[go: up one dir, main page]

JPH0358485A - Manufacturing method of vertical MOSFET device - Google Patents

Manufacturing method of vertical MOSFET device

Info

Publication number
JPH0358485A
JPH0358485A JP1192662A JP19266289A JPH0358485A JP H0358485 A JPH0358485 A JP H0358485A JP 1192662 A JP1192662 A JP 1192662A JP 19266289 A JP19266289 A JP 19266289A JP H0358485 A JPH0358485 A JP H0358485A
Authority
JP
Japan
Prior art keywords
layer
forming
diffusion layer
polycrystalline semiconductor
semiconductor layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1192662A
Other languages
Japanese (ja)
Inventor
Masato Umetani
正人 梅谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oki Electric Industry Co Ltd
Original Assignee
Oki Electric Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oki Electric Industry Co Ltd filed Critical Oki Electric Industry Co Ltd
Priority to JP1192662A priority Critical patent/JPH0358485A/en
Publication of JPH0358485A publication Critical patent/JPH0358485A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D62/00Semiconductor bodies, or regions thereof, of devices having potential barriers
    • H10D62/10Shapes, relative sizes or dispositions of the regions of the semiconductor bodies; Shapes of the semiconductor bodies
    • H10D62/17Semiconductor regions connected to electrodes not carrying current to be rectified, amplified or switched, e.g. channel regions
    • H10D62/393Body regions of DMOS transistors or IGBTs 
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D30/00Field-effect transistors [FET]
    • H10D30/01Manufacture or treatment
    • H10D30/021Manufacture or treatment of FETs having insulated gates [IGFET]
    • H10D30/028Manufacture or treatment of FETs having insulated gates [IGFET] of double-diffused metal oxide semiconductor [DMOS] FETs
    • H10D30/0291Manufacture or treatment of FETs having insulated gates [IGFET] of double-diffused metal oxide semiconductor [DMOS] FETs of vertical DMOS [VDMOS] FETs
    • H10D30/0297Manufacture or treatment of FETs having insulated gates [IGFET] of double-diffused metal oxide semiconductor [DMOS] FETs of vertical DMOS [VDMOS] FETs using recessing of the gate electrodes, e.g. to form trench gate electrodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D30/00Field-effect transistors [FET]
    • H10D30/60Insulated-gate field-effect transistors [IGFET]
    • H10D30/64Double-diffused metal-oxide semiconductor [DMOS] FETs
    • H10D30/66Vertical DMOS [VDMOS] FETs
    • H10D30/668Vertical DMOS [VDMOS] FETs having trench gate electrodes, e.g. UMOS transistors

Landscapes

  • Element Separation (AREA)
  • Semiconductor Memories (AREA)

Abstract

PURPOSE:To dispense with an alignment margin and to make an element small in size by a method wherein a diffusion layer serving as a source region and a contact hole are formed in a self-aligned manner taking advantage of bird beaks which occur when a polycrystalline semiconductor layer is selectively oxidized using an acid resistant film such as a nitride film or the like as a mask. CONSTITUTION:After a first and second polycrystalline semiconductor layer, 24 and 30, are selectively oxidized using an acid resistant film 25 as a mask, a second diffusion layer 33 is formed in a self-aligned manner on a first diffusion layer 23 around a groove 28 through a removing process of a selective oxide film 31 and a process in which an impurity doped insulating film layer 34 is formed on the whole face and then thermally treated. After the formation of the second diffusion layer 33, the impurity doped insulating layer 34 is removed, then an oxide film layer 32 is formed using the acid resistant film 25 as a mask again, and the acid resistant film 25 and the residual first polycrystalline semiconductor layer 24 are removed, whereby a contact hole 35 is formed in a self-aligned manner. As mentioned above, the second diffusion layer 33 and the contact hole 35 are formed in a self-aligned manner. By this setup, an alignment margin can be dispensed with and an element can be made small in size.

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は、縦型MOS FET装置の製造方法に関す
るものである. (従来の技術) 従来の縦型MOS FET装置の製造方法を第2図(a
)〜(ωを参照して説明する。この従来の方法は、文献
「アイイイイ・トランスアクションズ・オン・エレクト
ロン・デバイシズ(IEEE TRANSACTION
SON ELECTRON DELICBS)JLLI
I (11 ) (19B?−11)P2329〜23
34 Jに開示されるような方法である.まず、比抵抗
0.004Ω・備程度のN型半導体基板1上に比抵抗1
.5Ω・備のN型エピタキシャル層2を形成し、このN
型エピタキシャル層2の表面部に接合深さ3pm,  
シート抵抗500〜1000Ω/口のP型拡散層3を形
成する.次いで、熱酸化を行い、厚さ250人の第1酸
化膜層4を前記P型拡散層3の表面に形成した後、その
上にCVD法によりSi3N4層5を形成し、さらにそ
の上に厚さ10000人に第2酸化膜層6をCVD法に
より形成する.なお、第1酸化膜層4は、前記Si3N
4層5による応力を緩和するために設けられる.(第2
図(a))次に、ホトリソエソチング工程により第2酸
化膜層6,s+.l1.層5および第1酸化膜層4を図
示しないレジストをマスクとして選択的に除去し、幅3
nの開口部7を形成する.続いて、その開口部7から残
存第2酸化膜層6をマスクとしてPIE法によりP型拡
敞層3をエッチングすることにより、このP型拡散層3
に前記N型エピタキシャル層2に到達するように溝8を
形成する。(第2図(bl). その後、第2酸化膜層6をエッチングにより除去する. 次に、Si3Ni層5をマスクとして選択酸化を行うこ
とにより、前記溝8の内壁に厚さ1000人のゲート酸
化膜層9を形成する.その後、CVD法により、N型に
ドーブしたポリシリコン層10を厚さ7一程度全面に形
成し、溝8をこのポリシリコン層10で完全に埋める.
(第2図(c))その後、SrJa層5をストツパとし
てポリシリコン層lOをエッチバックすることにより、
このポリシリコン層10を溝8内にのみ残す(第2図(
d)). その後、StJ4層5と第1酸化膜層4をエッチングに
より除去する(第2図(e)).次いで、溝部周囲のP
型拡散層3表面部に、接合深さ2n、シート抵抗20〜
30Ω/口程度のN型拡散層11を、レジストマスクに
よるイオン注入法と熱処理により形成する(第2図(f
)).次に、溝部のポリシリコンI1i10の表面とP
型,N型拡散層3.11の表面である全面に熱酸化法に
より第3酸化膜層12を厚さ5000人程度形成する(
第2図(g)). その後、その第3酸化膜層12の一部をホトリソエノチ
ングにより除去して、前記P型およびN型拡散Ji3,
11上を露出させるようにコンタクトホール13を形成
する.次いで、そのコンタクトホールl3を通してP型
およびN型拡散層3,11に接続されるように厚さ2n
のアルξ配線層l4を蒸着法により形成する(第2図(
h)).以上の工程により、N型拡散層11をソース領
域.P型拡散層3をボディ領域,溝部のポリシリコン層
10をゲート電極.N型エピタキシャル層2をドレイン
領域.P型拡散層3の溝8側面部分をチャネル領域とす
る縦型MOS F[!Tが得られる。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a method of manufacturing a vertical MOS FET device. (Prior Art) A conventional method for manufacturing a vertical MOS FET device is shown in Figure 2 (a).
) to (ω. This conventional method is described in the document “IEEE TRANSACTIONS ON ELECTRON DEVICES (IEEE TRANSACTIONS)”.
SON ELECTRON DELICBS)JLLI
I (11) (19B?-11) P2329-23
34 J. First, a specific resistance of 1
.. An N-type epitaxial layer 2 with a resistance of 5Ω is formed.
A junction depth of 3 pm is formed on the surface of the mold epitaxial layer 2.
A P-type diffusion layer 3 with a sheet resistance of 500 to 1000 Ω/hole is formed. Next, thermal oxidation is performed to form a first oxide film layer 4 with a thickness of 250 nm on the surface of the P-type diffusion layer 3, and then a Si3N4 layer 5 is formed thereon by the CVD method. Then, a second oxide film layer 6 was formed on 10,000 people by the CVD method. Note that the first oxide film layer 4 is made of the Si3N
It is provided to relieve the stress caused by the four layers 5. (Second
(a)) Next, the second oxide film layer 6, s+. l1. The layer 5 and the first oxide film layer 4 are selectively removed using a resist (not shown) as a mask, and a width of 3 is formed.
Form an opening 7 of n. Subsequently, the P-type diffusion layer 3 is etched through the opening 7 by the PIE method using the remaining second oxide film layer 6 as a mask.
A groove 8 is formed so as to reach the N-type epitaxial layer 2. (FIG. 2 (bl). After that, the second oxide film layer 6 is removed by etching. Next, by performing selective oxidation using the Si3Ni layer 5 as a mask, the inner wall of the trench 8 is coated with a gate of 1000 mm thick. An oxide film layer 9 is formed. Thereafter, an N-type doped polysilicon layer 10 is formed on the entire surface to a thickness of about 7 mm by CVD, and the groove 8 is completely filled with this polysilicon layer 10.
(FIG. 2(c)) Then, by etching back the polysilicon layer 10 using the SrJa layer 5 as a stopper,
This polysilicon layer 10 is left only in the groove 8 (see Fig. 2 (
d)). Thereafter, the StJ4 layer 5 and the first oxide film layer 4 are removed by etching (FIG. 2(e)). Next, P around the groove
On the surface of the mold diffusion layer 3, the junction depth is 2n and the sheet resistance is 20~
An N-type diffusion layer 11 of approximately 30Ω/hole is formed by ion implantation using a resist mask and heat treatment (see Fig. 2(f)).
)). Next, the surface of polysilicon I1i10 in the groove and P
A third oxide film layer 12 is formed to a thickness of about 5000 by thermal oxidation on the entire surface of the N-type and N-type diffusion layers 3.11 (
Figure 2 (g)). After that, a part of the third oxide film layer 12 is removed by photolithography, and the P-type and N-type diffusion Ji3,
A contact hole 13 is formed to expose the top of the contact hole 11. Next, a layer with a thickness of 2n is connected to the P-type and N-type diffusion layers 3 and 11 through the contact hole l3.
An aluminum ξ wiring layer l4 is formed by vapor deposition (see FIG. 2 (
h)). Through the above steps, the N-type diffusion layer 11 is formed into a source region. The P-type diffusion layer 3 is used as a body region, and the polysilicon layer 10 in the groove portion is used as a gate electrode. N-type epitaxial layer 2 is used as a drain region. Vertical MOS F [! T is obtained.

(発明が解決しようとする課I!) しかしながら、上記のような従来の製造方法では、N型
拡散層11の形成および、コンタクトホールl3の形成
の際にホトリソ工程が必要となる.そのため、それぞれ
のホトリソ工程での合わせ余裕を’l psとした場合
、合計4n以上の余裕が必要となり、素子寸法が大幅に
増大するという問題点があった. この発明は上記の点に鑑みなされたもので、合わせ余裕
を不要として素子寸法を小さくすることができる縦型M
OS PET装置の製造方法を提供することを目的とす
る. (課題を解決するための手段) この発明は、窒化膜層(Si3N.層〉など耐酸化性膜
をマスクとして多結晶半導体層(例えばポリシリコン層
)の選択酸化を行った際に生じるバーズビークを利用し
て、ソース領域としての拡散層(第2の拡散層)とコン
タクトホールをセルファラインより形成するようにした
ものである.詳細には次のような製造方法とする.まず
、第1導電型半導体基板の表面部または第1導電型エピ
タキシャル層の表面部に、第1導電型とは逆の第2導電
型の第1の拡散層を形成した後、その上に第1多結晶半
導体層.耐酸化性膜をこの順に重ねて形成する.その耐
酸化性膜と第1多結晶半導体層に選択的に開口部を設け
た後、その開口部を通して前記第1の拡散層に、前記半
導体基板または前記エピタキシャル層に到達するように
溝を形戊する.その溝の内壁にゲート絶縁膜層を形成し
た後、溝内を第2多結晶半導体層で埋める.その後、前
記耐酸化性膜をマスクとして前記第1多結晶半導体層と
第2多結晶半導体層を選択酸化することにより、溝部周
囲の前記耐酸化性膜と第1の拡散層間にバーズビークが
発生した選択酸化膜を前記第2多結晶半導体層の表面部
に形成すると同時に、第1多結晶半導体層端部を溝側壁
部から後退させる.その後、選択酸化膜を除去する.こ
の除去工程により露出した溝部周囲の第1の拡散層表面
を含む全面に、第1導電型の不純物を含む絶縁膜層を形
成する.その後、熱処理を行って前記絶縁膜層から不純
物を拡散させることにより、溝部周囲の第1の拡散層部
分に、溝側壁部から端部が後退した残存第1多結晶半導
体層下に延在させて第1導電型の第2の拡散層を形成す
る.その後、前記不純物ドーブの絶縁膜層を除去した後
、露出した前記第2多結晶半導体層および第2の拡散層
の表面に、前記耐酸化性膜をマスクとして酸化膜層を形
成する.その後、耐酸化性膜を除去し、さらに残存第1
多結晶半導体層を除去することにより、第1.第2の拡
散層上にコンタクトホールを開孔する. (作 用) 上記この発明においては、耐酸化性膜をマスクとして第
1および第2多結晶半導体層を選択酸化した後、該選択
酸化膜の除去工程、不純物ドーブの絶縁膜屡の全面形成
および熱処理工程によって、溝部周囲の第1の拡散層部
分に第2の拡散層がセルファラインで形成される.また
、この第2の拡散層形成後、不純物ドーブの絶緑膜層を
除去した後、再度耐酸化性膜をマスクとして酸化膜層を
形成した上で耐酸化性膜および残存第1多結晶半導体層
を除去することにより、セルファラインでコンタクトホ
ールが形成される.そして、このように第2の拡散層と
コンタクトホールがセルファラインで形成されることに
より、それらをホトリソ工程を用いて形成する場合のマ
スク合わせ余裕が省略される. (実施例) 以下この発明の一実施例を第1図(a)〜(ホ)を参照
して説明する. まず、比抵抗0.004Ω・0程度のN型半導体基板2
1上に比抵抗l.5Ω・備のN型エビタキシ中ル層22
を厚さIon形成し、このN型エピタキシャル層22の
表面部に接合深さ3−,シート抵抗500Ω/口のP型
拡散層23を形成する.次いで、CVD法によって厚さ
2000人の第1ポリシリコン層24を前記P型拡散層
23の表面に形成し、さらにその上にCVD法によって
SiJa層25を厚さ5000人に形成する.さらに、
そのSisNa層25上にCVD法によって第1酸化膜
層26を厚さ10000 人形成する.その後、ホトリ
ソエッチング工程により、第1酸化膜層2 6 , S
isNn 11 2 5および第1ポリシリコン層24
に幅3−の開口部27を選択的に形成する.(第1図(
a))次いで、第IM化膜層26をマスクとして、開口
部27を通してP型拡散層23をRIE法によりエッチ
ングすることにより、このP型拡散層23に深さ5tl
mのN型エピタキシャル層22に到達する縦型の溝28
を形成する(第1図Q)))。その後、第1酸化膜層2
6をエッチング除去する.次に、SIsNa層25をマ
スクとした選択酸化法により溝28の内壁にゲート酸化
膜層29を厚さ1000入形成する(第1図(cl).
次に、CVD法により、N型不純物をドーブした第2ポ
リシリコン層30を厚さ7一程度全面に形成し、前記溝
28を完全に埋める(第1図(d)).その後、Si3
N4層25をストッパとして第2ポリシリコン層30を
エッチハツクすることにより、この第2ポリシリコン層
30を溝28内にのみ残し、表面を平坦化する(第1図
(e))。
(Issue I to Solve by the Invention!) However, in the conventional manufacturing method as described above, a photolithography process is required when forming the N-type diffusion layer 11 and forming the contact hole 13. Therefore, if the alignment margin in each photolithography process is defined as 'l ps, a total margin of 4n or more is required, which poses a problem in that the device size increases significantly. This invention was made in view of the above points, and is a vertical type M that can reduce element dimensions without requiring alignment margin.
The purpose is to provide a method for manufacturing an OS PET device. (Means for Solving the Problems) This invention solves the problem of bird's beaks that occur when selectively oxidizing a polycrystalline semiconductor layer (for example, a polysilicon layer) using an oxidation-resistant film such as a nitride film layer (Si3N layer) as a mask. In this method, a diffusion layer (second diffusion layer) as a source region and a contact hole are formed using self-alignment lines.The manufacturing method is as follows.First, the first conductive layer is After forming a first diffusion layer of a second conductivity type opposite to the first conductivity type on the surface of the type semiconductor substrate or the surface of the first conductivity type epitaxial layer, a first polycrystalline semiconductor layer is formed thereon. .Oxidation-resistant films are stacked and formed in this order.After selectively forming an opening in the oxidation-resistant film and the first polycrystalline semiconductor layer, the semiconductor layer is formed into the first diffusion layer through the opening. A trench is formed to reach the substrate or the epitaxial layer. After forming a gate insulating film layer on the inner wall of the trench, the trench is filled with a second polycrystalline semiconductor layer. After that, the oxidation-resistant film is formed. By selectively oxidizing the first polycrystalline semiconductor layer and the second polycrystalline semiconductor layer as a mask, the selective oxide film in which a bird's beak has occurred between the oxidation-resistant film and the first diffusion layer around the groove portion is removed from the second polycrystalline semiconductor layer. At the same time as it is formed on the surface of the crystalline semiconductor layer, the end of the first polycrystalline semiconductor layer is retreated from the trench sidewall.Then, the selective oxide film is removed.The first diffusion layer around the trench exposed by this removal process is removed. An insulating film layer containing impurities of the first conductivity type is formed on the entire surface including the surface.Then, by performing heat treatment to diffuse the impurities from the insulating film layer, a first diffusion layer portion around the groove portion is formed. A second diffusion layer of the first conductivity type is formed by extending under the remaining first polycrystalline semiconductor layer whose end portion has receded from the trench sidewall portion.After that, after removing the impurity-doped insulating film layer, An oxide film layer is formed on the exposed surfaces of the second polycrystalline semiconductor layer and the second diffusion layer using the oxidation-resistant film as a mask.Then, the oxidation-resistant film is removed, and the remaining first
By removing the polycrystalline semiconductor layer, the first. A contact hole is opened on the second diffusion layer. (Function) In the present invention, after selectively oxidizing the first and second polycrystalline semiconductor layers using the oxidation-resistant film as a mask, the process of removing the selective oxide film, forming the entire surface of the insulating film doped with impurities, and Through the heat treatment process, a second diffusion layer is formed in a self-aligned manner in the first diffusion layer portion around the groove. After forming this second diffusion layer, after removing the impurity-doped green film layer, an oxide film layer is formed again using the oxidation-resistant film as a mask, and then the oxidation-resistant film and the remaining first polycrystalline semiconductor are removed. By removing the layer, a contact hole is formed in the self-line. Since the second diffusion layer and the contact hole are formed in a self-aligned manner as described above, the mask alignment allowance when forming them using a photolithography process is omitted. (Example) An example of the present invention will be described below with reference to FIGS. 1(a) to (e). First, an N-type semiconductor substrate 2 with a specific resistance of about 0.004Ω・0
1 and resistivity l. 5Ω・N type Ebitaxi medium layer 22
A P-type diffusion layer 23 is formed on the surface of the N-type epitaxial layer 22 with a junction depth of 3-3 and a sheet resistance of 500 Ω/hole. Next, a first polysilicon layer 24 with a thickness of 2,000 layers is formed on the surface of the P-type diffusion layer 23 by CVD, and a SiJa layer 25 with a thickness of 5,000 layers is further formed thereon by CVD. moreover,
A first oxide film layer 26 with a thickness of 10,000 layers is formed on the SisNa layer 25 by the CVD method. Thereafter, the first oxide film layer 2 6 , S
isNn 11 2 5 and first polysilicon layer 24
An opening 27 having a width of 3- is selectively formed. (Figure 1 (
a)) Next, using the IM layer 26 as a mask, the P-type diffusion layer 23 is etched by RIE through the opening 27 to form a 5 tl depth in the P-type diffusion layer 23.
A vertical groove 28 reaching the N-type epitaxial layer 22 of m
(Fig. 1 Q))). After that, the first oxide film layer 2
6 is removed by etching. Next, a gate oxide film layer 29 with a thickness of 1000 mm is formed on the inner wall of the trench 28 by selective oxidation using the SIsNa layer 25 as a mask (FIG. 1 (cl)).
Next, a second polysilicon layer 30 doped with N-type impurities is formed on the entire surface to a thickness of about 71 mm by CVD to completely fill the trench 28 (FIG. 1(d)). After that, Si3
By etching the second polysilicon layer 30 using the N4 layer 25 as a stopper, the second polysilicon layer 30 is left only in the groove 28 and the surface is planarized (FIG. 1(e)).

次いで、再びSi3Na層25をマスクとして第1ポリ
シリコン層24および第2ポリシリコン層30を選択酸
化する。この選択酸化により第1ポリシリコン層24の
表面部が酸化され、かつ第2ポリシリコン層30が横方
向酸化され、その結果として、溝部周囲のS:Ja層2
5とP型拡散N23間にバーズビークがIIlm幅に発
生した選択酸化膜3lが第1ポリシリコン層24の表面
部に形成される。また、第1ポリシリコン層24は、前
記バーズビークの幅だけ端部が溝内壁部から後退するこ
とになる(第1図(f)). 次いで、選択酸化膜31をエッチングにより除去する(
第1図(g)). その後、前記選択酸化膜の除去により露出した溝部周囲
のP型拡敗層23表面を含む全面に、CVD法によって
、N型不純物をドーブした酸化膜層32を形成する.そ
して、例えば1000゜C30分間の熱処理を行う。こ
の熱処理により前記酸化膜層32からN型不純物が溝部
周囲のP型拡散層23部分に拡散し、N型拡散層33が
深さ2一程度に形成される.この時、N型拡散層33は
、溝内壁部から端部が後退してP型拡敗層23上に残存
する第1ポリシリコン層24の下側にも2n入り込んで
形成される(第1図(h))。
Next, using the Si3Na layer 25 as a mask again, the first polysilicon layer 24 and the second polysilicon layer 30 are selectively oxidized. This selective oxidation oxidizes the surface portion of the first polysilicon layer 24 and oxidizes the second polysilicon layer 30 in the lateral direction. As a result, the S:Ja layer 2 around the groove portion
A selective oxide film 3l is formed on the surface of the first polysilicon layer 24, in which a bird's beak with a width IIlm is formed between the polysilicon layer 5 and the P-type diffusion N23. Furthermore, the end of the first polysilicon layer 24 is set back from the inner wall of the groove by the width of the bird's beak (FIG. 1(f)). Next, the selective oxide film 31 is removed by etching (
Figure 1 (g)). Thereafter, an oxide film layer 32 doped with N-type impurities is formed by CVD on the entire surface including the surface of the P-type diffusion layer 23 around the trench exposed by removing the selective oxide film. Then, heat treatment is performed at, for example, 1000° C. for 30 minutes. Through this heat treatment, the N-type impurity is diffused from the oxide film layer 32 into the P-type diffusion layer 23 around the groove, and the N-type diffusion layer 33 is formed to a depth of about 21 mm. At this time, the N-type diffusion layer 33 is formed so that its end part recedes from the inner wall of the trench and extends 2n below the first polysilicon layer 24 remaining on the P-type diffusion layer 23 (first Figure (h)).

次に、N型不純物ドーブの酸化膜層32を除去する(第
1図(i)). その後、三たびSizNa層25をマスクとして選択酸
化を行い、溝部の残存第2ポリシリコン層30の表面な
らびに溝部周囲のN型拡敗層33の表面に厚さ5000
 Aの絶縁酸化膜層34を形成する。
Next, the N-type impurity-doped oxide film layer 32 is removed (FIG. 1(i)). Thereafter, selective oxidation is performed three times using the SizNa layer 25 as a mask to form a layer with a thickness of 5000 mm on the surface of the remaining second polysilicon layer 30 in the trench and the surface of the N-type diffusion layer 33 around the trench.
An insulating oxide film layer 34 of A is formed.

この時、第1ポリシリコン層24も、その端部より50
00大酸化される(第1図(j))。
At this time, the first polysilicon layer 24 is also 50 mm from the end thereof.
00 is greatly oxidized (Fig. 1 (j)).

次に、CF.+0.ガスによる等方性ドライエッチング
によりSIsN4層25および第1ポリシリコン層24
を除去し、P型拡散層23およびN型拡敗層33上に選
択的にコンタクトホール35を形成する(第1図(ト)
,(1))。この時、絶縁酸化膜層34もエッチン2゛
されるが、エッチングレートが、SixNa層25およ
び第1」zリシリコン層24のそれに比較して非常に小
さいため、4000人以上の膜厚が残る. 最後に、前記コンタクトホール35を通して前記P型お
よびN型拡散層23.33が接続される厚さ2 1zm
のアルミ配線層36を蒸着により形成する(第1図(m
) )。
Next, CF. +0. The SIsN4 layer 25 and the first polysilicon layer 24 are removed by isotropic dry etching using gas.
is removed, and a contact hole 35 is selectively formed on the P-type diffusion layer 23 and the N-type diffusion layer 33 (see FIG. 1(G)).
, (1)). At this time, the insulating oxide film layer 34 is also etched, but since the etching rate is very small compared to that of the SixNa layer 25 and the first silicon layer 24, a film thickness of more than 4000 nm remains. Finally, the P-type and N-type diffusion layers 23.33 are connected through the contact hole 35 to a thickness of 2 1zm.
An aluminum wiring layer 36 is formed by vapor deposition (Fig. 1 (m)
) ).

以上の工程により、N型拡散層33をソース領域,P型
拡散層23をボディ領域.溝部の第2ポリシリコン[3
0をゲート電極.N型エピタキシャルN22をドレイン
領域2 P型拡散層23の}湾28側面部分をチャネル
領域とする縦型?IOS FETが得られる。
Through the above steps, the N-type diffusion layer 33 becomes a source region, and the P-type diffusion layer 23 becomes a body region. The second polysilicon in the groove [3
0 is the gate electrode. A vertical type in which the N-type epitaxial N22 is used as the drain region 2 and the side surface of the bay 28 of the P-type diffusion layer 23 is used as the channel region? An IOS FET is obtained.

この縦型MOS FETによれば、前述のようにN型拡
散層33とコンタクトホール35がセルファラインで形
成されているので、これらをホトリソ工程を用いて形成
した場合のマスク合わせ余裕( 2 tm X 2 =
 4 4 )を除去でき、素子寸法を4μm小さくする
ことができる。
According to this vertical MOS FET, since the N-type diffusion layer 33 and the contact hole 35 are formed by self-line as described above, the mask alignment margin (2 tm 2 =
4 4 ) can be removed, and the element size can be reduced by 4 μm.

なお、上記一実施例は、半導体基仮21上にエピタキシ
ャル層22を堆積させ、このエピタキシャル@22に素
子形成を行う場合であるが、エピタキシャル層22を省
略して、半導体基板21に直接素子形成を行うこともで
きる. (発明の効果) 以上詳細に説明したように、この発明の製造方法によれ
ば、ソース領域としての拡散層(第2の拡散層)とコン
タクトホールをセルファラインで形成するようにしたの
で、これらをホトリソ工程を用いて形成する場合のマス
ク合わせ余裕(2即x 2= 4 n )を除去でき、
素子寸法を4n小さくすることができる.したがって、
チップ面積の小さな縦型MOS FET装置を製造する
ことができる。
In the above embodiment, the epitaxial layer 22 is deposited on the semiconductor substrate 21 and elements are formed on this epitaxial layer 22, but the epitaxial layer 22 is omitted and elements are formed directly on the semiconductor substrate 21. You can also do (Effects of the Invention) As explained above in detail, according to the manufacturing method of the present invention, the diffusion layer (second diffusion layer) as a source region and the contact hole are formed by self-alignment. It is possible to eliminate the mask alignment margin (2 x 2 = 4 n ) when forming using a photolithography process,
The element size can be reduced by 4n. therefore,
A vertical MOS FET device with a small chip area can be manufactured.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の縦型MOS PET装置の製造方法
の一実施例を示す工程断面図、第2図は従来の縦型MO
S FET装置の製造方法を示す工程断面図である。 21・・・N型半導体基板、22・・・N型エピタキシ
ャル層、23・・・P型拡敗層、24・・・第1ポリシ
リコン層、25・・・SiJa層、26・・・第1酸化
膜層、27・・・開口部、28・・・溝、29・・・ゲ
ート酸化膜層、30・・・第2ポリシリコン層、31・
・・選択酸化膜、32・・・酸化膜層、33・・・N型
拡敗層、34・・・絶縁酸化膜層、35・・・コンタク
トホール、36・・・アルミ配線層。 本発明の一実施例 本発明の一実施例 第 ! 図 従来の製造方法 第2図 従来の製造方法 第2図
FIG. 1 is a cross-sectional view showing an embodiment of the method for manufacturing a vertical MOS PET device of the present invention, and FIG. 2 is a cross-sectional view of a conventional vertical MOS PET device.
FIG. 3 is a process cross-sectional view showing a method for manufacturing an S FET device. 21... N type semiconductor substrate, 22... N type epitaxial layer, 23... P type spreading layer, 24... first polysilicon layer, 25... SiJa layer, 26... th 1 oxide film layer, 27... opening, 28... trench, 29... gate oxide film layer, 30... second polysilicon layer, 31...
... selective oxide film, 32... oxide film layer, 33... N-type spreading layer, 34... insulating oxide film layer, 35... contact hole, 36... aluminum wiring layer. An embodiment of the present invention An embodiment of the present invention No. 1! Figure Conventional manufacturing method Figure 2 Conventional manufacturing method Figure 2

Claims (1)

【特許請求の範囲】 (a)第1導電型半導体基板の表面部または第1導電型
エピタキシャル層の表面部に、第1導電型とは逆の第2
導電型の第1の拡散層を形成した後、その上に第1多結
晶半導体層、耐酸化性膜をこの順に重ねて形成する工程
と、 (b)その耐酸化性膜と第1多結晶半導体層に選択的に
開口部を設けた後、その開口部を通して前記第1の拡散
層に、前記半導体基板または前記エピタキシャル層に到
達するように溝を形成する工程と、 (c)その溝の内壁にゲート絶縁膜層を形成した後、溝
内を第2多結晶半導体層で埋める工程と、(d)その後
、前記耐酸化性膜をマスクとして前記第1多結晶半導体
層と第2多結晶半導体層を選択酸化することにより、溝
部周囲の前記耐酸化性膜と第1の拡散層間にバーズビー
クが発生した選択酸化膜を前記第2多結晶半導体層の表
面部に形成すると同時に、第1多結晶半導体層端部を溝
側壁部から後退させる工程と、 (e)その後、選択酸化膜を除去する工程と、(f)こ
の除去工程により露出した溝部周囲の第1の拡散層表面
を含む全面に、第1導電型の不純物を含む絶縁膜層を形
成する工程と、 (g)その後、熱処理を行って前記絶縁膜層から不純物
を拡散させることにより、溝部周囲の第1の拡散層部分
に、溝側壁部から端部が後退した残存第1多結晶半導体
層下に延在させて第1導電型の第2の拡散層を形成する
工程と、 (h)その後、前記不純物ドープの絶縁膜層を除去した
後、露出した前記第2多結晶半導体層および第2の拡散
層の表面に、前記耐酸化性膜をマスクとして酸化膜層を
形成する工程と、 (i)その後、耐酸化性膜を除去し、さらに残存第1多
結晶半導体層を除去することをにより、第1、第2の拡
散層上にコンタクトホールを開孔する工程と、 (j)そのコンタクトホールを通して前記第1、第2の
拡散層に接続される金属配線層を形成する工程とを具備
してなる縦型MOSFET装置の製造方法。
[Scope of Claims] (a) A second conductivity type opposite to the first conductivity type is provided on the surface portion of the first conductivity type semiconductor substrate or the surface portion of the first conductivity type epitaxial layer.
After forming a conductive type first diffusion layer, forming a first polycrystalline semiconductor layer and an oxidation-resistant film thereon in this order; (b) forming the oxidation-resistant film and the first polycrystalline semiconductor layer; (c) forming a groove in the first diffusion layer so as to reach the semiconductor substrate or the epitaxial layer through the opening after selectively forming an opening in the semiconductor layer; (d) after forming a gate insulating film layer on the inner wall, filling the trench with a second polycrystalline semiconductor layer; By selectively oxidizing the semiconductor layer, a selective oxide film in which a bird's beak is generated between the oxidation-resistant film around the trench and the first diffusion layer is formed on the surface of the second polycrystalline semiconductor layer, and at the same time, the first polycrystalline semiconductor layer is oxidized. (e) removing the selective oxide film; and (f) removing the entire surface including the surface of the first diffusion layer around the trench exposed by this removal step. (g) Thereafter, heat treatment is performed to diffuse impurities from the insulating film layer into the first diffusion layer portion around the groove. (h) forming a second diffusion layer of the first conductivity type by extending it under the remaining first polycrystalline semiconductor layer whose end portion has receded from the trench sidewall; (h) then, forming the impurity-doped insulating film; After removing the layer, forming an oxide layer on the exposed surfaces of the second polycrystalline semiconductor layer and the second diffusion layer using the oxidation-resistant film as a mask; forming a contact hole on the first and second diffusion layers by removing the film and further removing the remaining first polycrystalline semiconductor layer; (j) opening the first and second diffusion layers through the contact hole; A method for manufacturing a vertical MOSFET device, comprising the step of forming a metal wiring layer connected to a second diffusion layer.
JP1192662A 1989-07-27 1989-07-27 Manufacturing method of vertical MOSFET device Pending JPH0358485A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1192662A JPH0358485A (en) 1989-07-27 1989-07-27 Manufacturing method of vertical MOSFET device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1192662A JPH0358485A (en) 1989-07-27 1989-07-27 Manufacturing method of vertical MOSFET device

Publications (1)

Publication Number Publication Date
JPH0358485A true JPH0358485A (en) 1991-03-13

Family

ID=16294961

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1192662A Pending JPH0358485A (en) 1989-07-27 1989-07-27 Manufacturing method of vertical MOSFET device

Country Status (1)

Country Link
JP (1) JPH0358485A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1197685A (en) * 1997-09-19 1999-04-09 Nec Corp Vertical field effect transistor and method of manufacturing the same
US6710401B2 (en) 1994-02-04 2004-03-23 Mitsubishi Denki Kabushiki Kaisha Semiconductor device including a trench with at least one of an edge of an opening and a bottom surface being round
JP2008098593A (en) * 2006-09-15 2008-04-24 Ricoh Co Ltd Semiconductor device and manufacturing method thereof
JP2016012683A (en) * 2014-06-30 2016-01-21 住友電気工業株式会社 Silicon carbide semiconductor device manufacturing method

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6710401B2 (en) 1994-02-04 2004-03-23 Mitsubishi Denki Kabushiki Kaisha Semiconductor device including a trench with at least one of an edge of an opening and a bottom surface being round
US7067874B2 (en) 1994-02-04 2006-06-27 Mitsubishi Denki Kabushiki Kaisha Semiconductor device including trench with at least one of an edge of an opening and a bottom surface being round
EP1160872A3 (en) * 1994-02-04 2007-06-20 Mitsubishi Denki Kabushiki Kaisha Trenched semiconductor device
JPH1197685A (en) * 1997-09-19 1999-04-09 Nec Corp Vertical field effect transistor and method of manufacturing the same
JP2008098593A (en) * 2006-09-15 2008-04-24 Ricoh Co Ltd Semiconductor device and manufacturing method thereof
JP2016012683A (en) * 2014-06-30 2016-01-21 住友電気工業株式会社 Silicon carbide semiconductor device manufacturing method

Similar Documents

Publication Publication Date Title
US4419813A (en) Method for fabricating semiconductor device
JPH03139847A (en) Fet having gate spacer
US5342796A (en) Method for controlling gate size for semiconduction process
JPH01175260A (en) Method for manufacturing insulated gate field effect transistors
JPH0728040B2 (en) Semiconductor device and manufacturing method thereof
JP2745970B2 (en) Method for manufacturing semiconductor device
JPH0358485A (en) Manufacturing method of vertical MOSFET device
JP2679668B2 (en) Semiconductor device and manufacturing method thereof
JP2001077362A (en) Semiconductor device and method of manufacturing the same
JPS60145664A (en) Manufacture of semiconductor device
JP3084047B2 (en) Method of forming element isolation structure
JPS63207177A (en) Manufacturing method of semiconductor device
JP2679143B2 (en) Method for manufacturing semiconductor device
JPS60244043A (en) Manufacture of complementary semiconductor device
JPH05226466A (en) Manufacture of semiconductor device
JPS6119111B2 (en)
JPS6333868A (en) Manufacture of mis field-effect transistor
JPS59177941A (en) Manufacture of element isolation region
JP2550728B2 (en) Method for manufacturing semiconductor device
JPH03161941A (en) Manufacture of charge transfer device
JPH08130310A (en) MOS device and method of manufacturing the same
JPS5910274A (en) Mis type semiconductor device
JPH0831597B2 (en) Method for manufacturing insulated gate field effect semiconductor device
JP2709200B2 (en) Method for manufacturing semiconductor device
JPS63308963A (en) Semiconductor device and manufacture thereof