【発明の詳細な説明】[Detailed description of the invention]
本発明は表面をエキシマレーザーでパルス照射
処理してなる改質合成樹脂成形品に関するもので
あり、特には接着性、印刷性、塗装性の顕著に改
良されたポリテトラフルオロエチレンまたはポリ
イミド樹脂成形品の提供を目的とする。
合成樹脂成形品たとえばフイルム、シートなど
は印刷や塗装あるいはその他の二次加工を何ら施
こすことなく成形時の状態のままで使用に供する
こともあるが、一般に各種の印刷、塗装を施こし
たりあるいは異種の樹脂成形品や金属、ガラス等
の無機材質と接着複合化、ラミネート化して使用
に供することが多い。しかしこれらの場合、合成
樹脂成形品の表面が印刷インキ、塗料との親和性
に劣りはなはだしくは通常法での印刷、塗装が不
可能であつたり、または接着性が悪いために複合
化製品等の品質性能が損われることが多くあり、
表面の接着性、印刷性、塗装性の改良が強く望ま
れている。
従来、合成樹脂成形品の表面特性(接着性、印
刷性、塗装性等)を改質する方法としては、酸・
アルカル処理等の湿式処理、プライマー塗布処理
あるいはコロナ処理等が行われているが、酸・ア
ルカリ処理等の湿式処理法は劇薬使用、排液処理
等のために歓迎されず、またプライマー処理はプ
ライマー塗布・乾燥という余分な工程が増す不利
益がある。そしてコロナ処理は効果の持久性にと
ぼしく経時と共に付与された接着性、印刷性等が
消失するほか改質効果そのものが低く、特にポリ
マー分子内にC−X結合(Xはハロゲン)あるい
はC−N結合を有する合成樹脂成形品に対して改
質効果が小さいという欠点がある。
他方近年の技術として合成樹脂成形品の表面を
減圧ガス雰囲気下のグロー放電による低温プラズ
マで処理する改質法が提案されており、これによ
れば接着性、印刷性等の表面特性改質向上効果が
得られる。しかし、この方法を工業的規模で実施
するためには非常に大がかりな高価な装置を必要
とする難点がある。
また短波長紫外光処理による改質方法も検討さ
れているところであり、たとえばポリオレフイン
やポリエステル等に関しては効果が期待されるの
であるが、前記したポリマー分子内にC−X結合
あるいはC−N結合を有す合成樹脂成形品の場合
には表面改質の効果が期待されない。この理由は
明らかでないが、通常短波長紫外光処理のために
は光源としてたとえば255nm以下の輝線または
連続光を発生するガスを充填した適当な窓材をも
つ放電管、ランプを使用するが、これらの照射光
は種々の波長の輝線または連続光であり、成形品
表面の接着性、印刷性、塗装性等の性質向上をも
たらす改質には不要な波長の光を含み、それが改
質反応を阻害しているものと推定される。
最近、励起状態の原子(分子)と基底状態の原
子(分子)との結合によるエキシマー
(excimer)を利用したエキシマレーザーの発振
が確認され、新らしい光化学反応光源として着目
されている。本発明者らは特に従来の放電管、ラ
ンプ光源では得られないレーザーの単色性(単一
波長光)に注目し、これをポリテトラフルオロエ
チレンまたはポリイミドを原料とする成形品の接
着性、印刷性、塗装性改良を目的とした表面変成
反応に利用することを検討した結果、該成形品の
表面を95〜200nm波長域のエキシマレーザー短
時間パルス照射処理することにより、成形品表層
に接着性、印刷性、塗装性を顕著に改善せしめる
きわめて薄い変成層が成形品そのものの機械的物
性等が何ら劣化されることなく形成されることを
見出し本発明を完成した。
以下本発明を詳細に説明する。
本発明で使用されるポリテトラフルオロエチレ
ンまたはポリイミドとしては、その分子構造、分
子量等について特に制限がなく、ホモポリマー、
コポリマー、ブロツク共重合体、グラフト共重合
体、異種合成樹脂混合体などいずれであつてよ
い。
これらの合成樹脂から成形品を得るに当つて、
各種配合剤、添加剤あるいは加工助剤などが配合
されるこのは差支えなく、たとえば可塑剤、安定
剤、滑剤、充填剤、増量剤、顔料、染料、耐熱性
向上剤、難燃化剤、抗酸化剤、耐候剤、光吸収
剤、界面活性剤、架橋剤、防曇剤、防湿剤、弾性
向上剤なとが添加配合されても本発明の効果に影
響を与えない。
本発明においてはフイルム、シートその他各種
形状の成形品が対象とされ、キヤステイング法、
溶融押出法、カレンダー法、延伸法、圧縮法等従
来公知の成形手段により製造される。
このようにして得られる成形品の表面を95〜
200nm波長域のエキシマレーザーでパルス照射
するのであるが、このレーザーとしてはたとえば
Ar2(126nm)、Kr2(146nm)、Xe2(172nm)、
ArCl(175nm)、ArF(193nm)、等が例示され、
これらの高調波を使用することも可能であり、ま
たラマンシフターにより波長変換を行つて使用す
ることも可能である。
200nmを越える波長のレーザー光は合成樹脂
成形品を光劣化、熱劣化させるだけの効果しかな
く、また95nm以下のものはいまだ知られていな
いが、かなり大型かつ高価なものになると推測さ
れ、本発明の目的にそぐわない。
成形品表面に対して行われるエキシマレーザー
によるパルス照射処理は、平均出力数ワツトない
し数十ワツト、くり返し周波数1Hz〜100Hz、パ
ルス巾14nsec以下の条件で行えばよく、これによ
り成形品表面に厚さ1μm以下のきわめて薄い改
質層が形成され、結果として接着性、印刷性、塗
装性が顕著に向上される硬化が得られる。なお、
改質層はきわめてうすいため成形品の本来有する
機械的強度等の物性が何ら損われることがない。
つぎに具体的実施例をあげる。
実施例 1
ポリテトラフルオロエチレンシート(ダイキン
(株)製TFE−ポリフロン)およびポリイミドフイ
ルム(デユポン(株)製カブトン)を用意し、これら
の表面にArF(波長193nm)レーザーを用い、パ
ルスエネルギー100mJ、パルス巾10nsecの条件
下で30パルス照射(10Hz3秒間処理相当)を行つ
た。
このようにして処理したシート、フイルムそれ
ぞれを2分割し、それぞれ処理面同志をエポキシ
系接着剤(コニシ(株)製ボンドE−クリア−セツ
ト)で接着し、常温48時間硬化後にJISK6854に
基づいてT型剥離強度を測定した。同時に処理シ
ート、フイルム面の水の接触角を測定し、親水性
の評価を行なつた。また印刷性、塗装性の評価の
ため印刷インク(東洋インキ(株)製GRPインキ)
を処理面に塗布した常温72時間乾燥された後、セ
ロハン粘着テープを塗布面に十分に貼り付けた後
瞬時に剥離させ、印刷インクの密着性をみた。
結果は第1表に示すとおりであつた。
The present invention relates to a modified synthetic resin molded product whose surface is subjected to pulse irradiation treatment with an excimer laser, and particularly to a polytetrafluoroethylene or polyimide resin molded product that has significantly improved adhesion, printability, and paintability. The purpose is to provide. Synthetic resin molded products, such as films and sheets, may be used as they were when molded without any printing, painting, or other secondary processing; Alternatively, it is often used by adhesively compounding or laminating it with different types of resin molded products, metals, glass, and other inorganic materials. However, in these cases, the surface of the synthetic resin molded product has poor affinity with printing inks and paints, making it impossible to print or paint using conventional methods, or due to poor adhesion, it is difficult to use composite products. Quality performance is often compromised,
Improvements in surface adhesion, printability, and paintability are strongly desired. Conventionally, methods for modifying the surface properties (adhesion, printability, paintability, etc.) of synthetic resin molded products include acid and
Wet treatments such as alkal treatment, primer coating treatment, corona treatment, etc. are used, but wet treatment methods such as acid/alkali treatment are not welcomed due to the use of powerful chemicals and waste liquid treatment, and primer treatment is This has the disadvantage of increasing the extra steps of coating and drying. Moreover, corona treatment has a poor durability of effect, and the adhesiveness and printability imparted to it disappear over time, and the modification effect itself is low, especially when C-X bonds (X is a halogen) or C-N There is a drawback that the modification effect on synthetic resin molded products having bonds is small. On the other hand, as a recent technology, a modification method has been proposed in which the surface of a synthetic resin molded product is treated with low-temperature plasma using glow discharge in a reduced-pressure gas atmosphere, which improves surface properties such as adhesion and printability. Effects can be obtained. However, in order to carry out this method on an industrial scale, there is a drawback that very large and expensive equipment is required. Modification methods using short-wavelength ultraviolet light treatment are also being considered, and are expected to be effective for polyolefins, polyesters, etc.; In the case of synthetic resin molded articles having the above-mentioned properties, the effect of surface modification cannot be expected. The reason for this is not clear, but normally, for short wavelength ultraviolet light treatment, a discharge tube or lamp with a suitable window material filled with a gas that generates an emission line or continuous light of 255 nm or less is used as a light source. The irradiation light is bright line or continuous light of various wavelengths, and includes light of wavelengths unnecessary for modification that improves properties such as adhesion, printability, and paintability of the surface of the molded product, and it causes the modification reaction. It is presumed that this is inhibiting the Recently, excimer laser oscillation has been confirmed, which utilizes an excimer created by the bond between an excited state atom (molecule) and a ground state atom (molecule), and is attracting attention as a new photochemical reaction light source. The inventors particularly focused on the monochromaticity (single wavelength light) of lasers, which cannot be obtained with conventional discharge tubes and lamp light sources, and applied this to the adhesion and printing of molded products made from polytetrafluoroethylene or polyimide. As a result of considering its use in a surface modification reaction aimed at improving paintability and paintability, the surface of the molded product was treated with short pulse irradiation with an excimer laser in the wavelength range of 95 to 200 nm to improve adhesion to the surface layer of the molded product. The present invention was completed by discovering that an extremely thin modified layer that significantly improves printability and paintability can be formed without any deterioration of the mechanical properties of the molded product itself. The present invention will be explained in detail below. The polytetrafluoroethylene or polyimide used in the present invention is not particularly limited in terms of its molecular structure, molecular weight, etc.;
It may be a copolymer, a block copolymer, a graft copolymer, a mixture of different synthetic resins, or the like. In obtaining molded products from these synthetic resins,
Various compounding agents, additives, or processing aids may be added, such as plasticizers, stabilizers, lubricants, fillers, extenders, pigments, dyes, heat resistance improvers, flame retardants, and antiseptics. Even if an oxidizing agent, a weathering agent, a light absorbing agent, a surfactant, a crosslinking agent, an antifogging agent, a moisture proofing agent, an elasticity improver, etc. are added and blended, the effects of the present invention are not affected. The present invention targets films, sheets, and other molded products of various shapes, including the casting method,
It is manufactured by conventionally known molding methods such as melt extrusion, calendering, stretching, and compression. The surface of the molded product obtained in this way is
Pulsed irradiation is performed using an excimer laser in the 200 nm wavelength range, and for example,
Ar2 (126nm), Kr2 (146nm), Xe2 (172nm),
Examples include ArCl (175nm), ArF (193nm), etc.
It is also possible to use these harmonics, and it is also possible to use them after wavelength conversion using a Raman shifter. Laser beams with wavelengths over 200 nm only have the effect of photodegrading and thermally degrading synthetic resin molded products, and laser beams with wavelengths of 95 nm or less are not yet known, but they are presumed to be quite large and expensive, and this book Not suitable for the purpose of the invention. The excimer laser pulse irradiation treatment performed on the surface of the molded product can be performed under the conditions of an average output of several watts to several tens of watts, a repetition frequency of 1 Hz to 100 Hz, and a pulse width of 14 nsec or less, thereby creating a thickness on the surface of the molded product. An extremely thin modified layer of 1 μm or less is formed, resulting in curing that significantly improves adhesion, printability, and paintability. In addition,
Since the modified layer is extremely thin, the inherent mechanical strength and other physical properties of the molded article are not impaired in any way. Next, specific examples will be given. Example 1 Polytetrafluoroethylene sheet (Daikin
TFE-Polyflon, manufactured by Co., Ltd.) and polyimide film (Kabton, manufactured by DuPont Co., Ltd.) were prepared, and their surfaces were irradiated with 30 pulses using an ArF (wavelength 193 nm) laser under conditions of pulse energy 100 mJ and pulse width 10 nsec. (equivalent to processing at 10Hz for 3 seconds). Each of the sheets and films treated in this way was divided into two parts, and the treated surfaces of each were glued together using an epoxy adhesive (Bond E-Clear Set, manufactured by Konishi Co., Ltd.), and after curing at room temperature for 48 hours, T-peel strength was measured. At the same time, the contact angle of water on the treated sheet and film surfaces was measured to evaluate hydrophilicity. In addition, printing ink (GRP ink manufactured by Toyo Ink Co., Ltd.) was used to evaluate printability and paintability.
was applied to the treated surface and allowed to dry at room temperature for 72 hours, then a cellophane adhesive tape was sufficiently applied to the coated surface and immediately peeled off to examine the adhesion of the printing ink. The results were as shown in Table 1.
【表】
未処理:紫外線レーザー処理なしの場
合
処理:紫外線レーザー処理ありの場合
実施例 2
実施例1と同じポリテトラフルオロエチレンシ
ートとポリイミドフイルムの表面にArCl(175n
m)レーザーを用い、パルスエネルギー100mJ、
パルス巾14nsecの条件下で20パルス照射(10Hz2
秒間処理相当)を行つた。このようにしてレーザ
ー表面改質を行つたシート、フイルムに対し実施
例1と同様にしてT型剥離強度、水の接着角、印
刷インク剥離テストを行い改質特性をみた。
結果は第2表に示すとおりであつた。[Table] Untreated: Without UV laser treatment
Treatment: Case with ultraviolet laser treatment Example 2 ArCl (175n
m) Using a laser, pulse energy 100mJ,
20 pulses irradiated (10Hz2) under the condition of pulse width 14nsec.
(equivalent to 2 seconds processing) was performed. The sheets and films subjected to laser surface modification in this manner were subjected to T-peel strength, water adhesion angle, and printing ink peeling tests in the same manner as in Example 1 to examine the modification characteristics. The results were as shown in Table 2.
【表】【table】