JPH0356242B2 - - Google Patents
Info
- Publication number
- JPH0356242B2 JPH0356242B2 JP57129120A JP12912082A JPH0356242B2 JP H0356242 B2 JPH0356242 B2 JP H0356242B2 JP 57129120 A JP57129120 A JP 57129120A JP 12912082 A JP12912082 A JP 12912082A JP H0356242 B2 JPH0356242 B2 JP H0356242B2
- Authority
- JP
- Japan
- Prior art keywords
- polymer
- vacuum chamber
- liquid composition
- molten polymer
- polymerization
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Landscapes
- Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
Description
本発明は、スチレン系重合体を含む重合液組成
物から、未反応単量体、溶剤、連鎖移動剤及び低
分子量重合体等の揮発性物質を連続的に除去し、
脱揮発された重合体を製造する方法に関する。
従来、重合液組成物から揮発性物質を連続的に
除去する方法については、多管式熱交換器を用い
て予熱又は発泡せしめつつ予熱して真空槽へフラ
ツシユする方法等が、例えば特公昭45−31678、
特公昭48−29798、特開昭51−134781等により知
られている。
しかし、これらの従来技術による場合には、揮
発性物質を減少させる手段としての、予熱器によ
る揮発性物質を含んだ重合液組成物の加熱及び真
空槽の真空度の上昇には、以下に述べる理由によ
り限界があり、重合体中に残存する未反応単量
体、溶剤、連鎖移動剤及び低分子量重合体等の揮
発性物質を、ある程度以上減少させることは至難
であつた。即ち、重合液組成物の温度を上昇させ
ていくと、主として残存単量体が予熱器中で重合
する結果、重合体中の低分子量重合体の量が増加
し、成型物の耐熱性が低下したり、成型時に金型
に油状物質(ヤニ)が付着する等の欠陥をもたら
す。一方、真空槽の真空度を上昇させることは、
揮発性物質のガス容積流量の飛躍的増大を引き起
し、配管及び凝縮器に於る圧力損失が増大し、こ
の様な装置は製作上莫大な費用を要する。更に蒸
発分離させるべき揮発性物質の量が多い場合に
は、かゝる装置を作ることは実質上困難である。
これらの理由により、製品重合体中の残存揮発
性物質を更に減少するためには、例えばベント付
押出機、薄膜蒸発器等を併用することが知られて
いる。しかしながら、この様な方法は設備費及び
電力原単位が増大し製造コストが高くなり経済的
に不利となるため、この欠点を改良することが要
請されている。
本発明は、真空槽に於る揮発性物質除去能力を
飛躍的に向上させ、前記のような他の機器を併用
することなく、効率良く重合液組成物から揮発性
物質を除去した重合体を製造する方法を提供する
ことを目的とするものである。
本発明者等は、この課題を達成するために多管
式熱交換器にて一次発泡させ脱揮発して真空槽下
部に溜めた溶融重合体を外部へ抜き出し、これに
溶融重合体と相互溶解性のない媒体を添加混合し
た後、加熱して真空槽内に二次発泡、即ちフラツ
シユさせることが重合体中の揮発性物質を除去す
ることに極めて有効であることを見出し、本発明
を完成するに至つた。
即ち、本発明は溶液重合又は塊状重合により得
られるスチレン系重合体を含む重合液組成物から
揮発性物質を除去し脱揮発重合体を製造するに際
して、前記重合液組成物を多管式熱交換器を通し
て加熱し、次いで真空槽内へフラツシユさせ、揮
発性物質はガス化して該真空槽から留去し、脱揮
発した溶融重合体は該真空槽下部から抜き出し、
その一部を製品として取り出すと同時に、残部に
溶融重合体と相互溶解性のない媒体を添加混合
し、次いで加熱して前記真空槽に循環し、フラツ
シユさせることを特徴とする脱揮発重合体の製造
方法である。
以下、第1図を参照しつつ本発明の脱揮発重合
体の製造方法につき詳述する。
溶液重合又は塊状重合により得られるスチレン
系重合体を含む重合液組成物は、重合域から入口
バルブ1を経由して供給される。入口バルブ1は
重合域に於る圧力を上記重合液組成物の反応温度
に於る蒸気圧よりも高く維持する働きを持つ。ま
た、熱媒入口3および熱媒出口4を有する多管式
熱交換器5の頭部2に於る圧力は、供給される重
合液組成物の反応温度に於る蒸気圧よりも低くな
る様に熱媒温度、流量等の条件を選ぶので、この
スチレン系重合体を含む重合液組成物は減圧され
て、重合液組成物中の揮発性物質が蒸発し著しく
発泡する。また、同時に蒸発潜熱が奪われるの
で、多管式熱交換器頭部2に於る重合液組成物の
温度が低下し、低分子量重合体の生成が抑制され
る。この発泡状の重合液組成物は、多管式熱交換
器5の熱交部を加熱されつつ通過し、重力及び圧
力勾配により下方に設けられた真空槽24へ流下
する。この場合、多管式熱交換器5の熱媒は流下
する重合体の流動性を損わぬ限りの低温であるこ
とが望ましい。この流下しつつ発泡し、且つ加温
された重合液組成物6中の揮発成分は、真空槽内
部で蒸発して重合体と分離され、真空槽24の上
部配管23を経由して、冷媒で冷却された凝縮器
18で凝縮され、液状にて配管19により回収さ
れる。以下、この操作を一次脱揮発操作と称す
る。
一次脱揮発操作により揮発性物質の大部分が除
去された溶融重合体8は、真空槽の下部に設けら
れたスクリユー型ポンプ9により真空槽外へ排出
される。この真空槽外へ排出された溶融重合体
に、これと相互溶解性がなく、且つ真空槽内で溶
融重合体中を発泡させる媒体を添加口12から加
え、静止型混合器13により該媒体を溶融重合体
中に良く分散混合する。そして予熱器15により
前記多管式熱交換器5から流下する重合液組成物
よりも高温になる様に加熱した後、再分散ノズル
用配管16に備えた再分散ノズル17から、真空
槽内へ再フラツシユする。以下、この操作を二次
脱揮発操作と称する。
この二次脱揮発操作において添加する媒体とし
ては、溶融重合体に非相溶であり、且つ溶融重合
体中の残存揮発性成分よりも沸点が低く、揮発性
の強い物質で、例えば水、メタノールが適当なも
のとしてあげられる。添加する媒体の量は、一次
脱揮発操作のみで重合体中に残存すると想定され
る揮発性物質量に対し、モル比で2〜30倍が適当
であり、5〜20倍が望ましい。また、揮発性物質
の除去効果を高めるためには、該媒体を溶融重合
体中によく分散させることが必要であり、適当な
混合手段、例えば静止型混合器を使用することが
好ましい。静止型混合器は駆動部分を有しない混
合器であり、例えば「化学装置21(3)20(1979)」に
例示されている商品名スタテイツク・ミキサー
(ケニツクス社製)、同スタテイツク・ミキシン
グ・エレメント(スルザー社製)、同ロスISGミ
キサー、同LPDミキサー(チヤールズ・ロス社
製)、同ハイ・ミキサー(東レ製)等の混合器要
素を挙げることができる。これらの混合器要素
は、通常管内に於る溶融重合体の流れ方向に単数
あるいは複数個設置して使用される。再分散ノズ
ル用配管16及び再分散ノズル17は、例えば第
2図及び第3図に示すような形状のものが使用で
き、溶融重合体の粘度及び流量により穴数及び穴
径が決定される。予熱器15として用いられる熱
交換器としては、例えば通常使用される多管式熱
交換器が使用でき、管内部を溶融重合体が流れる
様にして且つ圧力損失をできるだけ低くすること
が望ましい。
この様にしてスクリユー型ポンプ9により循環
される溶融重合体は、媒体が分散混合されたこと
により、真空槽内部の再分散ノズル17部で著し
く発泡し、表面更新が促進され、前述した一次脱
揮発操作のみでは蒸発しきれずに残存した揮発性
成分が媒体と共に蒸発する。このガス化された媒
体と揮発性成分は、真空槽上部配管23を経て凝
縮器18で一部凝縮し回収され、未凝縮ガスはコ
ントロール・バルブ20を経て次の工程へ送られ
る。こゝで一次脱揮発操作と同一の排気配管及び
凝縮器を用いることが脱揮発効果を増大する。即
ち、一次脱揮発操作中での多管式熱交換器5から
発泡しつつ流下する重合液組成物の表面部に於る
気相側の雰囲気更新に効果があり、溶融重合体中
の残存揮発性成分の拡散が容易となるので脱揮発
効果を増大するものと推定される。
更に、この様にして揮発性成分が減少した溶融
重合体の一部をギア・ポンプ10により連続的に
抜き出し配管11を経由して製品化する。この場
合ギア・ポンプ10で製品として取り出される溶
融重合体量とスクリユー型ポンプ9で循環される
溶融重合体重の比は、1/10〜1/2が適当であ
り、好ましくは1/5〜1/3である。
本発明の方法が適用されるスチレン系重合体と
は、スチレン,メチルスチレン,エチルスチレ
ン,イソプロピルスチレン等のアルキルスチレ
ン,クロロスチレン,ブロムスチレン等のハロゲ
ン化スチレン,ハロゲン化アルキルスチレン等の
スチレン系単量体の内の少くとも一種からなる重
合体;これらスチレン系単量体の少くとも一種と
アクリロニトリル,メタクリロニトリル,メチル
アクリレート等のアクリル系単量体の内少くとも
一種とからなる共重合体;これらスチレン系単量
体の少くとも一種又はアクリル系単量体の少くと
も一種と、ポリブタジエン,ブタジエンとスチレ
ン,アクリロニトリル,メタクリル酸メチル等の
各共重合体,天然ゴム,ポリクロロプレン,エチ
レンプロピレン共重合体,エチレンプロピレンジ
エンモノマー共重合体等のゴム状重合体の内の少
くとも一種との共重合体;並びにスチレン系単量
の少くとも一種、アクリル系単量体の少くとも一
種及びゴム状重合体の中の少くとも一種との共重
合体である。
また、溶液重合を行う場合の溶剤としては、例
えばベンゼン,トルエン,エチルベンゼン,キシ
レン等のアルキルベンゼン類やアセトン,メチル
エチルケトン等のケトン類,ヘキサン,オクタン
等の脂肪族炭化水素等がある。また、連鎖移動剤
としては、脂肪族及び芳香族メルカプタン,ペン
タフエニルエタン,α−メチルスチレンダイマー
等がある。
本発明の脱揮発重合体の製造方法によれば、従
来技術では達成困難であつた程の低濃度の未反応
単量体、連鎖移動剤及び低分子量重合体等の揮発
性物質を含む重合体を得ることが可能であつた。
更に、この様にして得られた重合体は耐熱性が向
上し、且つ成型時の欠陥(ヤニ)の発生が少ない
ものであつた。
実施例 1
固有粘度が1.04でメタノール可溶分を1.2重量
%含むポリスチレン52.5重量%、エチルベンゼン
10重量%、残部が未反応スチレンである重合液組
成物を、温度135℃の熱重合により調製した。
この重合液組成物を135℃の温度、4.0Kg/cm2g
の圧力下で連続的に6.3Kg/Hrの流量で第1図の
装置へ入口バルブ1を経由して供給した。外部を
熱媒が循環する多管式熱交換器5の上部圧力は
0.6Kg/cm2迄減圧され重合液組成物は発泡し、こ
の部分に於る温度は125℃であつた。ジヤケツト
を循環する熱媒は230℃であり、加熱されつつ真
空槽へフラツシユされた発泡重合液組成物6の温
度は210℃であつた。こゝで真空槽内の圧力は
50m/mHgで保たれ、外套は235℃の熱媒を流通
して保温した。多管式熱交換器5から流下する重
合液組成物は真空槽へフラツシユされることによ
り気相と液相に分離され、液相の溶融重合体は再
分散ノズル用配管群16の間隙を流下して真空槽
下部に溜まる。この溶融重合体は再分散ノズルか
らフラツシユ(二次脱揮発操作)された溶融重合
体7と混合しており230℃迄温度が上昇していた。
この真空槽下部に溜まつた溶融重合体は、駆動用
モーター21により回転するスクリユー型ポンプ
9により約24Kg/Hrの速度で排出され、添加口
12より0.13Kg/Hrで常温の水を添加した。配
管及び静止型混合器13の外套は235℃に保持し
たが、静止型混合器出口14では228℃となり、
水添加により若干温度が低下した。この溶融重合
体を外套を260℃で保持した多管式熱交換器15
を経由することにより、240℃迄昇温し、再分散
ノズル17から真空槽内へフラツシユした。一
方、ギアポンプ10から3.3Kg/Hrの速度で溶融
重合体を排出し製品化した。
得られた製品ポリスチレンの分析値を表−1に
示す。このポリスチレンを使用して射出成型機に
て2時間の連続成型を実施し、その際の金型への
ヤニ付着度合を観察したところ、ヤニの付着が少
なく極めて良好であつた。
比較例 1
添加口12からの水の添加なし、及び外部熱交
換器15の外套温度235℃とした以外は実施例1
と同じ条件で揮発性物質の除去を行つた。結果は
表−1に示すように、メタノール可溶分が実施例
1と比較して多く、また成型時の欠陥である金型
へのヤニ付着度合が激しかつた。
比較例 2
添加口12からの水の添加なし、及び外部熱交
換器15の外套温度を260℃とした以外は、実施
例1と同じ条件で実験を行つた。結果は表−1に
示すようにメタノール可溶分が実施例1と比較し
て多く成型時の欠陥である金型へのヤニ付着度合
も激しかつた。
実施例 2
真空槽下部の溶融重合体のスクリユー型ポンプ
9による排出流量を約12Kg/Hrとした以外は、
実施例−1と同じ条件で揮発性物質の除去を行つ
た。結果は表−1に示す。成型時に金型へのヤニ
付着が多少観察されたが、比較例1,2よりは良
好であつた。
実施例 3
添加口12よりの水添加量を0.07Kg/Hrと減
じた以外は実施例−1と同じ条件で揮発性物質の
除去を行つた。結果は表−1に示す。成型時に金
型へのヤニ付着が多少観察されたが、比較例−
1,2よりは良好であつた。
比較例 3
添加口12よりの水添加を行なうことなく、入
口バルブ1を経由して、重合液組成物と共に水
1.5Kg/Hrを添加し、スクリユー型ポンプ9の排
出量を3.3Kg/Hrとしかつ二次脱揮発操作をなく
した以外は実施例1と同様に実験を行ない、結果
を表−1に示したが、残留モノマー、溶剤および
メタノール可溶分は少なかつたが、金型へのヤニ
付着が著しかつた。
The present invention continuously removes volatile substances such as unreacted monomers, solvents, chain transfer agents, and low molecular weight polymers from a polymerization liquid composition containing a styrenic polymer,
The present invention relates to a method of producing a devolatilized polymer. Conventionally, methods for continuously removing volatile substances from a polymerization liquid composition include a method of preheating or foaming using a shell-and-tube heat exchanger, and then flashing it into a vacuum tank, for example, as described in Japanese Patent Publication No. 1973 −31678,
It is known from Japanese Patent Publication No. 48-29798, Japanese Patent Publication No. 51-134781, etc. However, in the case of these conventional techniques, heating of the polymerization liquid composition containing volatile substances using a preheater and increasing the vacuum degree of the vacuum chamber as a means of reducing volatile substances are as follows. For various reasons, there are limitations, and it has been extremely difficult to reduce the volatile substances remaining in the polymer, such as unreacted monomers, solvents, chain transfer agents, and low molecular weight polymers, beyond a certain level. That is, as the temperature of the polymerization liquid composition is increased, the remaining monomers mainly polymerize in the preheater, resulting in an increase in the amount of low molecular weight polymer in the polymer and a decrease in the heat resistance of the molded product. It also causes defects such as oily substances (tar) adhering to the mold during molding. On the other hand, increasing the degree of vacuum in the vacuum chamber
This causes a dramatic increase in the gas volumetric flow rate of the volatile material, increases the pressure drop in the piping and condenser, and makes such a device extremely expensive to manufacture. Moreover, it is practically difficult to construct such an apparatus when the amount of volatile substances to be evaporated off is large. For these reasons, in order to further reduce the residual volatile substances in the product polymer, it is known to use, for example, an extruder with a vent, a thin film evaporator, etc. in combination. However, such a method is economically disadvantageous due to increased equipment costs and power consumption, and manufacturing costs, so there is a need to improve these drawbacks. The present invention dramatically improves the ability to remove volatile substances in a vacuum chamber, and enables the production of polymers from which volatile substances have been efficiently removed from polymerization liquid compositions without using other equipment as described above. The object of the present invention is to provide a manufacturing method. In order to achieve this goal, the present inventors first foamed and devolatilized the molten polymer in a multi-tubular heat exchanger, extracted the molten polymer stored at the bottom of the vacuum chamber to the outside, and added the molten polymer to the molten polymer. They discovered that adding and mixing a neutral medium and then heating it to cause secondary foaming, or flashing, in a vacuum chamber was extremely effective in removing volatile substances from the polymer, and completed the present invention. I came to the conclusion. That is, in the present invention, when a volatile substance is removed from a polymerization liquid composition containing a styrene polymer obtained by solution polymerization or bulk polymerization to produce a devolatilized polymer, the polymerization liquid composition is subjected to multi-tube heat exchange. heating through a vessel, then flashing into a vacuum chamber, volatile substances are gasified and distilled from the vacuum chamber, and the devolatilized molten polymer is extracted from the bottom of the vacuum chamber;
A devolatilized polymer characterized in that, at the same time, a part of the polymer is taken out as a product, a molten polymer and a medium that is not mutually soluble are added and mixed to the remaining part, and then heated and circulated to the vacuum chamber to flash. This is the manufacturing method. Hereinafter, the method for producing the devolatilized polymer of the present invention will be described in detail with reference to FIG. A polymerization liquid composition containing a styrenic polymer obtained by solution polymerization or bulk polymerization is supplied from the polymerization zone via an inlet valve 1. The inlet valve 1 has the function of maintaining the pressure in the polymerization zone higher than the vapor pressure of the polymerization liquid composition at the reaction temperature. Further, the pressure at the head 2 of the multi-tubular heat exchanger 5 having the heat medium inlet 3 and the heat medium outlet 4 is lower than the vapor pressure at the reaction temperature of the supplied polymerization liquid composition. Since conditions such as heating medium temperature and flow rate are selected, the pressure of the polymerization liquid composition containing the styrenic polymer is reduced, volatile substances in the polymerization liquid composition evaporate, and foaming occurs significantly. Furthermore, since the latent heat of vaporization is removed at the same time, the temperature of the polymerization liquid composition in the head 2 of the multi-tubular heat exchanger is lowered, and the formation of low molecular weight polymers is suppressed. This foamed polymeric liquid composition passes through the heat exchange part of the multi-tubular heat exchanger 5 while being heated, and flows down to the vacuum tank 24 provided below due to gravity and pressure gradient. In this case, it is desirable that the heat medium in the multi-tubular heat exchanger 5 be at a low temperature as long as it does not impair the fluidity of the flowing polymer. Volatile components in the polymerization liquid composition 6 that foams while flowing down and is heated are evaporated inside the vacuum chamber and separated from the polymer, and then passed through the upper piping 23 of the vacuum chamber 24 with a refrigerant. It is condensed in a cooled condenser 18 and recovered in liquid form through a pipe 19. Hereinafter, this operation will be referred to as a primary devolatilization operation. The molten polymer 8 from which most of the volatile substances have been removed by the primary devolatilization operation is discharged out of the vacuum chamber by a screw type pump 9 provided at the bottom of the vacuum chamber. A medium that has no mutual solubility with the molten polymer discharged outside the vacuum chamber and that causes foaming in the molten polymer within the vacuum chamber is added from the addition port 12, and the medium is added using the static mixer 13. Thoroughly disperse and mix into the molten polymer. After being heated by the preheater 15 to a temperature higher than that of the polymerization liquid composition flowing down from the multi-tubular heat exchanger 5, it is transferred into the vacuum chamber from the redispersion nozzle 17 provided in the redispersion nozzle piping 16. Reflash. Hereinafter, this operation will be referred to as a secondary devolatilization operation. The medium added in this secondary devolatilization operation is a highly volatile substance that is incompatible with the molten polymer and has a boiling point lower than that of the remaining volatile components in the molten polymer, such as water or methanol. is considered appropriate. The amount of the medium to be added is suitably 2 to 30 times, and preferably 5 to 20 times, in molar ratio the amount of volatile substances expected to remain in the polymer only after the primary devolatilization operation. Furthermore, in order to enhance the effect of removing volatile substances, it is necessary to disperse the medium well in the molten polymer, and it is preferable to use an appropriate mixing means, such as a static mixer. A static mixer is a mixer that does not have a driving part; for example, the product name Static Mixer (manufactured by Kenix Co., Ltd.) and the Static Mixing Element listed in "Chemical Equipment 21(3)20 (1979)" are examples. Examples of mixer elements include the Ross ISG mixer (manufactured by Sulzer), the Ross ISG mixer (manufactured by Charles Ross), and the Hi Mixer (manufactured by Toray Industries). One or more of these mixer elements are usually installed in the flow direction of the molten polymer in the tube. The redispersion nozzle piping 16 and the redispersion nozzle 17 can have shapes as shown in FIGS. 2 and 3, for example, and the number and diameter of the holes are determined depending on the viscosity and flow rate of the molten polymer. As the heat exchanger used as the preheater 15, for example, a commonly used multi-tubular heat exchanger can be used, and it is desirable to allow the molten polymer to flow inside the tubes and to reduce pressure loss as much as possible. The molten polymer thus circulated by the screw type pump 9 foams significantly at the redispersion nozzle 17 inside the vacuum chamber due to the dispersion and mixing of the medium, promoting surface renewal, and the above-mentioned primary removal. The remaining volatile components that could not be completely evaporated by the volatilization operation alone are evaporated together with the medium. The gasified medium and volatile components are partially condensed and recovered in the condenser 18 via the vacuum chamber upper pipe 23, and the uncondensed gas is sent to the next process via the control valve 20. Here, using the same exhaust piping and condenser as in the primary devolatilization operation increases the devolatilization effect. That is, it is effective in renewing the atmosphere on the gas phase side at the surface of the polymerization liquid composition flowing down while foaming from the multi-tubular heat exchanger 5 during the primary devolatilization operation, and the residual volatilization in the molten polymer is reduced. It is presumed that the devolatilization effect is increased because the diffusion of the chemical components becomes easier. Furthermore, a part of the molten polymer whose volatile components have been reduced in this way is continuously extracted by a gear pump 10 and made into a product via a piping 11. In this case, the ratio of the amount of molten polymer taken out as a product by the gear pump 10 to the weight of the molten polymer circulated by the screw pump 9 is suitably 1/10 to 1/2, preferably 1/5 to 1/2. /3. The styrenic polymers to which the method of the present invention is applied include styrene, alkylstyrenes such as methylstyrene, ethylstyrene, and isopropylstyrene, halogenated styrenes such as chlorostyrene and bromustyrene, and styrenic monomers such as halogenated alkylstyrenes. Copolymers consisting of at least one of these styrene monomers and at least one of acrylic monomers such as acrylonitrile, methacrylonitrile, methyl acrylate, etc. ; At least one of these styrene monomers or at least one acrylic monomer, polybutadiene, copolymers of butadiene and styrene, acrylonitrile, methyl methacrylate, natural rubber, polychloroprene, ethylene propylene, etc.; copolymers with at least one type of rubbery polymers such as polymers, ethylene propylene diene monomer copolymers; and at least one type of styrenic monomer, at least one type of acrylic monomer, and rubbery It is a copolymer with at least one type of polymer. Examples of solvents used in solution polymerization include alkylbenzenes such as benzene, toluene, ethylbenzene, and xylene, ketones such as acetone and methyl ethyl ketone, and aliphatic hydrocarbons such as hexane and octane. Examples of chain transfer agents include aliphatic and aromatic mercaptans, pentaphenylethane, and α-methylstyrene dimer. According to the method for producing a devolatilized polymer of the present invention, a polymer containing volatile substances such as an unreacted monomer, a chain transfer agent, and a low molecular weight polymer can be produced at a concentration so low as to be difficult to achieve using conventional techniques. It was possible to obtain
Furthermore, the polymer thus obtained had improved heat resistance and fewer defects (stain) during molding. Example 1 52.5% by weight of polystyrene with an intrinsic viscosity of 1.04 and 1.2% by weight of methanol soluble content, ethylbenzene
A polymerization liquid composition containing 10% by weight and the remainder being unreacted styrene was prepared by thermal polymerization at a temperature of 135°C. This polymerization liquid composition was heated to 4.0 kg/cm 2 g at a temperature of 135°C.
It was continuously fed into the apparatus of FIG. 1 via inlet valve 1 at a flow rate of 6.3 Kg/Hr under a pressure of . The upper pressure of the multi-tubular heat exchanger 5 in which the heat medium circulates outside is
The pressure was reduced to 0.6 kg/cm 2 and the polymerization liquid composition foamed, and the temperature in this area was 125°C. The temperature of the heating medium circulating through the jacket was 230°C, and the temperature of the foamed polymer liquid composition 6, which was flashed into the vacuum chamber while being heated, was 210°C. Here, the pressure inside the vacuum chamber is
The temperature was maintained at 50 m/mHg, and the mantle was kept warm by flowing a heating medium at 235°C. The polymer liquid composition flowing down from the multi-tubular heat exchanger 5 is flashed into a vacuum tank and separated into a gas phase and a liquid phase, and the molten polymer in the liquid phase flows down through the gap in the redispersion nozzle piping group 16. and accumulates at the bottom of the vacuum chamber. This molten polymer was mixed with the molten polymer 7 flashed (secondary devolatilization operation) from the redispersion nozzle, and its temperature rose to 230°C.
The molten polymer accumulated at the bottom of the vacuum chamber was discharged at a rate of about 24 Kg/Hr by a screw pump 9 rotated by a drive motor 21, and water at room temperature was added through the addition port 12 at a rate of 0.13 Kg/Hr. . The piping and the jacket of the static mixer 13 were maintained at 235°C, but the temperature at the static mixer outlet 14 was 228°C.
The temperature decreased slightly with the addition of water. A multi-tubular heat exchanger 15 in which this molten polymer was kept at 260℃
The temperature was raised to 240° C. and flashed from the redispersion nozzle 17 into the vacuum chamber. On the other hand, the molten polymer was discharged from the gear pump 10 at a rate of 3.3 Kg/Hr to produce a product. Table 1 shows the analytical values of the obtained polystyrene product. Using this polystyrene, continuous molding was carried out for 2 hours in an injection molding machine, and the degree of resin adhesion to the mold was observed, and it was found that there was little resin adhesion and it was very good. Comparative Example 1 Example 1 except that water was not added from the addition port 12 and the jacket temperature of the external heat exchanger 15 was 235°C.
Volatile substances were removed under the same conditions. As shown in Table 1, the results showed that the methanol soluble content was higher than in Example 1, and the degree of resin adhesion to the mold, which was a defect during molding, was severe. Comparative Example 2 An experiment was conducted under the same conditions as in Example 1, except that water was not added through the addition port 12 and the temperature of the outer heat exchanger 15 was 260°C. As shown in Table 1, the methanol soluble content was higher than in Example 1, and the degree of resin adhesion to the mold, which was a defect during molding, was also severe. Example 2 Except that the discharge flow rate of the molten polymer at the bottom of the vacuum chamber by the screw type pump 9 was approximately 12 Kg/Hr.
Volatile substances were removed under the same conditions as in Example-1. The results are shown in Table-1. Although some resin adhesion to the mold was observed during molding, it was better than Comparative Examples 1 and 2. Example 3 Volatile substances were removed under the same conditions as in Example 1, except that the amount of water added through the addition port 12 was reduced to 0.07 Kg/Hr. The results are shown in Table-1. Some resin adhesion to the mold was observed during molding, but compared to the comparative example -
It was better than 1 and 2. Comparative Example 3 Water was added together with the polymerization liquid composition via the inlet valve 1 without adding water through the addition port 12.
The experiment was conducted in the same manner as in Example 1, except that 1.5Kg/Hr was added, the discharge rate of the screw type pump 9 was set to 3.3Kg/Hr, and the secondary devolatilization operation was eliminated, and the results are shown in Table 1. However, although the residual monomer, solvent, and methanol soluble content were small, there was significant tar adhesion to the mold.
【表】
*4 金型:平型スパイラルフロー、連続2時間
成型
[Table] *4 Mold: flat spiral flow, continuous 2 hour molding
第1図は、本発明の製造方法を実施するのに適
した装置の模式図であり、第2図は、再分散ノズ
ル用配管部のA−A断面からの拡大図、第3図
は、再分散ノズルのB−B′断面からの拡大図で
ある。
1……入口バルブ、2……多管式熱交換器頭
部、3……熱媒入口、4……熱媒出口、5……多
管式熱交換器、6……重合液組成物、7……溶融
重合体、8……溶融重合体、9……スクリユー型
ポンプ、10……ギア・ポンプ、11……配管、
12……添加口、13……静止型混合器、14…
…静止型混合器出口、15……予熱器、16……
再分散ノズル用配管、17……再分散ノズル、1
8……凝縮器、19……配管、20……コントロ
ールバルブ、21……駆動用モーター、22……
熱媒流通部、23……真空槽上部配管、24……
真空槽。
FIG. 1 is a schematic diagram of an apparatus suitable for carrying out the manufacturing method of the present invention, FIG. 2 is an enlarged view of the redispersion nozzle piping section taken from the A-A cross section, and FIG. FIG. 3 is an enlarged view of the redispersion nozzle taken along the line B-B'. 1... Inlet valve, 2... Shell-and-tube heat exchanger head, 3... Heat medium inlet, 4... Heat medium outlet, 5... Shell-and-tube heat exchanger, 6... Polymerization liquid composition, 7... Molten polymer, 8... Melt polymer, 9... Screw type pump, 10... Gear pump, 11... Piping,
12...addition port, 13...static mixer, 14...
...Static mixer outlet, 15... Preheater, 16...
Piping for redispersion nozzle, 17...Redispersion nozzle, 1
8... Condenser, 19... Piping, 20... Control valve, 21... Drive motor, 22...
Heat medium flow section, 23... Vacuum chamber upper piping, 24...
Vacuum tank.
Claims (1)
ン系重合体を含む重合液組成物から揮発性物質を
除去し脱揮発性重合体を製造するに際して、前記
重合液組成物を多管式熱交換機を通して加熱し、
次いで真空槽内へフラツシユさせ、揮発性物質は
ガス化して該真空槽から留去し、脱揮発した溶融
重合体は該真空漕下部から抜き出し、その一部を
製品として取り出すと同時に、残部に溶融重合体
と相互溶融性のない媒体を添加混合し、次いで加
熱して前記真空槽に循環し、フラツシユさせるこ
とを特徴とする脱揮発重合体の製造方法。1. When removing volatile substances from a polymerization liquid composition containing a styrenic polymer obtained by solution polymerization or bulk polymerization to produce a devolatilized polymer, the polymerization liquid composition is heated through a shell-and-tube heat exchanger. ,
Next, it is flashed into a vacuum chamber, and the volatile substances are gasified and distilled off from the vacuum chamber.The devolatized molten polymer is extracted from the lower part of the vacuum chamber, and a part of it is taken out as a product, while the remaining part is melted. A method for producing a devolatilized polymer, which comprises adding and mixing a polymer and a medium that is not mutually soluble, and then heating and circulating the mixture to the vacuum chamber to flash it.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP12912082A JPS5918707A (en) | 1982-07-24 | 1982-07-24 | Manufacture of polymer deprived of volatile matter |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP12912082A JPS5918707A (en) | 1982-07-24 | 1982-07-24 | Manufacture of polymer deprived of volatile matter |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5918707A JPS5918707A (en) | 1984-01-31 |
JPH0356242B2 true JPH0356242B2 (en) | 1991-08-27 |
Family
ID=15001563
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP12912082A Granted JPS5918707A (en) | 1982-07-24 | 1982-07-24 | Manufacture of polymer deprived of volatile matter |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5918707A (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS59227938A (en) * | 1983-06-10 | 1984-12-21 | Mitsui Toatsu Chem Inc | Polymer composition |
JPH0735409B2 (en) * | 1986-02-03 | 1995-04-19 | 三井東圧化学株式会社 | How to remove volatile substances |
US6486271B1 (en) * | 2001-03-09 | 2002-11-26 | Fina Technology, Inc. | Method of controlling molecular weight distributions during a polymerization process |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS51134781A (en) * | 1975-05-20 | 1976-11-22 | Mitsui Toatsu Chem Inc | Method for removing volatile matters from a polymerization liquid comp osition |
-
1982
- 1982-07-24 JP JP12912082A patent/JPS5918707A/en active Granted
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS51134781A (en) * | 1975-05-20 | 1976-11-22 | Mitsui Toatsu Chem Inc | Method for removing volatile matters from a polymerization liquid comp osition |
Also Published As
Publication number | Publication date |
---|---|
JPS5918707A (en) | 1984-01-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH0130848B2 (en) | ||
EP0200368B1 (en) | Continuous treatment process for polymer compositions | |
US5753784A (en) | Continuous preparation of polymers and apparatus for this purpose | |
US3981944A (en) | Method for producing impact resistant thermoplastic resin by continuous bulk polymerization | |
RU2526548C2 (en) | Thermal separation of mixes of materials by primary evaporation and degassing performed in separate mixers | |
US5739219A (en) | Continuous preparation of polymers | |
JPH02202918A (en) | Improved method for removing volatile substance from polyphenylene ether or polyphenylene ether/styrene resin composition | |
US4551510A (en) | Process for producing styrenic/alkenylnitrile copolymers | |
JPH06157636A (en) | Method of reduction of residual volatile matter in polymer | |
JP2005530915A (en) | Method for removing volatile components from polymer compositions | |
TW402612B (en) | Method for removing volatile materials from a polymer composition | |
JPS62179508A (en) | Removal of volatile matter | |
JPH0356242B2 (en) | ||
US3311676A (en) | Devolatilization process | |
JPH06157637A (en) | Method of reduction of residual volatile matter in polymer | |
SK278502B6 (en) | A method for removal of volatile waste product from raw polymerisation product | |
US4677171A (en) | Process for producing styrenic/alkenylnitrile copolymers | |
JP3570624B2 (en) | Method for producing styrene / acrylic water-soluble resin by continuous bulk polymerization | |
JP2004501990A (en) | Rubber-free copolymer with low residual monomer content, and method and apparatus for producing the same | |
JPH032163B2 (en) | ||
EP0413830A1 (en) | Method or removing volatile substances and apparatus therefor | |
JP3020926B2 (en) | Method for removing volatile substances from polymer composition | |
JPS5980404A (en) | Method and device for manufacturing styrene/ alkenylnitrile copolymer | |
JPS5917126B2 (en) | Process for producing improved impact-resistant styrenic polymers | |
JPH06345810A (en) | Method for removing volatile substance from styrenic polymer |