[go: up one dir, main page]

JPH0358680B2 - - Google Patents

Info

Publication number
JPH0358680B2
JPH0358680B2 JP59240718A JP24071884A JPH0358680B2 JP H0358680 B2 JPH0358680 B2 JP H0358680B2 JP 59240718 A JP59240718 A JP 59240718A JP 24071884 A JP24071884 A JP 24071884A JP H0358680 B2 JPH0358680 B2 JP H0358680B2
Authority
JP
Japan
Prior art keywords
main steam
valve
signal
isolation valve
steam isolation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59240718A
Other languages
Japanese (ja)
Other versions
JPS61120088A (en
Inventor
Minoru Ookura
Akira Sakamoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP59240718A priority Critical patent/JPS61120088A/en
Publication of JPS61120088A publication Critical patent/JPS61120088A/en
Publication of JPH0358680B2 publication Critical patent/JPH0358680B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Monitoring And Testing Of Nuclear Reactors (AREA)

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は、原子炉の安全系に関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a safety system for a nuclear reactor.

〔発明の背景〕[Background of the invention]

現在の沸騰水型原子力発電所においては、主蒸
気配管を隔離するための主蒸気隔離弁の健全性を
確認するために試験閉回路を設置しているが、こ
の回路は、弁試験閉鎖中、弁を安全系から分離す
るため、原子炉スクラム信号等による弁閉鎖信号
の発生を考えると、主蒸気隔離弁が弁閉鎖信号発
生時に急速閉鎖しない事象が発生してしまう。
In current boiling water nuclear power plants, a test closed circuit is installed to confirm the integrity of the main steam isolation valve for isolating the main steam piping. In order to isolate the valve from the safety system, considering the generation of a valve closing signal such as a reactor scram signal, an event may occur in which the main steam isolation valve does not close quickly when the valve closing signal is generated.

従来の例を第4図〜第10図により説明する。 A conventional example will be explained with reference to FIGS. 4 to 10.

第4図に沸騰水型原子力発電所の主蒸気系系統
概要図を示す。主蒸気隔離弁1は、原子炉20と
タービンをつなぐ主蒸気管21に取り付けられ、
原子炉とタービンを隔離するために使用される。
Figure 4 shows a schematic diagram of the main steam system of a boiling water nuclear power plant. The main steam isolation valve 1 is attached to the main steam pipe 21 that connects the nuclear reactor 20 and the turbine,
Used to isolate nuclear reactors and turbines.

第5図に主蒸気隔離弁開閉操作系統概要図を示
す。主蒸気隔離弁1の開閉は、エアーシリンダー
2に圧縮空気系より空気を供給して行う。弁の操
作は、中央制御室に設置された主蒸気隔離弁急速
閉鎖論理回路5とサーベランステスト論理回路6
により行なわれる。プラント運転中主蒸気隔離弁
急速閉鎖論理回路5は、通常状態であり、電磁弁
8,9が励磁されることによりエアーシリンダー
5下部に空気が供給され弁は開いている。
Figure 5 shows a schematic diagram of the main steam isolation valve opening/closing operation system. The main steam isolation valve 1 is opened and closed by supplying air to the air cylinder 2 from a compressed air system. The valves are operated by a main steam isolation valve quick-closing logic circuit 5 and a surveillance test logic circuit 6 installed in the central control room.
This is done by During plant operation, the main steam isolation valve quick-closing logic circuit 5 is in a normal state, and the electromagnetic valves 8 and 9 are energized to supply air to the lower part of the air cylinder 5 and the valve is open.

第6図に弁の急速閉鎖を示す。主蒸気隔離弁急
速閉鎖論理回路5に原子炉スクラム信号14が入
ると回路は、解除され、電磁弁8,9が無励磁に
なることによりエアーシリンダー2上部に空気が
供給され、又、エアーシリンダー2下部の空気を
2ケ所の排気口18,19より排出し弁は、約5
秒で急速閉鎖する。
Figure 6 shows the rapid closing of the valve. When the reactor scram signal 14 enters the main steam isolation valve rapid closing logic circuit 5, the circuit is released, and the solenoid valves 8 and 9 are de-energized, so that air is supplied to the upper part of the air cylinder 2, and the air cylinder 2 The air from the lower part is exhausted from the two exhaust ports 18 and 19, and the valve is approximately 5
Closes quickly in seconds.

第7図に弁のサーベランステストを示す。主蒸
気隔離弁急速閉鎖論理回路5が通常状態の時手動
スイツチ4によりサーベランステスト論理回路6
を通電すると、電磁弁7が励磁されパイロツト弁
11が作動することによりエアーシリンダー2下
部へ供給されていた空気は遮断され、エアーシリ
ンダー下部の空気は絞り弁13を通つて大気中へ
ゆつくり排出される。シリンダー圧力の低下に伴
い弁は、ばね3の力によりゆつくり閉鎖する。
Figure 7 shows the valve surveillance test. When the main steam isolation valve rapid closing logic circuit 5 is in the normal state, the surveillance test logic circuit 6 is activated by the manual switch 4.
When electricity is applied, the solenoid valve 7 is energized and the pilot valve 11 is operated, thereby cutting off the air that was being supplied to the lower part of the air cylinder 2, and the air at the lower part of the air cylinder is slowly discharged into the atmosphere through the throttle valve 13. be done. As the cylinder pressure decreases, the valve slowly closes due to the force of the spring 3.

しかしながら第8図において、サーベランステ
スト論理回路6を通電中に原子炉スクラム信号1
4又は主蒸気管破断信号等が発生した場合を示
す。主蒸気隔離弁急速閉鎖論理回路5が解除さ
れ、電磁弁7は励磁状態のままだが、電磁弁8,
9が無励磁となりパイロツト弁10,12が作動
する。エアーシリンダー2上部に空気が供給さ
れ、エアーシリンダー2下部の空気は、排気口1
8と絞り弁13より排気されるが、主な排気は、
排気口18のみからなされるため第9図に示すよ
うに、サーベランステスト時の急速閉鎖時間22
は、上記した通常の急速閉鎖時間23より遅れ、
約5.5秒となつてしまう。
However, in FIG. 8, while the surveillance test logic circuit 6 is energized, the reactor scram signal 1 is
4 or when a main steam pipe rupture signal occurs. The main steam isolation valve quick-close logic circuit 5 is released, and the solenoid valve 7 remains energized, but the solenoid valve 8,
9 is de-energized, and the pilot valves 10 and 12 operate. Air is supplied to the upper part of the air cylinder 2, and the air at the lower part of the air cylinder 2 is supplied to the exhaust port 1.
8 and throttle valve 13, but the main exhaust is:
As shown in FIG. 9, the rapid closing time 22 during the surveillance test is closed only from the exhaust port 18.
is later than the normal rapid closing time 23 mentioned above,
It takes about 5.5 seconds.

主蒸気隔離弁1は、全開状態から全閉状態まで
の作動時間が安全解析上5秒以内で閉じることに
なつている。したがつて本弁が5.5秒した場合主
蒸気管の破断部から流出する蒸気と炉水は第10
図の如く約20%増加24する。
The main steam isolation valve 1 is designed to close within 5 seconds from a fully open state to a fully closed state based on safety analysis. Therefore, if this valve is closed for 5.5 seconds, the steam and reactor water flowing out from the broken part of the main steam pipe will be
As shown in the figure, it will increase by about 20%24.

このように放射能の高い炉水の流出量が増大す
ることは好ましくない。そこで、サーベランステ
スト時に主蒸気管が破断した場合等の事故時に主
蒸気隔離弁を高速度に閉鎖させる必要がある。主
蒸気隔離弁の操作方法を詳しく述べてある特許の
例として特開51−321924、特開50−45323がある。
It is undesirable for the amount of highly radioactive reactor water to increase in this way. Therefore, it is necessary to close the main steam isolation valve at a high speed in the event of an accident such as when the main steam pipe ruptures during a surveillance test. Examples of patents that describe in detail how to operate a main steam isolation valve include JP-A No. 51-321924 and JP-A No. 50-45323.

〔発明の目的〕[Purpose of the invention]

本発明は、主蒸気隔離弁のサーベランステスト
時に発生した主蒸気管破断事故に伴う炉水の異常
流出を防止することができる原子炉安全系を提供
することを目的とする。
An object of the present invention is to provide a nuclear reactor safety system that can prevent abnormal outflow of reactor water due to a main steam pipe rupture accident that occurs during a main steam isolation valve surveillance test.

〔発明の概要〕[Summary of the invention]

本発明は、主蒸気隔離弁のサーベランステスト
時に発生した主蒸気管破断信号を検出し、主蒸気
隔離弁閉鎖信号を出すと同時にサーベランステス
ト解除信号を出すことにより、原子炉水の異常流
出を防止できるように構成したものである。
The present invention prevents abnormal leakage of reactor water by detecting a main steam pipe rupture signal that occurs during a main steam isolation valve surveillance test and simultaneously issuing a main steam isolation valve closing signal and a surveillance test cancellation signal. It is configured so that it can be done.

〔発明の実施例〕[Embodiments of the invention]

本発明に係る沸騰水型原子炉の主蒸気遮断方法
の好ましい実施例を添付図面に従つて示す。
DESCRIPTION OF THE PREFERRED EMBODIMENTS A preferred embodiment of the main steam shutoff method for a boiling water nuclear reactor according to the present invention is shown in accordance with the accompanying drawings.

本発明による原子炉安全系の一実施例を第1図
に示す。本安全系は、サーベランステスト論理回
路6の作動条件に手動スイツチ4の作動と主蒸気
隔離弁急速閉鎖論理回路5の作動状態を同時に満
足する場合に許可するものである。両方の論理回
路共作動状態であり、電磁弁7,8,9の励磁に
よりパイロツト弁10,11,12が作動し、弁
のエアーシリンダー2下部圧力を絞り弁13を通
つて大気にゆつくり排出することにより弁はばね
3の力により緩速閉鎖する。
An embodiment of a nuclear reactor safety system according to the present invention is shown in FIG. This safety system is permitted when the operating conditions of the surveillance test logic circuit 6, the operation of the manual switch 4, and the operating state of the main steam isolation valve rapid closing logic circuit 5 are satisfied at the same time. Both logic circuits are in co-operation state, and the pilot valves 10, 11, and 12 are operated by the excitation of the solenoid valves 7, 8, and 9, and the pressure at the bottom of the air cylinder 2 of the valve is slowly discharged to the atmosphere through the throttle valve 13. As a result, the valve is slowly closed by the force of the spring 3.

又、第2図において、手動スイツチ4の作動に
より弁がサーベランステスト実施中に原子炉スク
ラム信号14が発生された場合の回路を示す。原
子炉スクラム信号14の発生により主蒸気隔離弁
急速閉鎖論理回路5は、解除される。主蒸気隔離
弁急速閉鎖論理回路5の解除信号によりサーベラ
ンステスト論理回路6は解除される。従つて、電
磁弁7,8,9は共に無励磁状態となりばね15
により切り変わり、パイロツトバルブ10,1
1,12を作動させ、空気を排気口16より排出
する。そのためパイロツト弁は、ばね17の力に
より切り変わり、エアーシリンダー2下部の空気
は、2つの排気18,19より排気されると共に
エアーシリンダー2上部にパイロツト弁12を通
して空気を供給し、ばね3の力と合わせ弁を急速
に閉鎖することができる。
FIG. 2 also shows a circuit when the reactor scram signal 14 is generated while the valve is undergoing a surveillance test by actuation of the manual switch 4. Occurrence of the reactor scram signal 14 disables the main steam isolation valve quick-close logic circuit 5. A release signal from the main steam isolation valve quick-close logic circuit 5 releases the surveillance test logic circuit 6. Therefore, the solenoid valves 7, 8, and 9 are all in a non-energized state, and the spring 15
The pilot valve 10, 1 changes depending on the
1 and 12 are activated to exhaust air from the exhaust port 16. Therefore, the pilot valve is switched by the force of the spring 17, and the air in the lower part of the air cylinder 2 is exhausted from the two exhausts 18 and 19, and the air is supplied to the upper part of the air cylinder 2 through the pilot valve 12, and the air is switched by the force of the spring 3. The combined valve can be closed quickly.

本発明によれば、前述の第9図に示した弁の通
常の急速閉鎖状態23と同一の状態を作り出すこ
とができるため、弁は約5秒で急速閉鎖する。こ
のため前述の第10図に示した主蒸気管破断時の
流出する蒸気と炉水の流出量の増大24を防止す
ることができる。
According to the present invention, it is possible to create the same condition as the normal quick-closing condition 23 of the valve shown in FIG. 9 described above, so that the valve quickly closes in about 5 seconds. Therefore, it is possible to prevent the increase 24 in the amount of steam and reactor water flowing out when the main steam pipe breaks as shown in FIG. 10 described above.

第3図にその他の一実施例を示す。本実施例
は、サーベランステスト論理回路6の解除条件に
原子炉スクラム信号14を直接使用したものであ
る。
FIG. 3 shows another embodiment. In this embodiment, the reactor scram signal 14 is directly used as the release condition for the surveillance test logic circuit 6.

〔発明の効果〕〔Effect of the invention〕

本発明を採用することにより次の効果がある。 Adopting the present invention provides the following effects.

1 主蒸気隔離弁のサーベランステスト中に発生
した原子炉スクラム信号等による主蒸気隔離弁
急速閉鎖の安全系において、サーベランステス
ト論理回路を解除することにより、弁を高速度
で閉鎖できる。
1. In a safety system that quickly closes a main steam isolation valve due to a reactor scram signal generated during a surveillance test of the main steam isolation valve, the valve can be closed at high speed by canceling the surveillance test logic circuit.

2 主蒸気隔離弁急速閉鎖により主蒸気配管破断
時に生じる原子炉炉水の異常流出を防止でき
る。
2. Rapid closure of the main steam isolation valve can prevent abnormal leakage of reactor water that occurs when the main steam piping is ruptured.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例の論理回路図、第2
図は本発明実施後の原子炉スクラム信号発生時の
弁閉鎖回路図、第3図は本発明のその他の実施
例、第4図は沸騰水型原子力発電所の概略系統
図、第5図は主蒸気隔離弁開閉操作図、第6図は
原子炉スクラム発生時の弁操作図、第7図はサー
ベランステスト時の弁操作図、第8図はサーベラ
ンステスト中に原子炉スクラム信号発生時の弁操
作図、第9図は主蒸気隔離弁閉鎖特性図、第10
は主蒸気管破断時の炉水流出量を示す図である。 1……主蒸気隔離弁、2……エアーシリンダ
ー、3……ばね、4……手動スイツチ、5,6…
…論理回路、7〜9……電磁弁、10〜12……
パイロツトバルブ、13……絞り弁、14……信
号、15,17……ばね、16,18,19……
排気口、20……原子炉格納容器、21……主蒸
気管、22,23……弁閉鎖特性、24……異常
流出炉水量。
Figure 1 is a logic circuit diagram of one embodiment of the present invention, Figure 2 is a logic circuit diagram of an embodiment of the present invention.
The figure is a valve closing circuit diagram when a reactor scram signal is generated after implementing the present invention, Figure 3 is another embodiment of the present invention, Figure 4 is a schematic system diagram of a boiling water nuclear power plant, and Figure 5 is a schematic diagram of a boiling water nuclear power plant. Main steam isolation valve opening/closing operation diagram, Figure 6 is a valve operation diagram when a reactor scram occurs, Figure 7 is a valve operation diagram during a surveillance test, and Figure 8 is a valve operation diagram when a reactor scram signal occurs during a surveillance test. Operation diagram, Figure 9 is the main steam isolation valve closing characteristic diagram, Figure 10.
is a diagram showing the amount of reactor water flowing out when the main steam pipe breaks. 1... Main steam isolation valve, 2... Air cylinder, 3... Spring, 4... Manual switch, 5, 6...
...Logic circuit, 7-9...Solenoid valve, 10-12...
Pilot valve, 13... Throttle valve, 14... Signal, 15, 17... Spring, 16, 18, 19...
Exhaust port, 20... Reactor containment vessel, 21... Main steam pipe, 22, 23... Valve closing characteristics, 24... Abnormal outflow reactor water amount.

Claims (1)

【特許請求の範囲】[Claims] 1 エアシリンダを用いて弁体を上下動させる主
蒸気隔離弁を調整する装置において、エアシリン
ダ内への空気の供給を切換える手段と、主蒸気隔
離弁閉鎖信号を出力する主蒸気隔離弁急速閉鎖手
段と、前記主蒸気隔離弁閉鎖信号を入力したとき
に開され、前記空気供給切換手段に操作空気を供
給する第1電磁弁と、テスト信号を出力する手動
スイツチと、前記主蒸気隔離弁急速閉鎖手段が前
記主蒸気隔離弁閉鎖信号を出力しない状態及びス
クラム信号を入力しない状態のいずれか一方の状
態であつてしかも同時に前記テスト信号を出力し
た状態になるときに、作動信号を出力するサーベ
ランステスト論理手段と、前記作動信号を入力し
たときに開され、前記空気供給切換手段に操作空
気を供給する第2電磁弁とを備えた主蒸気隔離弁
制御装置。
1. In a device for adjusting a main steam isolation valve that moves a valve body up and down using an air cylinder, there is a means for switching the supply of air into the air cylinder, and a main steam isolation valve quick-closing device that outputs a main steam isolation valve closing signal. a first solenoid valve that is opened when the main steam isolation valve close signal is input and supplies operating air to the air supply switching means; a manual switch that outputs a test signal; Surveillance for outputting an activation signal when the closing means is in one of a state in which the main steam isolation valve closing signal is not outputted and a scram signal is not inputted, and at the same time, the closing means is in a state in which the test signal is outputted. A main steam isolation valve control device comprising test logic means and a second solenoid valve that is opened upon input of said actuation signal and supplies actuation air to said air supply switching means.
JP59240718A 1984-11-16 1984-11-16 Safety system of nuclear reactor Granted JPS61120088A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59240718A JPS61120088A (en) 1984-11-16 1984-11-16 Safety system of nuclear reactor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59240718A JPS61120088A (en) 1984-11-16 1984-11-16 Safety system of nuclear reactor

Publications (2)

Publication Number Publication Date
JPS61120088A JPS61120088A (en) 1986-06-07
JPH0358680B2 true JPH0358680B2 (en) 1991-09-06

Family

ID=17063670

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59240718A Granted JPS61120088A (en) 1984-11-16 1984-11-16 Safety system of nuclear reactor

Country Status (1)

Country Link
JP (1) JPS61120088A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7353243B2 (en) * 2020-07-13 2023-09-29 日立Geニュークリア・エナジー株式会社 Air operated valve drive mechanism

Also Published As

Publication number Publication date
JPS61120088A (en) 1986-06-07

Similar Documents

Publication Publication Date Title
CN107166081B (en) A kind of pneumatic redundant system of butterfly valve and its control method for rocket launching water spray
CN111322440B (en) Pressure reducing valve
EP2192594B1 (en) Drive system for safety valve
CA1163167A (en) Apparatus for individual isolation of hydraulically actuated valves
JP5676905B2 (en) Relief safety valve drive system
JP2502224B2 (en) Air operated valve
JPH0358680B2 (en)
JPS6244637B2 (en)
JPS6223279B2 (en)
JPS6229995Y2 (en)
JPS61202190A (en) Nuclear power generation main steam separation valve test apparatus
JPS6224758B2 (en)
JPH0626306A (en) Drive mechanism for steam turbine steam valve
JPS62247103A (en) Valve close operation test control device of bleed air check valve
JPH09203793A (en) Test method of main steam isolation valve
JPS62131905A (en) Turbine control device
JPS60188884A (en) Reactor safety system
JPS63184096A (en) Automatic decompression device for boiling water type reactor
Ebersole et al. An integrated safe shutdown heat removal system for light water reactors
JPS63180799A (en) Tank overpressure prevention equipment
JPS5862589A (en) Reactor containment vessel vacuum breaker
JPH026795A (en) Main steam isolation valve for nuclear power station
JPH0634782A (en) Dynamic water pressure device for driving control rod
JPS59131705A (en) Steam valve control device
JPS60117195A (en) Relief valve operation system