JPH0357196A - Lighting load control device - Google Patents
Lighting load control deviceInfo
- Publication number
- JPH0357196A JPH0357196A JP1193433A JP19343389A JPH0357196A JP H0357196 A JPH0357196 A JP H0357196A JP 1193433 A JP1193433 A JP 1193433A JP 19343389 A JP19343389 A JP 19343389A JP H0357196 A JPH0357196 A JP H0357196A
- Authority
- JP
- Japan
- Prior art keywords
- voltage
- transistor
- signal
- power source
- dimmer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000009499 grossing Methods 0.000 claims abstract description 12
- 230000007423 decrease Effects 0.000 claims description 7
- 238000013016 damping Methods 0.000 abstract 1
- 239000003990 capacitor Substances 0.000 description 26
- 238000010586 diagram Methods 0.000 description 8
- 230000003287 optical effect Effects 0.000 description 7
- 238000006243 chemical reaction Methods 0.000 description 6
- 206010052143 Ocular discomfort Diseases 0.000 description 1
- 230000001934 delay Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000005284 excitation Effects 0.000 description 1
- 238000004804 winding Methods 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02B—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
- Y02B20/00—Energy efficient lighting technologies, e.g. halogen lamps or gas discharge lamps
Landscapes
- Discharge-Lamp Control Circuits And Pulse- Feed Circuits (AREA)
- Circuit Arrangement For Electric Light Sources In General (AREA)
Abstract
Description
【発明の詳細な説明】
[産業上の利用分野]
本発明は高周波点灯装置に調光装置から信号線を介して
調光信号を与えることにより照明負荷を調光制御する照
明負荷制御装置に関するものである.
[従来の技術]
第2図は従来の照明負荷制御装置の回路図である.この
照明負荷制御装置は、高周波点灯装置Xと調光装置Yと
からなる.高周波点灯装置Xは、交流電源Vsから電源
スイッチSW,z力線1+ ,12を介して給電された
交流電圧を、ノイズフィルター1を介して全波整流器2
で整流し、平滑コンデンサC0に得られた直流電圧を高
周波変換回路3に入力し、高周波電圧に変換して蛍光灯
4を点灯させるものである.高周波変換回路3は、調光
装置Yから調光信号線1.,1.を介して伝送される調
光信号に応じて蛍光灯4の光出力を可変とする制御回路
を備えている.
次に、調光装置Yの回路構成について説明する.交流電
源Vsの交流電圧は降圧トランスT1により降圧され、
ダイオードブリッジD. B Iにより全波整流され、
コンデンサC1を充電する.コンデンサClの電圧は三
端子レギュレータQ,により定電圧化され、コンデンサ
C2に充電されて、直流低電圧(例えば約12■〉の直
流電源E2となる.直流電源E2により給電される三角
波発生回路5は、コンデンサと、このコンデンサを直流
電源E2からの電流により充電する抵抗、及び、コンデ
ンサの充電電圧が所定電圧に達すると、コンデンサを放
電させるスイッチング回路よりなり、このコンデンサに
得られる所定周波数(例えば約IKHz)の三角波電圧
Vaを比較器6の反転入力端子に印加する.この三角波
発生回路5により得られる三角波電圧Vaは厳密な三角
波ではなく、第3図に示すように、時間軸に対して非線
形的に上昇する電圧とされている.直流電源E2の電圧
は可変抵抗VR.と半固定抵抗VR,,VR.により分
圧されて、基準電圧vbとして比較器6の非反転入力端
子に印加される.半固定抵抗VR,,VR,は、可変抵
抗VR.から得られる基準電圧vbの上限値Vb,と下
限値Vb2を決めるものである.比較器6の出力端子は
、抵抗R1を介してトランジスタTrのベースに接続さ
れている。トランジスタTr,のエミッタは直流電源E
2の負極に接続され、コレクタは抵抗R2を介して直流
宅源E2の正極に接続されると共に、トラン,ジスタT
r2のベースに接続されている.トランジスタTr2の
コレクタは直流電源E2の正極に接続され、エミッタは
抵抗R4を介して直流電源E2の負極に接続されると共
に、抵抗R3を介してトランジスタTrlのベースに接
続されている.トランジスタTr3のコレクタは直流電
源E2の正極に接続され、エミッタは抵抗R5を介して
直流電源E2の負極に接続されている。[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a lighting load control device that controls the lighting load by providing a dimming signal from a dimmer to a high-frequency lighting device via a signal line. It is. [Prior Art] Figure 2 is a circuit diagram of a conventional lighting load control device. This lighting load control device consists of a high frequency lighting device X and a light control device Y. The high-frequency lighting device
The DC voltage obtained by the smoothing capacitor C0 is input to the high frequency conversion circuit 3, where it is converted into a high frequency voltage and the fluorescent lamp 4 is turned on. The high frequency conversion circuit 3 connects the light control device Y to the light control signal line 1. ,1. The fluorescent lamp 4 is equipped with a control circuit that varies the light output of the fluorescent lamp 4 according to a dimming signal transmitted through the fluorescent lamp 4. Next, the circuit configuration of the light control device Y will be explained. The AC voltage of the AC power supply Vs is stepped down by a step-down transformer T1,
diode bridge d. Full wave rectified by B I,
Charge capacitor C1. The voltage of the capacitor Cl is made constant by the three-terminal regulator Q, and the capacitor C2 is charged to become a DC power source E2 with a low DC voltage (for example, about 12 cm).The triangular wave generating circuit 5 is powered by the DC power source E2. consists of a capacitor, a resistor that charges the capacitor with a current from the DC power source E2, and a switching circuit that discharges the capacitor when the charging voltage of the capacitor reaches a predetermined voltage. A triangular wave voltage Va of about IKHz) is applied to the inverting input terminal of the comparator 6.The triangular wave voltage Va obtained by the triangular wave generating circuit 5 is not a strict triangular wave, but has a waveform with respect to the time axis as shown in FIG. It is assumed that the voltage increases non-linearly.The voltage of the DC power supply E2 is divided by the variable resistor VR. and the semi-fixed resistors VR, VR., and is applied to the non-inverting input terminal of the comparator 6 as the reference voltage vb. The semi-fixed resistors VR, ,VR, determine the upper limit value Vb and lower limit value Vb2 of the reference voltage vb obtained from the variable resistor VR.The output terminal of the comparator 6 is connected via the resistor R1. The emitter of the transistor Tr is connected to the base of the transistor Tr.The emitter of the transistor Tr is connected to the DC power supply E.
The collector is connected to the positive electrode of the DC home source E2 via the resistor R2, and the collector is connected to the negative electrode of the DC power source E2 via the resistor R2.
Connected to the base of r2. The collector of the transistor Tr2 is connected to the positive electrode of the DC power source E2, and the emitter is connected to the negative electrode of the DC power source E2 via a resistor R4, and also to the base of the transistor Trl via a resistor R3. The collector of the transistor Tr3 is connected to the positive electrode of the DC power source E2, and the emitter is connected to the negative electrode of the DC power source E2 via a resistor R5.
そして、抵抗R,の両端から調光信号Vdが得られる.
つまり、トランジスタTr+と抵抗R.,R2によりエ
ミッタ接地型の反転増幅回路を構成しており、トランジ
スタTr2と抵抗R,及びトランジスタTr3と抵抗R
3,R5によりコレクタ接地(エミッタホロア)型のイ
ンピーダンス変換回路を構成している.なお、調光装置
Yの出力段にインピーダンス変換回路を配しているのは
、高周波点灯装置Xと調光装jl[Yとを接続する調光
信号線fl.,l,が長く延長されることが多いので、
調光信号の減衰を防止するために、調光信号を低インピ
ーダンス化しているものである.
以下、第3図を参照しながら調光装置Yの動作について
説明する.第3図(a)は可変抵抗VR,から得られる
基準電圧vbと、三角波発生回路5から得られる三角波
電圧Vaとの関係を示している.基準電圧vbは高い電
圧vb1から低い電圧vb2まで連続的に設定すること
ができる.三角波発生回路5から得られる三角波電圧V
aが基準電圧vb以下であるときには、比較器6の出力
端子は“High”レベルとなるので、トランジスタT
r.はオンとなり、そのコレクタ電位Veが降下して、
調光信号Vdは″L os”レベルとなる.一方、三角
波発生回路5から得られる三角波電圧Vaが基準電圧v
bよりも高くなると、比較器6の出力端子は“L am
”レベルとなるので、トランジスタTr,はオフとなり
、そのコレクタ電位Vcが上昇して、調光信号Vdは“
High”レベルとなる.これにより、第3図(b)
, (e7に示すような調光信号Vdが得られる.同図
(b)は基準電圧vbが高い電圧Vb1である場合の調
光信号Vdであり、オン・デューティ(tl/T)が小
さい.また、同図(e)は基準電圧vbが低い電圧vb
,である場合の調光信号Vdであり、オン・デューティ
(t2/T)が大きい.基準電圧vbは可変抵抗VR2
を操作することにより高い電圧Vb1から低い電圧■b
2までの任意の電圧に設定することができるので、調光
信号Vdのオン・デューティは同図(b)に示す最小値
から同図(c)に示す最大値までの任意の大きさに設定
することができるものである.
[発明が解決しようとする課M]
上述の従来例において、高周波変換回路3は調光信号V
dのオン・デューティが最小のときに光出力を最大とし
、オン・デューティが最大のときに光出力を最小とする
ような制御回路を備えている.今、調光信号Vdのオン
・デューティを大きくして、光出力が最小の状態で電源
スイッチSWを遮断すると、調光装置Yの直流電源E2
は平滑コンデンサC + . C 2の影響で徐々に時
間をかけて低下するため、調光信号Vdも暫くは発生し
たままとなる.一方、高周波点灯装置Xも平滑コンデン
サC0に電荷が残っているが、光出力を最小に設定して
いる場合には、高周波変換回路3の負荷となる蛍光灯4
での消費電力も少ないため、その充電電圧は第4図(a
)に示すように、電源スイッチSWをOFFLてから徐
々に低下して行く.このため、蛍光灯4は少し時間をか
けて徐々に微放電しながら消えて行き、同図の斜線で示
す時間では蛍光灯4からの光出力が持続し、使用者に違
和感を与えるという問題があった.
本発明はこのような点に鑑みてなされたものであり、そ
の目的とするところは、電源遮断時には調光信号を即時
に遮断し、照明負荷の光出力の変化が遅延することを防
止できる照明負荷制御装置を提供することにある.
[課題を解決するための手段]
本発明にあっては、上記の課題を解決するために、第1
図に示すように、交流電源Vsを整流平滑して得た直流
電圧を高周波に変換して照明負荷(例えば蛍光灯4)を
点灯させる高周波点灯装lxと、交流電源Vsを整流平
滑して得た直流電圧により給電されて前記高周波点灯装
置Xに信号t! e 3 ,e,を介して調光信号Vd
を与える調光装置Yとからなり、調光信号Vdは一周期
に占める有電圧区間の割合が可変とされた矩形波信号で
あり、高周波点灯装置Xは調光信号Vdの一周期に占め
る有電圧区間の割合が小さいほど照明負荷の光出力を大
きくする装置であり、電源遮断時に交流電源Vsを整流
平滑して得た直流電圧の減衰よりも速く調光信号Vdを
無電圧信号とする制御回路を備えることを特徴とするも
のである.
[作用]
本発明にあっては、このように、電源遮断時に交流電源
Vsを整流平滑して得た直流電圧の減衰よりも速く調光
信号Vdを無電圧信号とするようにしたので、電源遮断
時に光出力の変化が遅延することはない.
[実施例]
第1図は本発明の一実施例の回路図である.本実施例で
は、第2図に示す従来例において、トランジスタTr.
のコレクタ出力をグランドレベルに落とすためのトラン
ジスタTr.を設け、このトランジスタTr.を発光ダ
イオードPDとフォトトランジスタPTを含む制御回路
により電源遮断時にオンさせるようにしたものである.
以下、その制御回路の構戒について説明する.降圧トラ
ンスT,の2次巻線には、限流用の抵抗R.を介してダ
イオードブリッジDB.の交流入力端子が接続されてお
り、ダイオードブリッジDB2の直流出力端子には発光
ダイオードPDが接続されている.この発光ダイオード
PDから発生する光信号はフォトトランジスタPTによ
り受光される.フォトトランジスタPTはコンデンサC
,の両端に並列接続されている.このコンデンサC,は
抵抗R6を介して直流電源E2に接続されている.また
、コンデンサC,は抵抗R,を介してトランジスタTr
4のベース・エミッタ間に接続されている.トランジス
タTr<のコレクタ及びエミッタはトランジスタTr,
のコレクタ及びエミッタにそれぞれ接続されている.
以下、上記回路の動作について説明する.電源スイッチ
SWがONされると、発光ダイオードPDが光信号を発
生し、この光信号を受光したフォトトランジスタPTが
導通するので、コンデンサC,の両端電圧は上昇しない
.したがって、トランジスタTrnはオフ状態に保持さ
れ、調光装置Yは第2図の従来例と同様の動作を行う.
次に、電源スイッチSWがOFFされると、発光ダイオ
ードPDが光信号の発生を停止し、フォトトランジスタ
PTが非導通状態となるので、コンデンサC2の残留電
荷が抵抗R,を介してコンデンサC,に流入して、コン
デンサC,が充電される.これにより、コンデンサC,
の両端電圧が上昇し、抵抗R丁を介してトランジスタT
rnにベース電流が流れて、トランジスタTr<がオン
となる.これにより、トランジスタTr.のコレクタ電
位は強制的にグランドレベルに落とされるから、調光信
号Vdは直ちに遮断される.このとき、高周波変換回路
3はコンデンサC0の残留電荷で動作しているが、調光
信号Vdのオン・デューティが最小となったので、蛍光
灯4の光出力を最大とするように制御を行う。Then, a dimming signal Vd is obtained from both ends of the resistor R.
In other words, the transistor Tr+ and the resistor R. , R2 constitute a common emitter type inverting amplifier circuit, and the transistor Tr2 and the resistor R, and the transistor Tr3 and the resistor R
3. R5 constitutes a grounded collector (emitter follower) type impedance conversion circuit. Note that the impedance conversion circuit is arranged at the output stage of the dimmer Y because the dimmer signal line fl. ,l, is often extended for a long time, so
In order to prevent the dimming signal from attenuating, the impedance of the dimming signal is reduced. The operation of the light control device Y will be explained below with reference to FIG. FIG. 3(a) shows the relationship between the reference voltage Vb obtained from the variable resistor VR and the triangular wave voltage Va obtained from the triangular wave generating circuit 5. The reference voltage vb can be set continuously from a high voltage vb1 to a low voltage vb2. Triangular wave voltage V obtained from the triangular wave generating circuit 5
When a is lower than the reference voltage vb, the output terminal of the comparator 6 becomes "High" level, so the transistor T
r. turns on, its collector potential Ve drops, and
The dimming signal Vd becomes "Los" level. On the other hand, the triangular wave voltage Va obtained from the triangular wave generating circuit 5 is the reference voltage v
When the output terminal of the comparator 6 becomes “L am
" level, the transistor Tr is turned off, its collector potential Vc rises, and the dimming signal Vd becomes "
As a result, as shown in Fig. 3(b)
, (A dimming signal Vd as shown in e7 is obtained. Figure (b) shows the dimming signal Vd when the reference voltage vb is a high voltage Vb1, and the on-duty (tl/T) is small. In addition, in the same figure (e), the reference voltage vb is a low voltage vb
, and the on-duty (t2/T) is large. Reference voltage vb is variable resistor VR2
From high voltage Vb1 to low voltage ■b by operating
Since the on-duty of the dimming signal Vd can be set to any voltage up to 2, the on-duty of the dimming signal Vd can be set to any value from the minimum value shown in the figure (b) to the maximum value shown in the figure (c). It is something that can be done. [Problem M to be solved by the invention] In the above-mentioned conventional example, the high frequency conversion circuit 3 converts the dimming signal V
The controller is equipped with a control circuit that maximizes the optical output when the on-duty of d is at a minimum, and minimizes the optical output when the on-duty is at a maximum. Now, if the on-duty of the dimming signal Vd is increased and the power switch SW is shut off when the optical output is at its minimum, the DC power supply E2 of the dimming device Y
is the smoothing capacitor C + . Since it gradually decreases over time due to the influence of C2, the dimming signal Vd also remains generated for a while. On the other hand, the high-frequency lighting device
Since the power consumption is also low, the charging voltage is as shown in Figure 4 (a
), the power gradually decreases after the power switch SW is turned OFF. For this reason, the fluorescent lamp 4 gradually disappears with a slight discharge over a period of time, and the light output from the fluorescent lamp 4 continues during the time indicated by diagonal lines in the diagram, causing a problem that the user feels uncomfortable. there were. The present invention has been made in view of these points, and its purpose is to provide lighting that can immediately cut off the dimming signal when the power is cut off, thereby preventing delays in changes in the light output of the lighting load. Our purpose is to provide a load control device. [Means for Solving the Problems] In the present invention, in order to solve the above problems, the first
As shown in the figure, there is a high-frequency lighting device lx that converts the DC voltage obtained by rectifying and smoothing the AC power supply Vs into a high frequency and lighting a lighting load (for example, a fluorescent lamp 4), and A signal t! is supplied to the high frequency lighting device dimming signal Vd via e 3 , e,
The dimming signal Vd is a rectangular wave signal in which the proportion of the voltage-bearing section in one period is variable, and the high-frequency lighting device This device increases the light output of the lighting load as the ratio of the voltage section decreases, and controls the dimming signal Vd to a no-voltage signal faster than the attenuation of the DC voltage obtained by rectifying and smoothing the AC power supply Vs when the power is cut off. It is characterized by being equipped with a circuit. [Function] In this way, in the present invention, the dimming signal Vd is made into a no-voltage signal faster than the attenuation of the DC voltage obtained by rectifying and smoothing the AC power supply Vs when the power is cut off, so that the power supply There is no delay in the change in light output when the light is cut off. [Embodiment] Figure 1 is a circuit diagram of an embodiment of the present invention. In this embodiment, in the conventional example shown in FIG. 2, the transistor Tr.
A transistor Tr. for dropping the collector output of the transistor Tr. is provided, and this transistor Tr. A control circuit including a light emitting diode PD and a phototransistor PT turns on the light when the power is cut off. The structure of the control circuit will be explained below. The secondary winding of the step-down transformer T is provided with a current-limiting resistor R. via the diode bridge DB. The AC input terminal of the diode bridge DB2 is connected, and the light emitting diode PD is connected to the DC output terminal of the diode bridge DB2. A light signal generated from this light emitting diode PD is received by a phototransistor PT. Phototransistor PT is capacitor C
, are connected in parallel to both ends of the . This capacitor C is connected to the DC power supply E2 via a resistor R6. In addition, the capacitor C is connected to the transistor Tr via the resistor R.
It is connected between the base and emitter of 4. The collector and emitter of the transistor Tr< are the transistor Tr,
are connected to the collector and emitter of the The operation of the above circuit will be explained below. When the power switch SW is turned on, the light emitting diode PD generates an optical signal, and the phototransistor PT that receives this optical signal becomes conductive, so that the voltage across the capacitor C does not rise. Therefore, the transistor Trn is kept in an off state, and the light control device Y operates in the same manner as the conventional example shown in FIG.
Next, when the power switch SW is turned off, the light emitting diode PD stops generating an optical signal and the phototransistor PT becomes non-conductive, so that the residual charge in the capacitor C2 is transferred to the capacitor C and the capacitor C through the resistor R. , and the capacitor C is charged. As a result, capacitor C,
The voltage across the transistor T increases through the resistor R.
A base current flows through rn, and the transistor Tr< turns on. As a result, the transistor Tr. Since the collector potential of is forcibly lowered to the ground level, the dimming signal Vd is immediately cut off. At this time, the high frequency conversion circuit 3 is operating with the residual charge in the capacitor C0, but since the on-duty of the dimming signal Vd has become minimum, it controls the light output of the fluorescent lamp 4 to maximize it. .
このため、コンデンサC。の残留電荷は急速に消費され
、その電圧は第4図(b)に示すように急速に低下する
.したがって、本実施例では光出力が小さい状態で電源
スイッチSWをOFFLても、蛍光灯4を速やかに消灯
することができる.なお、電源スイッチSWの31!断
時に蛍光灯4が調光状態から一瞬最大点灯状態に変化す
るが、その時間は短いし、コンデンサC。の電圧が急速
に低下することにより光出力も急速に低下するので、目
視的には違和感は生じない.
上記回路において、コンデンサC,は交流電源Vsのゼ
ロクロス付近で発光ダイオードPDの光信号が停止する
ので、そのときにトランジスタTr<のオフ状態を維持
する目的で設けられている.このコンデンサC,の容量
が大き過ぎると、電源スイッチSWが遮断されて、発光
ダイオードPDの光信号が停止した後、トランジスタT
r.がオンするまでの時間が長くなるので、コンデンサ
Cコの容量は上記の目的を達戒する範囲で小さいほど良
い。For this reason, capacitor C. The residual charge of is rapidly consumed, and its voltage drops rapidly as shown in Figure 4(b). Therefore, in this embodiment, even if the power switch SW is turned OFF when the light output is low, the fluorescent lamp 4 can be quickly turned off. In addition, power switch SW 31! When the fluorescent lamp 4 is turned off, it momentarily changes from the dimming state to the maximum lighting state, but the time is short and the capacitor C. As the voltage rapidly decreases, the light output also decreases rapidly, so there is no visual discomfort. In the above circuit, the capacitor C is provided for the purpose of maintaining the off state of the transistor Tr< since the optical signal of the light emitting diode PD stops near the zero cross of the AC power supply Vs. If the capacitance of this capacitor C is too large, the power switch SW is cut off and the light signal from the light emitting diode PD is stopped.
r. Since it takes a long time to turn on the capacitor C, the smaller the capacitance of the capacitor C, the better, within the range that achieves the above purpose.
次に、第2図に示す従来例の回路において、電力線1,
+’2に第1の電源スイッチSW1が挿入され、調光
装置Yの電源入力側に第2の電源スイッチSW2が挿入
されている場合について検討する.この場合、調光装置
Yにより調光信号のオン・デューティを最小とし、高周
波点灯装置Xによる光出力を最大としているときに、電
源スイッチSWを遮断すると、蛍光灯4は即時に消灯し
、電源スイッチSW2を遮断すると、蛍光灯4は最大点
灯状態のままとなる。Next, in the conventional circuit shown in FIG.
Consider the case where the first power switch SW1 is inserted at +'2 and the second power switch SW2 is inserted at the power input side of the dimmer Y. In this case, when the on-duty of the dimming signal is minimized by the dimmer Y and the light output by the high-frequency lighting device X is maximized, if the power switch SW is shut off, the fluorescent lamp 4 is immediately turned off and the When the switch SW2 is turned off, the fluorescent lamp 4 remains in the maximum lighting state.
次に、調光装置Yにより調光信号のオン・デューティを
最大とし、高周波点灯装置Xによる光出力を最小として
いるときに、電源スイッチSWを遮断すると、調光信号
は出力されたままとなるので、直流電源E1の電圧減衰
に従って蛍光灯4は徐々に消灯する.そこで、この場合
には、第5図に示すように、高周波点灯装置Xの側に電
源遮断時には調光信号株1,,l.を切り離すリレーR
yを追加することにより、調光信号Vdの入カを遮断し
、電源スイッチsw,の遮断時に即時に蛍光灯4を消灯
させれば良い.スイッチsw,はリレーRyの常開接点
よりなり、調光信号線l,に直列接続されている.電源
スイッチsw1を遮断すると、リレーR,の励磁が解除
されてスイッチsw,が遮断される.
また、調光装置Yにより調光信号のオン・デューティを
最大とし、高周波点灯装置Xによる光出力を最小として
いるときに、電源スイッチsw2を遮断すると、調光信
号が暫くは出刀されているので、蛍光灯4は暫くしてか
ら最大点灯状態となる.この場合、第1図に示す調光装
1tfYを用いることにより、電源スイッチsw2の遮
断時に即時に蛍光灯4を最大点灯状態に移行させること
ができる.
[発明の効果]
本発明にあっては、上述のように、交流電源を整流平滑
して得た直流電圧により動作する高周波点灯装置と調光
装置とがらなり、高周波点灯装置は矩形波信号よりなる
調光信号の一周期に占める有電圧区間の割合が小さいほ
ど照明負荷の光出力を大きくするようにした照明負荷制
御装置において、電源遮断時に交流電源を整流平滑して
得た直流電圧の減衰よりも速く調光信号を無電圧信号と
するようにしたので、電源遮断時に照明負荷の光出力の
変化が遅延しないという効果がある.Next, when the on-duty of the dimming signal is maximized by the dimmer Y and the light output by the high-frequency lighting device X is minimized, if the power switch SW is shut off, the dimmer signal remains output. Therefore, the fluorescent lamp 4 gradually goes out as the voltage of the DC power source E1 attenuates. Therefore, in this case, as shown in FIG. 5, when the power is cut off on the side of the high-frequency lighting device Relay R to disconnect
By adding y, the input of the dimming signal Vd can be cut off, and the fluorescent lamp 4 can be turned off immediately when the power switch sw is cut off. The switch sw consists of a normally open contact of the relay Ry, and is connected in series to the dimming signal line l. When the power switch sw1 is cut off, the excitation of the relay R is canceled and the switch sw is cut off. Furthermore, when the on-duty of the dimming signal is maximized by the dimmer Y and the light output by the high-frequency lighting device X is minimized, if the power switch sw2 is shut off, the dimmer signal remains on for a while. Therefore, the fluorescent lamp 4 reaches its maximum lighting state after a while. In this case, by using the light control device 1tfY shown in FIG. 1, it is possible to immediately shift the fluorescent lamp 4 to the maximum lighting state when the power switch sw2 is turned off. [Effects of the Invention] As described above, the present invention includes a high-frequency lighting device and a dimming device that operate using a DC voltage obtained by rectifying and smoothing an AC power source, and the high-frequency lighting device consists of a rectangular wave signal. In a lighting load control device that increases the light output of the lighting load as the proportion of the voltage-containing section in one cycle of the dimming signal decreases, the attenuation of the DC voltage obtained by rectifying and smoothing the AC power supply when the power is cut off is Since the dimming signal is made to be a voltage-free signal quickly, there is no delay in the change in the light output of the lighting load when the power is cut off.
第1図は本発明の一実施例の回路図、第2図は従来例の
回路図、第3図は同上の動作波形図、第4図(a)は従
来例における電源遮断時の動作波形図、第4図(b)は
本発明における電源遮断時の動作波形図、第5図は本発
明の他の実施例の回路図である.
Vsは交流電源、SWは電源スイッチ、C .,CC2
は平滑コンデンサ、DB,はダイオードブリッジ、Xは
高周波点灯装置、Yは調光装置、2は全波整流器、4は
蛍光灯である.Fig. 1 is a circuit diagram of an embodiment of the present invention, Fig. 2 is a circuit diagram of a conventional example, Fig. 3 is an operating waveform diagram of the same as above, and Fig. 4 (a) is an operating waveform when power is cut off in the conventional example. 4(b) are operational waveform diagrams when power is cut off according to the present invention, and FIG. 5 is a circuit diagram of another embodiment of the present invention. Vs is an AC power supply, SW is a power switch, C. ,CC2
is a smoothing capacitor, DB is a diode bridge, X is a high-frequency lighting device, Y is a dimmer, 2 is a full-wave rectifier, and 4 is a fluorescent lamp.
Claims (1)
変換して照明負荷を点灯させる高周波点灯装置と、交流
電源を整流平滑して得た直流電圧により給電されて前記
高周波点灯装置に信号線を介して調光信号を与える調光
装置とからなり、調光信号は一周期に占める有電圧区間
の割合が可変とされた矩形波信号であり、高周波点灯装
置は調光信号の一周期に占める有電圧区間の割合が小さ
いほど照明負荷の光出力を大きくする装置であり、電源
遮断時に交流電源を整流平滑して得た直流電圧の減衰よ
りも速く調光信号を無電圧信号とする制御回路を備える
ことを特徴とする照明負荷制御装置。(1) A high-frequency lighting device that converts a DC voltage obtained by rectifying and smoothing an AC power source into a high frequency to light a lighting load, and a high-frequency lighting device that is powered by the DC voltage obtained by rectifying and smoothing an AC power source. It consists of a dimmer device that provides a dimmer signal via a signal line, and the dimmer signal is a rectangular wave signal in which the proportion of the voltage-carrying section in one cycle is variable, and a high-frequency lighting device provides a dimmer signal that This device increases the light output of the lighting load as the proportion of the voltage-carrying section in the period decreases, and converts the dimming signal into a no-voltage signal faster than the attenuation of the DC voltage obtained by rectifying and smoothing the AC power when the power is cut off. 1. A lighting load control device comprising a control circuit.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1193433A JPH0357196A (en) | 1989-07-26 | 1989-07-26 | Lighting load control device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1193433A JPH0357196A (en) | 1989-07-26 | 1989-07-26 | Lighting load control device |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0357196A true JPH0357196A (en) | 1991-03-12 |
Family
ID=16307902
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1193433A Pending JPH0357196A (en) | 1989-07-26 | 1989-07-26 | Lighting load control device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0357196A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2528418A2 (en) | 2011-05-23 | 2012-11-28 | Panasonic Corporation | Dimming signal generation device and illumination control system using same |
-
1989
- 1989-07-26 JP JP1193433A patent/JPH0357196A/en active Pending
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2528418A2 (en) | 2011-05-23 | 2012-11-28 | Panasonic Corporation | Dimming signal generation device and illumination control system using same |
EP2528418A3 (en) * | 2011-05-23 | 2015-04-15 | Panasonic Intellectual Property Management Co., Ltd. | Dimming signal generation device and illumination control system using same |
US9089020B2 (en) | 2011-05-23 | 2015-07-21 | Panasonic Intellectual Property Management Co., Ltd. | Dimming signal generation device and illumination control system using same |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6259614B1 (en) | Power factor correction control circuit | |
US4441053A (en) | Switched mode electrode ballast | |
KR100428329B1 (en) | Switched mode power supply with power factor correction | |
CN1096823C (en) | Discharge lamp ballast | |
US4920302A (en) | Fluorescent lamp power supply | |
US5614810A (en) | Power factor correction circuit | |
CA2267407A1 (en) | Multiresonant dc-dc converter with full-wave rectifying means | |
US4410837A (en) | Discharge lamp lighting device | |
WO1996017282A1 (en) | Ballast circuit for powering gas discharge lamp | |
WO1997041497B1 (en) | Modular high power modulator | |
JP2793836B2 (en) | Lighting load control device | |
JPH0357196A (en) | Lighting load control device | |
US6028397A (en) | Buck converter switching scheme | |
JPH02123965A (en) | power supply | |
EP0801519B1 (en) | A novel circuit for power factor and lamp efficiency | |
JP2699187B2 (en) | Discharge lamp lighting device | |
WO2023015453A1 (en) | Power supply circuit, driver and controlling method | |
US20230387788A1 (en) | Ripple reduction circuit for use with a power supply | |
RU2161901C1 (en) | Lighting device for endoscopic equipment | |
EP0020493B1 (en) | Fluorescent lamp lighting system | |
JPH08298191A (en) | Discharge lamp lighting device | |
RU2242835C1 (en) | Secondary power supply | |
JP2022525437A (en) | Converters, LED drivers and LED lighting devices for driving loads | |
CN118696486A (en) | Driver unit for supplying two loads | |
CN2383290Y (en) | Remote control light tuning type AC electronic ballast |