre-reinforced composite material
JPS6359862B2 (en)
JP2003001716A (en) Method for producing fiber-reinforced plastic pipe
JP4380885B2 (en) Machine tools used for the production of long fiber reinforced plastic products