JPH0357650B2 - - Google Patents
Info
- Publication number
- JPH0357650B2 JPH0357650B2 JP4615584A JP4615584A JPH0357650B2 JP H0357650 B2 JPH0357650 B2 JP H0357650B2 JP 4615584 A JP4615584 A JP 4615584A JP 4615584 A JP4615584 A JP 4615584A JP H0357650 B2 JPH0357650 B2 JP H0357650B2
- Authority
- JP
- Japan
- Prior art keywords
- output
- oscillation
- circuit
- proximity switch
- resistor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
Classifications
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03K—PULSE TECHNIQUE
- H03K17/00—Electronic switching or gating, i.e. not by contact-making and –breaking
- H03K17/94—Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the way in which the control signals are generated
- H03K17/945—Proximity switches
- H03K17/95—Proximity switches using a magnetic detector
- H03K17/952—Proximity switches using a magnetic detector using inductive coils
- H03K17/9537—Proximity switches using a magnetic detector using inductive coils in a resonant circuit
- H03K17/9542—Proximity switches using a magnetic detector using inductive coils in a resonant circuit forming part of an oscillator
- H03K17/9547—Proximity switches using a magnetic detector using inductive coils in a resonant circuit forming part of an oscillator with variable amplitude
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01V—GEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
- G01V3/00—Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation
- G01V3/08—Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation operating with magnetic or electric fields produced or modified by objects or geological structures or by detecting devices
- G01V3/10—Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation operating with magnetic or electric fields produced or modified by objects or geological structures or by detecting devices using induction coils
- G01V3/101—Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation operating with magnetic or electric fields produced or modified by objects or geological structures or by detecting devices using induction coils by measuring the impedance of the search coil; by measuring features of a resonant circuit comprising the search coil
- G01V3/102—Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation operating with magnetic or electric fields produced or modified by objects or geological structures or by detecting devices using induction coils by measuring the impedance of the search coil; by measuring features of a resonant circuit comprising the search coil by measuring amplitude
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03K—PULSE TECHNIQUE
- H03K17/00—Electronic switching or gating, i.e. not by contact-making and –breaking
- H03K17/14—Modifications for compensating variations of physical values, e.g. of temperature
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03K—PULSE TECHNIQUE
- H03K17/00—Electronic switching or gating, i.e. not by contact-making and –breaking
- H03K17/16—Modifications for eliminating interference voltages or currents
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03K—PULSE TECHNIQUE
- H03K17/00—Electronic switching or gating, i.e. not by contact-making and –breaking
- H03K17/94—Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the way in which the control signals are generated
- H03K17/945—Proximity switches
- H03K17/95—Proximity switches using a magnetic detector
- H03K17/9502—Measures for increasing reliability
Landscapes
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Remote Sensing (AREA)
- Life Sciences & Earth Sciences (AREA)
- Electromagnetism (AREA)
- Environmental & Geological Engineering (AREA)
- Geology (AREA)
- General Life Sciences & Earth Sciences (AREA)
- General Physics & Mathematics (AREA)
- Geophysics (AREA)
- Electronic Switches (AREA)
Description
【発明の詳細な説明】
発明の分野
本発明は高周波発振型の近接スイツチに関し、
特に強い交流磁界において使用することができる
耐磁界型の近接スイツチに関するものである。DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a high frequency oscillation type proximity switch;
This invention relates to a magnetic field-resistant proximity switch that can be used particularly in strong alternating magnetic fields.
従来技術とその問題点
高周波発振型近接スイツチは検出ヘツドに検知
コイルを有し、検知コイルを発振コイルとして発
振回路を構成し、物体の近接により発振出力の低
下に基づいて物体を検知するようにしている。し
かるに抵抗溶接器等の数万Aの大電流が流れ強力
な交流磁界が加わる環境下においては、検知コイ
ルのフエライトコアの透磁率が飽和し発振が停止
してしまう。従つてこのような環境下では高周波
発振型の近接スイツチを使用することができない
という問題点があつた。Prior art and its problems A high-frequency oscillation type proximity switch has a detection coil in the detection head, and an oscillation circuit is configured with the detection coil as an oscillation coil, and the object is detected based on the decrease in oscillation output due to the proximity of the object. ing. However, in an environment such as a resistance welder where a large current of tens of thousands of amperes flows and a strong alternating magnetic field is applied, the permeability of the ferrite core of the detection coil becomes saturated and oscillation stops. Therefore, there is a problem in that a high frequency oscillation type proximity switch cannot be used in such an environment.
発明の目的
本発明はこのような従来の近接スイツチの問題
点を解消するものであつて、強力な交流磁界が加
わる環境下においても使用することができる耐磁
界型の近接スイツチを提供するものである。Purpose of the Invention The present invention solves the problems of conventional proximity switches, and provides a magnetic field-resistant proximity switch that can be used even in environments where strong alternating magnetic fields are applied. be.
発明の構成と効果
本発明は発振回路と、発振出力の低下により物
体を検知する検知回路を有する高周波発振型近接
スイツチであつて、発振振幅を所定レベルと比較
してその減少を検知する比較回路と、比較回路出
力に基づいて発振回路の発振調整抵抗の抵抗値を
異ならしめ、発振を容易になるように変化させる
発振制御回路と、発振回路の発振出力を所定のレ
ベルで弁別し発振停止時に出力を与える発振出力
弁別手段と、発振出力弁別手段の出力を積分する
と共に放電時に積分コンデンサを急速放電する積
分回路と、積分回路出力を波形整形してスイツチ
出力とする出力手段と、を有することを特徴とす
るものである。Structure and Effects of the Invention The present invention provides a high frequency oscillation type proximity switch having an oscillation circuit and a detection circuit that detects an object by a decrease in the oscillation output, and a comparison circuit that compares the oscillation amplitude with a predetermined level and detects a decrease in the oscillation amplitude. , an oscillation control circuit that changes the resistance value of the oscillation adjustment resistor of the oscillation circuit based on the comparison circuit output to facilitate oscillation, and an oscillation control circuit that discriminates the oscillation output of the oscillation circuit at a predetermined level and when the oscillation is stopped. oscillation output discrimination means for providing an output; an integration circuit that integrates the output of the oscillation output discrimination means and rapidly discharges an integrating capacitor during discharging; and output means that shapes the waveform of the output of the integration circuit and outputs it as a switch output. It is characterized by:
このような特徴を有する本発明によれば、発振
の停止時に発振回路の調整抵抗の抵抗値を変化さ
せることによつて発振の起動が容易になるように
している。従つて近接スイツチに強力な交流磁界
が加わり近接スイツチの発振が停止する場合に
も、そのゼロクス点近傍でだけは発振が起こり発
振を断続させ続けることができる。そのため発振
断続の停止に基づいて物体を検出することが可能
となる。それ故従来の近接スイツチでは検出が不
可能であつた大電流が流れる溶接器等の近傍等の
高磁界が加わる場所においても、誤動作なく物体
を検出することが可能となる。 According to the present invention having such characteristics, oscillation can be easily started by changing the resistance value of the adjustment resistor of the oscillation circuit when oscillation is stopped. Therefore, even if a strong alternating current magnetic field is applied to the proximity switch and the oscillation of the proximity switch stops, oscillation occurs only near the zerox point and the oscillation can be continued intermittently. Therefore, it becomes possible to detect an object based on the cessation of intermittent oscillation. Therefore, it is possible to detect an object without malfunction even in a place where a high magnetic field is applied, such as near a welding machine or the like where a large current flows, which was impossible to detect with a conventional proximity switch.
実施例の説明
第1図は本発明による耐磁界用の近接スイツチ
の一実施例を示すブロツク図である。本図におい
て発振回路1には検知コイル2と発振出力を調整
するための抵抗VR3が接続されている。抵抗
VR3は可変抵抗であつて近接スイツチの検出距
離を調整するものである。発振回路1の発振出力
は平滑回路4に与えられる。平滑回路4は発振振
幅の大きさに応じたレベルの直流電圧に変換する
ものであつて、その出力はシユミツト回路5とコ
ンパレータ6に与えられる。シユミツト回路5は
平滑回路4の出力を弁別して方形波に変換するも
のであつて、その出力を出力回路7に与える。コ
ンパレータ6は一方の入力端が電圧Vrefを有す
る基準電源に接続され、その基準電源と平滑回路
4の出力を比較する比較器であつて比較出力をト
ランジスタ8に与えている。トランジスタ8はス
イツチングトランジスタであつて、図示のように
エミツタが接地されコレクタが抵抗R9を介して
検出距離調整用の抵抗R3に並列に接続されてお
り、コンパレータ6の出力によつて抵抗R9を並
列に挿入するものである。一方出力回路7はシユ
ミツト回路5の出力に基づいて、“L”レベルの
出力を出すものであつて、その出力端は抵抗R1
0とコンデンサC11からなる積分回路に接続さ
れる。積分回路の時定数は商用交流の周期、例え
ば20mS以上に選択しておくものとする。積分回
路の抵抗R10の両端にはダイオード12が並列
に接続され、出力回路7の出力が下がつたときに
コンデンサC11を瞬時に放電させるよう構成さ
れている。この積分回路の出力は更に第2のシユ
ミツト回路13を介して出力回路14に接続され
ている。出力回路14の出力は近接スイツチ出力
として外部に出力される。DESCRIPTION OF THE EMBODIMENTS FIG. 1 is a block diagram showing an embodiment of a proximity switch for magnetic field resistance according to the present invention. In this figure, an oscillation circuit 1 is connected to a detection coil 2 and a resistor VR3 for adjusting the oscillation output. resistance
VR3 is a variable resistor that adjusts the detection distance of the proximity switch. The oscillation output of the oscillation circuit 1 is given to the smoothing circuit 4. The smoothing circuit 4 converts the oscillation amplitude into a DC voltage at a level corresponding to the magnitude of the oscillation amplitude, and its output is given to a Schmitt circuit 5 and a comparator 6. The Schmitt circuit 5 discriminates the output of the smoothing circuit 4 and converts it into a square wave, and supplies the output to the output circuit 7. The comparator 6 has one input terminal connected to a reference power source having a voltage Vref, and is a comparator that compares the output of the smoothing circuit 4 with the reference power source, and provides a comparison output to the transistor 8. Transistor 8 is a switching transistor, and as shown in the figure, its emitter is grounded and its collector is connected in parallel to resistor R3 for adjusting the detection distance via resistor R9. It is inserted in parallel. On the other hand, the output circuit 7 outputs an "L" level output based on the output of the Schmitt circuit 5, and its output terminal is connected to the resistor R1.
0 and a capacitor C11. The time constant of the integrating circuit is selected to be equal to or greater than the commercial AC cycle, for example, 20 mS or more. A diode 12 is connected in parallel to both ends of the resistor R10 of the integrating circuit, and is configured to instantly discharge the capacitor C11 when the output of the output circuit 7 drops. The output of this integrating circuit is further connected via a second Schmitt circuit 13 to an output circuit 14. The output of the output circuit 14 is output to the outside as a proximity switch output.
次にこの近接スイツチの動作について第2図及
び第3図の波形図を参照しつつ説明する。第2図
aは発振回路1の発振出力を示す波形図であつ
て、物体が検出コイルの周辺に存在しない場合に
は一定の強度で発振している。このときにはシユ
ミツト回路5の出力により出力回路7は“L”レ
ベルの出力を出し、積分回路のコンデンサC11
は充電されていない。又平滑回路4よりコンパレ
ータ6に与えられる出力基準電圧Vrefより大き
いためトランジスタ8はオフ状態であり、抵抗R
9は検出距離調整抵抗VR3に並列に接続されて
いない状態となつている。そして第2図bに示す
ように時刻t1〜t3の間だけに近接体が接近すれ
ば、発振回路1の発振が停止するためその振幅変
化がシユミツト回路5により方形波に変換されて
出力回路7より第2図cに示すように、時刻t1〜
t3までの幅で“H”レベルとなる出力信号が得ら
れる。そしてこの信号は抵抗R10、コンデンサ
C11による積分回路に与えられ、第2図dに示
すように積分が行われる。積分出力は立上りが
CRの時定数によつて図示のように徐々に上昇す
るカーブとなるが、コンデンサCの放電時にはダ
イオード12によつて短絡されるため、時刻t3に
立ち下がる積分出力が得られる。そしてこの出力
がシユミツト回路13に加わり出力回路14によ
つて出力されるので、第2図fに示すように時刻
t1よりやや遅れた時刻t2から時刻t3までの幅を有
する近接スイツチの出力が得られることとなる。 Next, the operation of this proximity switch will be explained with reference to the waveform diagrams of FIGS. 2 and 3. FIG. 2a is a waveform diagram showing the oscillation output of the oscillation circuit 1, which oscillates with a constant intensity when no object exists around the detection coil. At this time, the output circuit 7 outputs an "L" level output due to the output of the Schmitt circuit 5, and the capacitor C11 of the integrating circuit
is not charged. Also, since it is higher than the output reference voltage Vref given to the comparator 6 by the smoothing circuit 4, the transistor 8 is in the off state, and the resistor R
9 is not connected in parallel to the detection distance adjustment resistor VR3. As shown in FIG. 2b, if a nearby object approaches only between times t1 and t3, the oscillation circuit 1 stops oscillating, and the amplitude change is converted into a square wave by the Schmitts circuit 5 and output to the output circuit 7. As shown in Figure 2c, from time t1 to
An output signal that is at the "H" level with a width up to t3 is obtained. This signal is then applied to an integrating circuit comprising a resistor R10 and a capacitor C11, and integration is performed as shown in FIG. 2d. The integral output has a rising edge.
Due to the time constant of CR, the curve gradually rises as shown in the figure, but since it is short-circuited by the diode 12 when the capacitor C is discharged, an integrated output that falls at time t3 is obtained. Since this output is added to the Schmitt circuit 13 and outputted by the output circuit 14, the time is determined as shown in FIG. 2f.
The output of the proximity switch is obtained having a range from time t2, which is slightly later than t1, to time t3.
さて第2図eに示すように時刻t4に溶接機等の
動作によつて近接スイツチに交流の高磁界が加わ
つたものとすると、第3図に時間軸を拡大して示
すように磁界強度が大きければ検出コイル2の透
磁率が飽和してコンダクタンスが上昇し、近接体
が密着したものと同じ状態となつて時刻t4の直後
に発振が急速に停止する。そのとき平滑回路4の
出力はコンパレータ6に与えられており、コンパ
レータ6の出力によつてトランジスタ8が駆動さ
れ検出距離調整用の抵抗VR3に並列に抵抗R9
が接続されることとなる。そうすれば検出コイル
のコンダクタンスが大きくなり発振の開始が容易
な状態となる。従つて第3図a,bに示すように
交流磁界のゼロクロス点に近づけば発振し易い状
態となつているため、発振が急速に開始する。従
つて60Hzの交流磁界が加わつている場合はその倍
の120Hzで発振を断続するバースト波形が得られ
る。第2図aの時刻t4以後の波形はこの状態を示
すものである。そしてこのバースト波形が整形さ
れて出力回路7に加わるため、出力回路7は第2
図に示すようにバースト発振毎にLレベルとなる
信号が得られる。しかし積分回路では充電にCR
の時定数で定まる一定時間を要し、一方放電は瞬
時に行われるので第2図dに示すように、積分出
力はほとんど上昇せず出力回路14から出力は得
られない。このときに時刻t5に近接体が接近すれ
ば交流磁界のゼロクロス付近でも発振することが
できず、発振回路1は発振を停止する。従つて出
力回路7の出力はLレベルに下がることはなく、
積分回路の出力も第2図dに示すように上昇する
ために出力回路14より第2図fに示すように検
出信号が得られる。そして時刻t6に近接体がなく
なれば発振回路1は再び断続的に発振するため、
積分回路の出力がLレベルとなり出力回路14よ
り出力が生じなくなる。このように本発明では、
交流磁界のゼロクロス点で発振回路を動作させる
ことによつて高磁界下においても近接スイツチを
動作させることが可能となる。そして時刻t7に交
流磁界が加わらなくなれば発振回路1は連続した
発振を行うようになり、前述した場合と同様に近
接体によつて発振が停止するので物体を検出する
ことが可能となる。 Now, suppose that a high alternating current magnetic field is applied to the proximity switch at time t4 due to the operation of a welding machine, etc., as shown in Figure 2e, then the magnetic field strength will increase as shown in Figure 3 with an enlarged time axis. If it is large, the magnetic permeability of the detection coil 2 will be saturated and the conductance will rise, resulting in a state similar to that of a close object, and the oscillation will stop rapidly immediately after time t4. At this time, the output of the smoothing circuit 4 is given to the comparator 6, and the transistor 8 is driven by the output of the comparator 6, and a resistor R9 is connected in parallel to the resistor VR3 for adjusting the detection distance.
will be connected. This increases the conductance of the detection coil, making it easier to start oscillation. Therefore, as shown in FIGS. 3a and 3b, as the AC magnetic field approaches the zero-crossing point, oscillation is likely to occur, and oscillation starts rapidly. Therefore, when an alternating current magnetic field of 60 Hz is applied, a burst waveform that oscillates intermittently at 120 Hz, which is twice that frequency, is obtained. The waveform after time t4 in FIG. 2a shows this state. Since this burst waveform is shaped and applied to the output circuit 7, the output circuit 7
As shown in the figure, a signal that goes to L level is obtained every burst oscillation. However, in the integrating circuit, CR is applied to charging.
It takes a certain period of time determined by the time constant of , while the discharge occurs instantaneously, so as shown in FIG. 2d, the integrated output hardly increases and no output is obtained from the output circuit 14. At this time, if a nearby object approaches at time t5, oscillation cannot occur even near the zero cross of the alternating current magnetic field, and the oscillation circuit 1 stops oscillating. Therefore, the output of the output circuit 7 does not fall to the L level,
Since the output of the integrating circuit also rises as shown in FIG. 2d, a detection signal as shown in FIG. 2f is obtained from the output circuit 14. Then, at time t6, when there are no nearby objects, the oscillation circuit 1 will oscillate intermittently again, so
The output of the integrating circuit becomes L level, and no output is generated from the output circuit 14. In this way, in the present invention,
By operating the oscillation circuit at the zero-crossing point of the alternating current magnetic field, it is possible to operate the proximity switch even under a high magnetic field. Then, when the alternating magnetic field is no longer applied at time t7, the oscillation circuit 1 begins to oscillate continuously, and as in the case described above, the oscillation is stopped by a nearby object, making it possible to detect the object.
尚本実施例では発振出力の停止に基づいて検出
距離調整抵抗の抵抗値を変化させるようにしてい
るが、発振回路のフイードバツク抵抗を比較出力
によつて変えることによつて発振の応答速度を速
めた発振回路を用いて構成することも可能であ
る。 In this embodiment, the resistance value of the detection distance adjustment resistor is changed based on the stoppage of the oscillation output, but the response speed of the oscillation can be increased by changing the feedback resistance of the oscillation circuit according to the comparison output. It is also possible to configure it using an oscillation circuit.
第1図は本発明による近接スイツチの一実施例
を示すブロツク図、第2図はその各部の波形を示
す波形図、第3図は交流磁界が加わつた時点の各
部の波形を時間軸に拡大して示す波形図である。
1……発振回路、2……検出コイル、R3,R
9,R10……抵抗、4……平滑回路、5,13
……シユミツト回路、6……コンパレータ、7,
14……出力回路、C11……コンデンサ、12
……ダイオード。
Fig. 1 is a block diagram showing one embodiment of the proximity switch according to the present invention, Fig. 2 is a waveform diagram showing the waveforms of each part, and Fig. 3 is an enlarged time axis of the waveforms of each part at the time when an alternating magnetic field is applied. FIG. 1... Oscillator circuit, 2... Detection coil, R3, R
9, R10...Resistor, 4...Smoothing circuit, 5,13
...Schmitt circuit, 6...Comparator, 7,
14... Output circuit, C11... Capacitor, 12
……diode.
Claims (1)
知する検知回路を有する高周波発振型近接スイツ
チにおいて、 発振振幅を所定レベルと比較してその減少を検
知する比較回路と、 前記比較回路出力に基づいて前記発振回路の発
振調整抵抗の抵抗値を異ならしめ、発振を容易に
なるように変化させる発振制御回路と、 前記発振回路の発振出力を所定のレベルで弁別
し発振停止時に出力を与える発振出力弁別手段
と、 前記発振出力弁別手段の出力を積分すると共に
放電時に積分コンデンサを急速放電する積分回路
と、 前記積分回路出力を波形整形してスイツチ出力
とする出力手段と、を有することを特徴とする近
接スイツチ。 2 前記発振制御回路は、検出距離調整抵抗に並
列に接続され前記比較回路出力によつて断続され
る抵抗を有するものであることを特徴とする特許
請求の範囲第1項記載の近接スイツチ。 3 前記積分回路は積分コンデンサと抵抗とを有
する積分回路であり、該抵抗の両端に積分コンデ
ンサの放電用ダイオードを設けたことを特徴とす
る特許請求の範囲第1項記載の近接スイツチ。[Scope of Claims] 1. A high frequency oscillation type proximity switch having an oscillation circuit and a detection circuit that detects an object by a decrease in oscillation output, comprising: a comparison circuit that compares the oscillation amplitude with a predetermined level and detects a decrease thereof; an oscillation control circuit that changes the resistance value of an oscillation adjustment resistor of the oscillation circuit based on the output of the comparison circuit to facilitate oscillation; oscillation output discrimination means for providing an output; an integration circuit that integrates the output of the oscillation output discrimination means and rapidly discharges an integrating capacitor during discharge; and output means that shapes the waveform of the output of the integration circuit and outputs it as a switch output. A proximity switch characterized in that it has. 2. The proximity switch according to claim 1, wherein the oscillation control circuit has a resistor connected in parallel to the detection distance adjustment resistor and turned on and off by the output of the comparison circuit. 3. The proximity switch according to claim 1, wherein the integrating circuit is an integrating circuit having an integrating capacitor and a resistor, and a diode for discharging the integrating capacitor is provided at both ends of the resistor.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4615584A JPS60190021A (en) | 1984-03-09 | 1984-03-09 | Proximity switch |
US06/709,760 US4638262A (en) | 1984-03-09 | 1985-03-08 | Proximity switch with improved response time and antimagnetic field circuitry |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4615584A JPS60190021A (en) | 1984-03-09 | 1984-03-09 | Proximity switch |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS60190021A JPS60190021A (en) | 1985-09-27 |
JPH0357650B2 true JPH0357650B2 (en) | 1991-09-02 |
Family
ID=12739097
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP4615584A Granted JPS60190021A (en) | 1984-03-09 | 1984-03-09 | Proximity switch |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS60190021A (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8374545B2 (en) * | 2009-09-02 | 2013-02-12 | Qualcomm Incorporated | De-tuning in wireless power reception |
-
1984
- 1984-03-09 JP JP4615584A patent/JPS60190021A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS60190021A (en) | 1985-09-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5757196A (en) | Capacitive switch actuated by changes in a sensor capacitance | |
US6215365B1 (en) | Inductive proximity sensor oscillator | |
US5856917A (en) | Electric power device with improved power factor | |
JPH09139661A (en) | Induction proximity sensor for sensing magnetic and non-magnetic metal objects | |
US5498914A (en) | Capacitive sensor circuit | |
US4893076A (en) | Proximity detector using inductive effect on oscillating circuit the charge of which is controlled by a pulse of short duration | |
JPH0510847B2 (en) | ||
US4761603A (en) | High frequency oscillation proximity switch | |
EP0169582B1 (en) | Proximity switch | |
EP0102796B1 (en) | Induction heating apparatus utilizing output energy for powering switching operation | |
US5506746A (en) | Electrostatic powder coating gun and method of generating a high voltage in such a gun | |
WO1987000933A1 (en) | Detector device | |
US4638262A (en) | Proximity switch with improved response time and antimagnetic field circuitry | |
JPH0357650B2 (en) | ||
JP2508623B2 (en) | Proximity switch | |
JPH0548646B2 (en) | ||
JPS6341837Y2 (en) | ||
JPH0548647B2 (en) | ||
JPS5939869B2 (en) | induction heating device | |
JPH067512B2 (en) | Induction heating cooker timing circuit | |
JPH0159712B2 (en) | ||
JPS587724Y2 (en) | Block King Hasshinki | |
JPH0124353B2 (en) | ||
JPS6226157B2 (en) | ||
JPS6122437B2 (en) |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
EXPY | Cancellation because of completion of term |