JPH0358010A - Microscope reflecting objective - Google Patents
Microscope reflecting objectiveInfo
- Publication number
- JPH0358010A JPH0358010A JP19274889A JP19274889A JPH0358010A JP H0358010 A JPH0358010 A JP H0358010A JP 19274889 A JP19274889 A JP 19274889A JP 19274889 A JP19274889 A JP 19274889A JP H0358010 A JPH0358010 A JP H0358010A
- Authority
- JP
- Japan
- Prior art keywords
- reflecting mirror
- reflecting
- mirror
- spherical
- objective
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Lenses (AREA)
Abstract
Description
【発明の詳細な説明】
[産業上の利用分野]
本発明は、測光顕微鏡やステージ走査方式の走査顕微鏡
に用いる低倍率の反射対物鏡に関するものである.
[従来の技術]
本発明の顕微鏡反射対物鏡に類似する構成の光学系とし
て,特公昭47−1 2508号、特開昭47−248
33号、特開昭59−77403号、特開昭47−12
4311号の各公報に記載された光学系が知られている
。これらの従来例は、すべてパワーを持つ反射面が2面
の構成である.
[発明が解決しようとする課題]
これらの従来例は、パワーを持つ反射面が2面であるた
め、これら2面が球面であると球面収差が補正できない
.又1面を非球面にすると球面収差はほぼ完全に補正さ
れるが、゛非球面は球面に比べて製造が困難であり、精
度も出しにくいために実際上はあまり使用出来ない。DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a low-magnification reflective objective mirror used in photometric microscopes and stage scanning type scanning microscopes. [Prior Art] As an optical system having a configuration similar to the microscope reflecting objective mirror of the present invention, Japanese Patent Publication No. 47-1 2508 and Japanese Patent Application Laid-Open No. 47-248
No. 33, JP-A-59-77403, JP-A-47-12
Optical systems described in each publication of No. 4311 are known. All of these conventional examples have two reflecting surfaces with power. [Problems to be Solved by the Invention] In these conventional examples, since there are two reflecting surfaces that have power, if these two surfaces are spherical surfaces, spherical aberration cannot be corrected. Furthermore, if one surface is made aspherical, spherical aberration is almost completely corrected, but ``aspherical surfaces are more difficult to manufacture than spherical surfaces, and are difficult to achieve precision, so they cannot be used much in practice.
本発明の目的は、球面のみを用いて球面収差が良好に補
正されている顕微鏡用反射対物鏡を提供することにある
.
[課題を解決するための手段]
本発明の反射対物鏡は、標本から光が当たる順に第1の
反射@M..第2の反射11L.第3の反射II Ms
.第4の反射鏡M4をすべて軸対称に配置した光学系で
、第1の反射鏡M,が正のパワーを有し第4の反射鏡M
4が負のパワーを有していて、すべての反射鏡が球面よ
りなっている.
望遠鏡等の反射対物鏡を含めてパワーを持つ面が2面で
ある反射対物鏡は、第1次鏡が正のバワ、第2次鏡が負
のパワーであって、球面収差を補正するためには、正の
パワーの第1次鏡で発生する負の球面収差を負のパワー
の第2次鏡で発生する正の球面収差で打ち消すようにす
る.しかし負のパワーが正のパワーに比べてかなり強い
ために球面系では球面収差を十分に補正することが出来
ない.そこでパワーを持つ反射面を3面以上にすること
によって球面系のみでも球面収差をほぼ完全に補正する
ことが出来るが、反射回数が3回の場合物点と像点が同
じ側にできるので顕微鏡反射対物鏡では反射回数は4゜
回にしなければならない.
そのため本発明では、反射回数を4回にし、つまり前記
のように第1〜第4の四つの反射鏡にて構成すると共に
第1の反射鏡hを正のパワー.第4の反射鏡M4を負の
パワーとすると共に第2の反射鏡hと第3の反射鏡Ms
に主として収差補正の役割を持たせることによって球面
収差を良好に補正したものである.
標本からの光が最初に当たる第1の反射鏡M1と最後に
当たる第4の反射鏡M4のパワーの比によって近軸的な
量(倍率、焦点距離、像位置等)が決まり、第2の反射
鏡■3と第3の反射11M.は、主として第4の反射t
liM.に入封する光線の方向余弦のZ成分を大きくす
ることと、球面収差の補正を行なうもので、そのため第
2.第3の反射IIMt. Msのパワーの絶対値は第
1.第4の反射鏡M+. M4のパワーの絶対値に比べ
て小さく、次の条件(1).(2)を満足することが好
ましい.
(l)1φ81≦0.2
(2)1φs1≦0.2
ただしφ1φ3は夫々$,: f・(2/r*),1s
=f・(2/rslにて表わされるf直であり、ここで
では顕微鏡反射対物鏡の焦点距離、ri+f”*は夫々
第2の反射11Lおよび第3の反射鏡M3の反射面の曲
率半径である.
これら条件(1).(21を外れると第2の反射鏡Ml
第3の反射鏡MSのパワーが強くなりすぎて球面収差が
補正過剰になる.
また第3の反射!Iわが第1の反射11M.に近づくと
、NAが小さい光線の第3の反射!USでの光線高が低
くなり、第4の反射鏡M4で反射されたマージナル光線
が第3の反射鏡−,でけられやすくなり、隠蔽率が大き
くなるため隠蔽率を小さくするためには、第3の反射鏡
11sを第lの反射鏡■1から遠ざけなければならない
.しかし低倍対物鏡では、焦点距離が長いために、第3
の反射鏡M3が第lの反射tau+に近づく傾向にあり
、これは隠蔽率を小さくする方向とは相反している.逆
に高倍対物鏡は、焦点距離が短いために第3の反射鏡M
,が第2の反射raMsに近づく傾向にあるが、近づき
すぎると隠蔽率が大になる.したがって第3の反射鏡M
3の位置は、倍率(焦点距M)およびそれに付随するN
Aによってある範囲内にする必要があり、次の条件(3
)を満足することが好ましい.(3) 0.01≦(
1Δ−.1・fl /L”≦o.iただし1Δ.H+B
lは第1の反射鏡と第3の反射鏡の軸上でのメカ的距離
、fは顕微鏡反射対物鏡の焦点距離、Lは顕微鏡反射対
物鏡の標本から第1の反射鏡旧までの光学的距離である
.
[実施例]
次に本発明の顕微鏡反射対物鏡の各実施例を示す.
?施例l
f=20.45(IOX). NA=0.3隠薇率=
49% . WFA=0.002ro=(1)
d0= 59.957
r+ =−72.673
d+=−37.030
r■= −245. 472
da= 31.735
ra=■
da−−19.662
r. = −135.812
d.=25.0
r一■
L=59.95? , φ■=0.167(1Δ
MIM3 1・f)/L2 =o.o3o実施例2
f =4.079(5QXl . NA =0.6隠
蔽率=42%. WFA=O.Ol2ro= ■
ん
丸
I.= 210
=O
I.= 210
d.= 38.026
r+=−42.132
d.=−32.341
rx= −3416−091
dz= 7.257
ra=■
d.= −2.755
r4=−10.271
(L=49.813
rs= (1)
L= 38.026 . φ,=o.ootz
(1ΔMIM31・f)/L2 =0.071実施例
3
f =4.09(50X) . NA=0.6 .隠
蔽率=42%, llFA=o.011ro” ■
=O
I.= 210
do=38.778
r+=−42.897
d.=−31.292
r3=ω
a,=6.981
rs= 1630.314
di=−4.8LS
r4=−10.294
d.= 50.347
r.=ω
L= 38.778 。 1φ*l=o, I
φ3{1ΔMIk431・f)/L2 =0.066
実施例4
f =2.597t80X) . NA =0.65
.隠蔽率=42%. WFA= 0.047λro
=■
: 0.0G25
エ。= 210
d.= 29.943
r+=−35.184
d.=+= −14.931
rz=−143.845
d*= 10.011
r3” (1)
ds=−8.634
r4=−9.338
d4= 53.622
rs= ■
L=29.943 . lφzl=0.036
。 lφs1=0(1ΔMIM31・f)/L2
=0.043実施例5
f=2。25, NA=0.65. I.=■隠蔽
率=42% . 胃FA= 0.048 んro
=ω
d.= 28.422
r+=−33.757
d.=−23.22
rx=−113.118
d.= 11.lfs9
r,=■
d.= −11.f)34
r.=−9.721
d.= 54.644
rs= ■
L= 28.422 . φ2 冨0.04
(1ΔIIIM31・f)/L2 =ロ,ロ34φ,
1=0
実施例6
f = 2.091 (IOOXI
隠蔽率な42%
ro=■
NA=0.7
WFA= 0.077
λ
Io”210
do= 27.524
r,= −32.864
d.==−22.524
r*= −101.946
d1χ11.817
rs= (1)
?3富−11.817
r4=−9.663
a4=ss.o
rS=ω
L”27.524 . l$il=0.041
. Lesl=0(1ΔMIM31・f)/L2
=0.03ただしrl+ rl+ ”・は各反射面の
曲率半径、d.d,・・・は各反射面間の距離、r0は
標本面+rSは胴付面である.又データー中の隠蔽率は
(NA− + −/NA.■)2である.尚NA■■
NA.■は第13図に示す通りである.
これら実施例中、実施例5は無限遠設計の光学系である
.この収差曲繍図は、f=180の無収差レンズを付け
加えた時のちのを示してある.又データー中の波面収差
(WFA)は隠蔽率を考慮した軸上の値であり、収差曲
線図とは評価面が異なっている.つまり収差曲線図は、
視野数より逆追跡しての標本面で値を示してある.
[発明の効果]
本発明の顕微鏡対物鏡は、球面のみで構成されているに
拘らず球面収差が極めて良好に補正されている.An object of the present invention is to provide a reflective objective for a microscope in which spherical aberration is well corrected using only spherical surfaces. [Means for Solving the Problems] The reflective objective mirror of the present invention has first reflective @M. .. Second reflection 11L. Third Reflection II Ms
.. In an optical system in which all fourth reflecting mirrors M4 are arranged axially symmetrically, the first reflecting mirror M, has positive power, and the fourth reflecting mirror M,
4 has negative power, and all reflecting mirrors are spherical. Reflecting objectives, including those of telescopes, have two surfaces with power, the primary mirror has positive power and the secondary mirror has negative power, in order to correct spherical aberration. In order to do this, the negative spherical aberration generated by the primary mirror with positive power is canceled by the positive spherical aberration generated by the secondary mirror with negative power. However, because the negative power is much stronger than the positive power, spherical aberrations cannot be sufficiently corrected in a spherical system. Therefore, by having three or more reflective surfaces with power, it is possible to almost completely correct spherical aberration with just a spherical system, but when the number of reflections is three, the object point and image point are on the same side, so the microscope For a reflective objective, the number of reflections must be 4 degrees. Therefore, in the present invention, the number of reflections is set to four, that is, the first to fourth reflecting mirrors are used as described above, and the first reflecting mirror h has a positive power. The fourth reflecting mirror M4 has negative power, and the second reflecting mirror h and the third reflecting mirror Ms
The spherical aberration is effectively corrected by having the main role of correcting aberrations. Paraxial quantities (magnification, focal length, image position, etc.) are determined by the power ratio of the first reflecting mirror M1, which is the first reflecting mirror that the light from the specimen hits, and the fourth reflecting mirror M4, which is the last one that the light from the specimen hits. ■3 and third reflection 11M. is mainly the fourth reflection t
liM. The purpose of this is to increase the Z component of the direction cosine of the light ray that enters the envelope, and to correct spherical aberration. Third reflection IIMt. The absolute value of the power of Ms is 1st. Fourth reflecting mirror M+. It is smaller than the absolute value of the power of M4, and the following condition (1). It is preferable that (2) is satisfied. (l) 1φ81≦0.2 (2) 1φs1≦0.2 However, φ1φ3 is $, respectively: f・(2/r*), 1s
=f・(2/rsl), where the focal length of the microscope reflecting objective, ri+f''* is the radius of curvature of the reflecting surface of the second reflecting mirror 11L and the third reflecting mirror M3, respectively. If these conditions (1) (21) are not met, the second reflecting mirror Ml
The power of the third reflecting mirror MS becomes too strong and the spherical aberration becomes overcorrected. Another third reflection! I MY FIRST REFLECTION 11M. When approaching , the third reflection of the ray with a small NA! The height of the ray in the US becomes lower, the marginal ray reflected by the fourth reflecting mirror M4 is more likely to be rejected by the third reflecting mirror, and the concealment rate increases. Therefore, in order to reduce the concealment rate, The third reflecting mirror 11s must be kept away from the l-th reflecting mirror ■1. However, with a low-magnification objective mirror, the focal length is long, so the third
The reflector M3 tends to approach the l-th reflection tau+, which is contrary to the direction of decreasing the concealment rate. Conversely, a high-magnification objective mirror has a short focal length, so the third reflecting mirror M
, tends to get closer to the second reflected raMs, but if it gets too close, the concealment rate increases. Therefore, the third reflecting mirror M
Position 3 corresponds to the magnification (focal length M) and its associated N
A must be within a certain range, and the following condition (3)
) is preferable. (3) 0.01≦(
1Δ-. 1・fl /L”≦o.i However, 1Δ.H+B
l is the mechanical distance on the axis between the first reflecting mirror and the third reflecting mirror, f is the focal length of the microscope reflecting objective, and L is the optical distance from the specimen of the microscope reflecting objective to the first reflecting mirror. This is the target distance. [Examples] Next, examples of the microscope reflecting objective mirror of the present invention will be shown. ? Example l f=20.45 (IOX). NA=0.3 Concealment rate=
49%. WFA=0.002ro=(1) d0=59.957 r+=-72.673 d+=-37.030 r■=-245. 472 da=31.735 ra=■ da--19.662 r. = −135.812 d. =25.0 r1■ L=59.95? , φ■=0.167(1Δ
MIM3 1・f)/L2 = o. o3o Example 2 f = 4.079 (5QXl. NA = 0.6 Concealment rate = 42%. WFA = O.Ol2ro = ■ Nmaru I. = 210 = O I. = 210 d. = 38.026 r + = -42.132 d.=-32.341 rx=-3416-091 dz= 7.257 ra=■ d.=-2.755 r4=-10.271 (L=49.813 rs= (1) L = 38.026.φ,=o.ootz
(1ΔMIM31·f)/L2 = 0.071 Example 3 f = 4.09 (50X). NA=0.6. Concealment rate=42%, llFA=o. 011ro” ■ =O I.= 210 do=38.778 r+=-42.897 d.=-31.292 r3=ω a,=6.981 rs= 1630.314 di=-4.8LS r4=- 10.294 d.= 50.347 r.=ω L= 38.778. 1φ*l=o, I
φ3{1ΔMIk431・f)/L2 =0.066
Example 4 f = 2.597t80X). NA=0.65
.. Concealment rate = 42%. WFA=0.047λro
=■: 0.0G25 e. = 210 d. = 29.943 r+=-35.184 d. =+= -14.931 rz=-143.845 d*= 10.011 r3" (1) ds=-8.634 r4=-9.338 d4= 53.622 rs= ■ L=29.943. lφzl=0.036
. lφs1=0(1ΔMIM31・f)/L2
=0.043 Example 5 f=2.25, NA=0.65. I. =■ Concealment rate = 42%. Stomach FA = 0.048 nro
=ω d. = 28.422 r+=-33.757 d. =-23.22 rx=-113.118 d. = 11. lfs9 r,=■ d. = −11. f) 34 r. =-9.721 d. = 54.644 rs= ■ L= 28.422. φ2 depth 0.04
(1ΔIIIM31・f)/L2 = ro, ro34φ,
1 = 0 Example 6 f = 2.091 (IOOXI Concealment rate 42% ro = ■ NA = 0.7 WFA = 0.077 λ Io"210 do = 27.524 r, = -32.864 d. = =-22.524 r*= -101.946 d1χ11.817 rs= (1) ?3 wealth-11.817 r4=-9.663 a4=ss.o rS=ω L”27.524.l$il =0.041
.. Lesl=0(1ΔMIM31・f)/L2
= 0.03 where rl+ rl+ ”・ is the radius of curvature of each reflecting surface, dd,... is the distance between each reflecting surface, r0 is the specimen surface + rS is the trunked surface. Also, the concealment rate in the data is (NA- + -/NA.■)2.It should be noted that NA■■
N.A. ■ is as shown in Figure 13. Among these Examples, Example 5 is an optical system designed for infinite distance. This aberration curve diagram shows what happens after an aberration-free lens with f=180 is added. Furthermore, the wavefront aberration (WFA) in the data is an on-axis value that takes into account the concealment rate, and the evaluation plane is different from the aberration curve diagram. In other words, the aberration curve diagram is
The values are shown for the sample plane by tracing back from the number of fields of view. [Effects of the Invention] Although the microscope objective mirror of the present invention is composed of only spherical surfaces, spherical aberration is extremely well corrected.
第1図乃至第6図は夫々本発明の実施例1乃至実施例6
の断面図、第7図乃至第12図は夫々実施例l乃至実施
例6の収差曲線図、第13図は本発明の基本構成を示す
図である.1 to 6 are embodiments 1 to 6 of the present invention, respectively.
7 to 12 are aberration curve diagrams of Examples 1 to 6, respectively, and FIG. 13 is a diagram showing the basic configuration of the present invention.
Claims (1)
反射鏡、第3の反射鏡、第4の反射鏡をすべて軸対称に
配置した光学系において第1の反射鏡が正のパワー、第
4の反射鏡が負のパワーを有しすべての面が球面である
ことを特徴とする顕微鏡反射対物鏡。 (2)第2の反射鏡と第3の反射鏡の焦点距離で正規化
された面のパワーφ_2、φ_3が夫々次の条件を満足
する請求項(1)の顕微鏡反射対物鏡。 (1)|φ_2|≦0.2 (2)|φ_3|≦0.2 ただしφ_2=f・(2/r_2)、φ_3=f・(2
/r_3)でfは反射対物鏡の焦点距離、r_2、r_
3は夫々第2の反射鏡、第3の反射鏡の面の曲率半径で
ある。 (3)第3の反射鏡が第1の反射鏡と第2の反射鏡の間
に位置し、第1の反射鏡と第3の反射鏡の軸上でのメカ
的距離ΔM_1_3が次の条件(3)を満足する請求項
(1)の顕微鏡反射対物鏡。 (3)0.01≦(|ΔM_1_3・f)/L^2≦0
.1ただしLは反射対物鏡の標本面から第1の反射鏡ま
での光学的距離である。[Scope of Claims] (1) In an optical system in which a first reflecting mirror, a second reflecting mirror, a third reflecting mirror, and a fourth reflecting mirror are all arranged axially symmetrically in the order in which light from the specimen hits, A microscope reflecting objective mirror characterized in that a first reflecting mirror has a positive power, a fourth reflecting mirror has a negative power, and all surfaces are spherical. (2) The microscope reflecting objective according to claim 1, wherein the surface powers φ_2 and φ_3 normalized by the focal lengths of the second reflecting mirror and the third reflecting mirror satisfy the following conditions, respectively. (1) |φ_2|≦0.2 (2) |φ_3|≦0.2 where φ_2=f・(2/r_2), φ_3=f・(2
/r_3) where f is the focal length of the reflecting objective, r_2, r_
3 is the radius of curvature of the surfaces of the second and third reflecting mirrors, respectively. (3) The third reflecting mirror is located between the first reflecting mirror and the second reflecting mirror, and the mechanical distance ΔM_1_3 on the axis of the first reflecting mirror and the third reflecting mirror satisfies the following conditions. The microscope reflecting objective according to claim (1), which satisfies (3). (3) 0.01≦(|ΔM_1_3・f)/L^2≦0
.. 1 where L is the optical distance from the specimen surface of the reflecting objective to the first reflecting mirror.
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP19274889A JPH0358010A (en) | 1989-07-27 | 1989-07-27 | Microscope reflecting objective |
US07/553,639 US5144496A (en) | 1989-07-19 | 1990-07-18 | Reflecting objective system including a negative optical power second mirror with increasing negative optical power off-axis |
US07/937,551 US5253117A (en) | 1989-07-19 | 1992-08-31 | Reflecting objective system |
US07/937,128 US5291340A (en) | 1989-07-19 | 1992-08-31 | Reflecting objective system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP19274889A JPH0358010A (en) | 1989-07-27 | 1989-07-27 | Microscope reflecting objective |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0358010A true JPH0358010A (en) | 1991-03-13 |
Family
ID=16296397
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP19274889A Pending JPH0358010A (en) | 1989-07-19 | 1989-07-27 | Microscope reflecting objective |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0358010A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0850246A (en) * | 1994-05-23 | 1996-02-20 | Hughes Aircraft Co | Three-mirror anastigmat device deviated from axis having correcting mirror |
-
1989
- 1989-07-27 JP JP19274889A patent/JPH0358010A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0850246A (en) * | 1994-05-23 | 1996-02-20 | Hughes Aircraft Co | Three-mirror anastigmat device deviated from axis having correcting mirror |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR940018910A (en) | Catadioptric Optical Reduction System With High Numerical Aperture | |
JPH0467114A (en) | Variable power lens | |
US4323302A (en) | Wide-angle zoom lens system | |
JPH06230274A (en) | Aberration compensating system and astronomical telescope using the same | |
US4738517A (en) | Copying lens with a wide angle of view | |
JP4212721B2 (en) | Wide-angle reflective optics | |
JPH01210914A (en) | Variable power lens | |
JPH046512A (en) | Objective lens for microscope | |
KR100414263B1 (en) | Optical system, optical element, and optical device having the same | |
US5625488A (en) | Telecentric relay lens system | |
JPH0476451B2 (en) | ||
JPH0358010A (en) | Microscope reflecting objective | |
US20040201900A1 (en) | Objective | |
EP0990935A2 (en) | Lens for copying and image copying apparatus using the same | |
JPH0358009A (en) | Microscope reflecting objective | |
JP2001013411A (en) | Zoom lens | |
JP2860221B2 (en) | Stereoscopic projection lens | |
US4013346A (en) | Enlarging lens system | |
JPH0392809A (en) | Reflection and refraction type optical system | |
JP2526299B2 (en) | Objective lens for microscope | |
CN222622919U (en) | Optical image transfer lens group and optical image transfer system of hard tube endoscope | |
JP2001174705A (en) | Variable power reflecting optical system | |
JP2584526B2 (en) | Microscope objective lens | |
JPH02154215A (en) | Anamorphic variable power optical system | |
JPH0350519A (en) | Microscope reflecting objective |