[go: up one dir, main page]

JPH0356517A - Production of silane-grafted copolymer and insulated electric wire therefrom - Google Patents

Production of silane-grafted copolymer and insulated electric wire therefrom

Info

Publication number
JPH0356517A
JPH0356517A JP19151489A JP19151489A JPH0356517A JP H0356517 A JPH0356517 A JP H0356517A JP 19151489 A JP19151489 A JP 19151489A JP 19151489 A JP19151489 A JP 19151489A JP H0356517 A JPH0356517 A JP H0356517A
Authority
JP
Japan
Prior art keywords
silane
ethylene
weight
copolymer
propylene
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19151489A
Other languages
Japanese (ja)
Inventor
Etsuro Fukumori
福森 悦郎
Yoshio Nakagawa
中川 凱夫
Nobuaki Okuda
奥田 伸秋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Bakelite Co Ltd
Original Assignee
Sumitomo Bakelite Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Bakelite Co Ltd filed Critical Sumitomo Bakelite Co Ltd
Priority to JP19151489A priority Critical patent/JPH0356517A/en
Publication of JPH0356517A publication Critical patent/JPH0356517A/en
Pending legal-status Critical Current

Links

Landscapes

  • Graft Or Block Polymers (AREA)
  • Organic Insulating Materials (AREA)
  • Processes Specially Adapted For Manufacturing Cables (AREA)

Abstract

PURPOSE:To obtain the title copolymer capable of giving insulated electric wires of good appearance by reaction of a combination of an organic unsaturated silane and free radical generator with a polymer blend containing a three- component polymer of ethylene, propylene and ethylidene norbornene at specified proportion. CONSTITUTION:A reaction is carried out between [A] 100 pts.wt. of a polymer blend of (1) 30 - 50 wt.% of a three-component copolymer made up of (a) ethylene plus propylene [ the molar ratio ethylene/propylene = ( 70 : 30 ) - ( 95 : 5 )] and (b) ethylidene norbornene, (2) 43 - 69 wt.% of an ethylene-methyl methacrylate copolymer and (3) 1 - 7 wt.% of powdered polyethylene, [B] 1 - 5 pts.wt. of an organic unsaturated silane and [C] 0.1 - 1 pt.wt. of a free radical generator, thus obtaining the objective silane-grafted copolymer of high rigidity and good in extrusion formability. The present copolymer is put to extrusion coating on a conductor in the presence of a silanol condensation catalyst followed by bringing water into contact with the coated conductor to effect crosslinking, thus obtaining the other objective insulated electric wires in high productivity.

Description

【発明の詳細な説明】 《産業上の利用分野〉 本発明は改良されたポリオレフィン系ゴムtIA縁電線
の&ll威物及び製造法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION <<Industrial Application Field>> The present invention relates to an improved polyolefin rubber tIA edge wire and a manufacturing method.

《従来の技術》 従来ポリエチレンやエチレンプロピレンゴム等のポリオ
レフィンを架橋させる簡便な方法としては、該ポリオレ
フィンに遊離ラジカル発生剤の存在下で有機不飽和シラ
ンをグラフト反応させてシラングラフト化したのち、こ
のシラングラフトマーをシラノール縮合触媒の存在下で
水分と接触させて架橋させる所謂シラン架橋法が一般に
知られている.例えば特公昭48−1711号公報、特
開昭57− 49109号公報等である. この方法でゴム弾性を具備するポリオレフィン系ゴム絶
縁電線を製造することが出来るが、下記の様な問題があ
り実用が困難であるのが実情である. 即ち、一般にゴム弾性を有するポリオレフィンはその軟
化温度が40゜C前後と低く、該ポリオレフィンのべレ
フトが保存中又は押出加工時の押出機ホッパ一〇スロー
ト部でプロッキングを起したり、押出機のスクリューフ
ィード部にペレットが付着して押出量の変動又は押出量
が徐々に低下するなど、安定化を妨げて実用化に大きな
支障を生じていた. また、もう一つの方法としてゴムの加硫工程を通すこと
によって、ポリオレフィン系ゴム絶縁電線を製造するこ
とが出来るが、機械的強度が低いことと加硫工程によっ
てケーブルの製造線速が左右され、経済的な問題が避け
られない,即ち、押出被覆直後に取引機あるいは巻取り
ドラム中にて、外力がかかり被覆層に永久変形が生じる
不都合があるため、冷却工程及び加硫工程を充分に取る
必要がある.そのために、ケーブル製造線速を遅くした
り、冷却水槽を著しく長くする必要があり、経済的な問
題が避けられない. 《発明が解決しようとする謀題〉 本発明は、これらの問題を解決したもので、ゴム弾性を
有するポリオレフィン系のものであっても、強度も低下
せず、硬度も硬く押出戒形性が良好で、戒形品の外観も
良好なゴム弾性を有する絶縁電線を提供するにある. (課題を解決するための手段) 本発明、はエチレンとプロピレンのモル比が70/30
〜95/5で、エチリデンノルボルネンとの三元共重合
体(EPDM) 30〜50fU量%と、エチレン−メ
チルメタクリレート共重合体(EMMA) 43〜69
重量%及び粉末ポリエチレン1〜7重量%とからなるべ
一スポリマ−100重量部に対して、1〜5重量部の有
機不飽和シラン及び0.1〜1重量部の遊離ラジカル発
生剤とを反応させて得られるシラングラフトマーであっ
て、冨亥シラングラフトマーをシラノール縮合触媒の存
在下で導体上に押出被覆して、水分と接触させて架橋す
ることを特徴とする絶縁電線の製造方法である. 以下本発明を詳細に説明する. この発明で用いられるEPDMはエチレンとブロビレン
のモル比が70/30〜95/5である.そして第三戒
分のエチリデンノルボルネンのヨウ素価は5〜25であ
る.このようなEPDM50〜30重量%に対し、エチ
レン−メチルメタクリレート共重合体CEMM^)及び
適量の粉末ポリエチレンを発明のベースポリマーとする
. しかし一般的にはEPDM戒分は後者或分に比べて高価
であるため、EPDM成分50〜30重量%の範囲内で
後者威分を増やすのが機械的強度が向上すると共に経済
的にも有利である. EPDM戒分が30重量%よりも少なくなるとゴム弾性
がなくなると共に機械的強度も弱くなって来る.更に、
粉末ポリエチレンを適量加えるのは、後記詳述する有機
不飽和シラン及び遊離ラジカル発τ 生剤を適量加えて反応させる際に、液状物がある有機不
飽和シランを含浸させて、均一に分散させることか出来
るためのものである.粉末ポリエチレンを使用しなかっ
た場合、液状物がペレット表面に付着しているだけなの
で、押出加工時ホッパー内で壁面には付着したり、ホッ
パーロにたれて来て均一分散させることが出来ない。
<Prior Art> Conventionally, a simple method for crosslinking polyolefins such as polyethylene and ethylene propylene rubber involves grafting an organic unsaturated silane onto the polyolefin in the presence of a free radical generator, and then grafting the polyolefin with an organic unsaturated silane in the presence of a free radical generator. The so-called silane crosslinking method, in which silane graftomer is crosslinked by contacting it with water in the presence of a silanol condensation catalyst, is generally known. For example, Japanese Patent Publication No. 48-1711, Japanese Unexamined Patent Publication No. 57-49109, etc. Although it is possible to produce polyolefin rubber insulated wires with rubber elasticity using this method, the following problems make it difficult to put it into practical use. That is, in general, polyolefins having rubber elasticity have a low softening temperature of around 40°C, and the left end of the polyolefin may cause blocking at the throat of the extruder hopper during storage or during extrusion processing. Pellet adhesion to the screw feed section of the machine caused fluctuations in the extrusion rate or a gradual decrease in the extrusion rate, which hindered stabilization and caused major problems in practical application. Another method is to use a rubber vulcanization process to manufacture polyolefin rubber insulated wires, but the mechanical strength is low and the vulcanization process affects the cable manufacturing speed. Economic problems are unavoidable, that is, external forces are applied to the coating layer immediately after extrusion coating in the trading machine or winding drum, causing permanent deformation of the coating layer, so sufficient cooling and vulcanization steps are taken. There is a need. For this reason, it is necessary to slow down the cable manufacturing speed and make the cooling water tank significantly longer, which inevitably leads to economic problems. <<Problem to be solved by the invention>> The present invention solves these problems, and even if it is a polyolefin-based material with rubber elasticity, the strength does not decrease, the hardness is hard, and the extrusion stability is low. An object of the present invention is to provide an insulated wire having good rubber elasticity and good appearance as a shaped product. (Means for solving the problem) The present invention has a molar ratio of ethylene and propylene of 70/30.
~95/5, terpolymer with ethylidenenorbornene (EPDM) 30-50 fU amount%, and ethylene-methyl methacrylate copolymer (EMMA) 43-69
1 to 5 parts by weight of an organic unsaturated silane and 0.1 to 1 part by weight of a free radical generator are reacted with 100 parts by weight of a base polymer consisting of 1 to 7 parts by weight of polyethylene powder and 1 to 7 parts by weight of powdered polyethylene. A method for producing an insulated wire, characterized in that the silane graftomer obtained by the above method is extrusion coated onto a conductor in the presence of a silanol condensation catalyst, and crosslinked by contacting with moisture. be. The present invention will be explained in detail below. The EPDM used in this invention has a molar ratio of ethylene to brobylene of 70/30 to 95/5. And the iodine value of ethylidenenorbornene, the third commandment, is 5 to 25. For 50 to 30% by weight of such EPDM, ethylene-methyl methacrylate copolymer CEMM^) and an appropriate amount of powdered polyethylene are used as the base polymer of the invention. However, in general, EPDM is more expensive than the latter, so increasing the latter within the range of 50 to 30% by weight is economically advantageous as well as improving mechanical strength. It is. When the EPDM content is less than 30% by weight, the rubber elasticity is lost and the mechanical strength becomes weak. Furthermore,
The reason for adding an appropriate amount of powdered polyethylene is to impregnate the liquid organic unsaturated silane and disperse it uniformly when adding an appropriate amount of the organic unsaturated silane and free radical generator to be reacted, which will be described in detail later. This is for the purpose of being able to do something. If powdered polyethylene is not used, the liquid will simply adhere to the surface of the pellets, so it will not adhere to the walls in the hopper during extrusion or drip into the hopper, making it impossible to uniformly disperse it.

従って、粉末エチレンの量は液状物である有機不飽和シ
ランの量に左右されるが1〜7重景%が望ましい. このように特性されたベースボリマーに対して有機不飽
和シラン及び遊離ラジカル発生剤を適量加えて反応させ
シラングラフトマーを得る.これをシラノール縮合触媒
の存在下で導体上に被覆して水分と接触させ架橋反応さ
せ常法の如くゴム弾性を有するシラン架橋絶縁電線を得
る.この発明において、使用される有機不飽和シランと
しては、一般弐RR’SiYx(Rは1価のオレフィン
不飽和炭化水素基、Yは加水分解しうる有機基、R゜は
脂肪族不飽和炭化水素以外の1価の炭化水素基あるいは
Yと同じもの)で表される化合物が使用される. R゛がYと同一で一般式RSiY,で表される有機不飽
和シランを使用するのが望ましく、例えばビニルトリメ
トキシシラン、ビニルトリエトキシシラン等を使用する
のが好ましい. この有機不飽和シランの使用量は前記ベースボリマ−1
00重量部に対して1〜5重量部、望ましくは2.5〜
3.5重量部である.l重量部未満の場合には充分なグ
ラフト化が起こらず、一方5重量部より多い場合は戒形
不良を起こすと共に経済的でなくなる. 次に遊離ラジカル発生剤はDCP (ジクミルバーオキ
サイド)等の重合開始作用の強い有機過酸化物を用いる
.この遊離ラジカル発生剤の使用量は前記ポリマー10
0重量部に対して0.01〜1重量部、望ましくは0.
1〜0.3重量部である.余りに少ないとグラフト反応
が不充分となり余り多いと押出特性が悪くなると共に戒
形表面が悪くなる.(実施例) 以下実施例により本発明を具体的に説明する.ペースボ
リマー用として表−1に示した如き物性を有するEPD
Mと表−2に示した樹脂を使用して表−3の組戒混合物
とした. 表 1 表−2 エチレン−メチルメタクリレート共重合体(C)及び粉
末ポリエチレン (D) これらベースポリマ一組底物100重量部に対して、ビ
ニルトリメトキシシラン3重量部ジクミルパーオキサイ
ド0.2重量部を混和し、L / D 22の50閣φ
単軸押出機にて、材料温度200〜220’Cの条件で
ストランドカントして造粒しシラングラフトマーを得た
. 更に、触媒マスターバッチ(表−2のCの樹脂100重
量部に対して、ジブチル錫ジラウレート1重量部と酸化
防止剤4重量部を混練してペレット化したもの)を上記
シラングラフトマー100重量部に対して、5重量%添
加して1mm厚さ幅10h+mのシートに押出して評価
し表−3に示した.但し、ストランドカット性の悪いも
の及び押出外観の良くないものは押出後ロール混練しプ
レスシ一トを作製して評価した. 《発明の効果} 以上の実施例から明らかなように本発明方法によるシラ
ン架橋技術を応用して良好な諸特性をもったEPDM/
EMMA架橋絶縁電線を何ら生産性を低下させることな
く均一に製造出来るもので工業的価値は極めて大きい.
Therefore, the amount of powdered ethylene depends on the amount of organic unsaturated silane as a liquid, but preferably 1 to 7%. Appropriate amounts of organic unsaturated silane and a free radical generator are added to the base polymer with these characteristics and reacted to obtain a silane graftomer. This is coated on a conductor in the presence of a silanol condensation catalyst, brought into contact with moisture, and subjected to a crosslinking reaction to obtain a silane crosslinked insulated wire with rubber elasticity as in a conventional method. In this invention, the organic unsaturated silane used is general 2RR'SiYx (R is a monovalent olefinically unsaturated hydrocarbon group, Y is a hydrolyzable organic group, R゜ is an aliphatic unsaturated hydrocarbon A monovalent hydrocarbon group other than Y or the same as Y) is used. It is preferable to use an organic unsaturated silane represented by the general formula RSiY, where R' is the same as Y, and it is preferable to use, for example, vinyltrimethoxysilane, vinyltriethoxysilane, etc. The amount of organic unsaturated silane used is
1 to 5 parts by weight, preferably 2.5 to 00 parts by weight
It is 3.5 parts by weight. If it is less than 1 part by weight, sufficient grafting will not occur, while if it is more than 5 parts by weight, it will not only result in poor shape but also become uneconomical. Next, as a free radical generator, an organic peroxide with a strong polymerization initiating effect, such as DCP (dicumyl peroxide), is used. The amount of this free radical generator used is 10
0.01 to 1 part by weight, preferably 0.01 to 1 part by weight, preferably 0.01 to 1 part by weight.
It is 1 to 0.3 parts by weight. If it is too small, the grafting reaction will be insufficient, and if it is too large, the extrusion properties will deteriorate and the shaped surface will deteriorate. (Example) The present invention will be specifically explained below using examples. EPD with physical properties as shown in Table 1 for use in pace polymers
M and the resins shown in Table 2 were used to make the composite mixture shown in Table 3. Table 1 Table-2 Ethylene-methyl methacrylate copolymer (C) and powdered polyethylene (D) 3 parts by weight of vinyltrimethoxysilane 0.2 parts by weight of dicumyl peroxide per 100 parts by weight of one set of these base polymers Mix parts and make 50 cabinets of L/D 22φ
A silane graftomer was obtained by strand canting and granulation using a single-screw extruder at a material temperature of 200 to 220'C. Furthermore, a catalyst masterbatch (100 parts by weight of the resin C in Table 2, 1 part by weight of dibutyltin dilaurate and 4 parts by weight of an antioxidant was kneaded into pellets) was added to 100 parts by weight of the above silane graftomer. The results are shown in Table 3. However, those with poor strand cutability and those with poor extruded appearance were evaluated by kneading them with a roll after extrusion to prepare a press sheet. <<Effects of the Invention>> As is clear from the above examples, EPDM/
EMMA cross-linked insulated wires can be manufactured uniformly without any reduction in productivity, and its industrial value is extremely large.

Claims (2)

【特許請求の範囲】[Claims] (1)エチレンとプロピレンのモル比が70/30〜9
5/5でエチリデンノルボルネンとの三元共重合体(E
PDM)30〜50重量%とエチレン−メチルメタクリ
レート共重合体(EMMA)43〜69重量%及び粉末
ポリエチレン1〜7重量%からなるベースポリマー10
0重量部に対して1〜5重量部の有機不飽和シラン及び
0.1〜1重量部の遊離ラジカル発生剤とを反応させる
ことを特徴とするシラングラフトマーの製造方法。
(1) Molar ratio of ethylene and propylene is 70/30 to 9
Terpolymer with ethylidene norbornene (E
Base polymer 10 consisting of 30-50% by weight of PDM), 43-69% by weight of ethylene-methyl methacrylate copolymer (EMMA) and 1-7% by weight of powdered polyethylene.
A method for producing a silane graftomer, which comprises reacting 1 to 5 parts by weight of an organic unsaturated silane and 0.1 to 1 part by weight of a free radical generator.
(2)特許請求の範囲第1項記載のシラングラフトマー
をシラノール縮合触媒の存在下で導体上に押出被覆し水
分と接触させて架橋させることを特徴とする絶縁電線の
製造方法。
(2) A method for producing an insulated wire, which comprises extrusion coating the silane graftomer according to claim 1 onto a conductor in the presence of a silanol condensation catalyst, and crosslinking the conductor by contacting it with moisture.
JP19151489A 1989-07-26 1989-07-26 Production of silane-grafted copolymer and insulated electric wire therefrom Pending JPH0356517A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19151489A JPH0356517A (en) 1989-07-26 1989-07-26 Production of silane-grafted copolymer and insulated electric wire therefrom

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19151489A JPH0356517A (en) 1989-07-26 1989-07-26 Production of silane-grafted copolymer and insulated electric wire therefrom

Publications (1)

Publication Number Publication Date
JPH0356517A true JPH0356517A (en) 1991-03-12

Family

ID=16275923

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19151489A Pending JPH0356517A (en) 1989-07-26 1989-07-26 Production of silane-grafted copolymer and insulated electric wire therefrom

Country Status (1)

Country Link
JP (1) JPH0356517A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0523339U (en) * 1991-09-09 1993-03-26 タツタ電線株式会社 Heat-resistant / flexible / wear-resistant coated robot cable

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5233938A (en) * 1975-09-10 1977-03-15 Dainichi Nippon Cables Ltd Curing inmolding of polyolefn polymer
JPS5365345A (en) * 1976-11-24 1978-06-10 Hitachi Cable Ltd Crosslinkin of polyolefing and preparation of crosslinked electric wire
JPS53105562A (en) * 1977-02-28 1978-09-13 Showa Electric Wire & Cable Co Ltd Cross-linking of graganic polymer
JPS5428386A (en) * 1977-08-04 1979-03-02 Mitsui Petrochem Ind Ltd Production of silane-modified polyolefin
JPS559677A (en) * 1978-04-07 1980-01-23 Raychem Ltd Cross linked polymer composition

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5233938A (en) * 1975-09-10 1977-03-15 Dainichi Nippon Cables Ltd Curing inmolding of polyolefn polymer
JPS5365345A (en) * 1976-11-24 1978-06-10 Hitachi Cable Ltd Crosslinkin of polyolefing and preparation of crosslinked electric wire
JPS53105562A (en) * 1977-02-28 1978-09-13 Showa Electric Wire & Cable Co Ltd Cross-linking of graganic polymer
JPS5428386A (en) * 1977-08-04 1979-03-02 Mitsui Petrochem Ind Ltd Production of silane-modified polyolefin
JPS559677A (en) * 1978-04-07 1980-01-23 Raychem Ltd Cross linked polymer composition

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0523339U (en) * 1991-09-09 1993-03-26 タツタ電線株式会社 Heat-resistant / flexible / wear-resistant coated robot cable

Similar Documents

Publication Publication Date Title
JPH02169644A (en) Preparation of filled water/crosslinkable
KR20000048857A (en) Semiconducting polymer composition and cable sheathing comprising the same
JPH0554872B2 (en)
EP1050548A1 (en) A thermoplastic composition and a process for making the same
JPH0356517A (en) Production of silane-grafted copolymer and insulated electric wire therefrom
US4959413A (en) Crosslinkable polymers
JPS5938984B2 (en) Method for manufacturing silane-modified ethylene polymer molded products
JP3555988B2 (en) Flexible silane graftmer and method for producing insulated wire
JPS5845942B2 (en) Method for producing silane crosslinked polyolefin resin composition molded article
JP3456774B2 (en) Method for producing water-crosslinkable unsaturated alkoxysilane-grafted linear low-density ethylene-α-olefin copolymer and water-crosslinked molded article
JP3003837B2 (en) Crosslinkable polyethylene composition and electric wires and cables
JP2000230025A (en) Silane-modified linear polyethylene and power cables for power cable coatings
JP3112638B2 (en) Flexible silane graftmers
JPS6093710A (en) Method of producing polyolefin rubber insulated wire
JPS6215963B2 (en)
JPH1081802A (en) Crosslinkable vinyl chloride resin composition and preparation of crosslinked vinyl chloride resin
JPH1017625A (en) Water-cross-linkable compound and water-cross-linked molded item
JP2533707B2 (en) Flexible resin composition
JPS6143377B2 (en)
JPH10316807A (en) Water-crosslinkable impregnated resin and water-crosslinked molded product using the same
JPH09306241A (en) Resin composition for covering wire and manufacture of covered wire
CN1155632C (en) Method for producing silane-crosslinked polyolefin by solid-state one-step process
JPS6043381B2 (en) composite resin composition
JPS59102930A (en) Molding process
JPS6242922B2 (en)