[go: up one dir, main page]

JPH0354784B2 - - Google Patents

Info

Publication number
JPH0354784B2
JPH0354784B2 JP17099784A JP17099784A JPH0354784B2 JP H0354784 B2 JPH0354784 B2 JP H0354784B2 JP 17099784 A JP17099784 A JP 17099784A JP 17099784 A JP17099784 A JP 17099784A JP H0354784 B2 JPH0354784 B2 JP H0354784B2
Authority
JP
Japan
Prior art keywords
specimen
light receiving
probe
image
irradiation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP17099784A
Other languages
Japanese (ja)
Other versions
JPS6150044A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP17099784A priority Critical patent/JPS6150044A/en
Priority to US06/765,670 priority patent/US4718760A/en
Publication of JPS6150044A publication Critical patent/JPS6150044A/en
Priority to US07/072,121 priority patent/US4732474A/en
Publication of JPH0354784B2 publication Critical patent/JPH0354784B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/8806Specially adapted optical and illumination features
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/89Investigating the presence of flaws or contamination in moving material, e.g. running paper or textiles
    • G01N21/8901Optical details; Scanning details

Landscapes

  • Analytical Chemistry (AREA)
  • Immunology (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Pathology (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)

Description

【発明の詳細な説明】 発明の目的 (産業上の利用分野) 本発明は、反射面を有する検体を光学的に検査
する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION Object of the Invention (Field of Industrial Application) The present invention relates to a method for optically inspecting a specimen having a reflective surface.

(従来の技術) 反射面を有する検体としては、第4図に示すよ
うに表面100aが鏡面(反射面)をなす検体1
00、第5図に示すように透明体からなり表面1
00aが反射面をなす検体100、第6図に示す
ように多層構造をなすとともに少なくとも上部層
が透明体をなし、その表面100aが反射面をな
している検体100等がある。なお、第4図の場
合には、検体100は透明体であつてもよいし不
透明体であつてもよい。第4図の検体100とし
ては例えば研摩された金属がある。また、第6図
の検体100としては、透明材料により多層にコ
ーテイングされた半導体基板等がある。
(Prior Art) As a specimen having a reflective surface, a specimen 1 whose surface 100a is a mirror surface (reflective surface) as shown in FIG.
00, as shown in Figure 5, it is made of a transparent material and has a surface 1
There are specimens 100 in which 00a is a reflective surface, and specimens 100 in which at least the upper layer is transparent and have a multilayer structure as shown in FIG. 6, and whose surface 100a is a reflective surface. In the case of FIG. 4, the specimen 100 may be a transparent body or an opaque body. The specimen 100 in FIG. 4 is, for example, a polished metal. Further, the specimen 100 in FIG. 6 includes a semiconductor substrate coated with multiple layers of transparent material.

第4図の検体100では、鏡面をなす表面10
0aの傷、しみ、ごみ等の欠陥aがあるか否かを
光学的に検査することがある。第5図の検体10
0では、表面100a、内部、裏面の欠陥bがあ
るか否かを光学的検査することがある。第6図の
検体100では、表面100aや層間の傷、し
み、ごみ等の欠陥c、層間の剥離等の欠陥dがあ
るか否かを検査することがある。
In the specimen 100 in FIG. 4, the mirror surface 10
It may be optically inspected to see if there is a defect a such as a scratch, stain, or dust. Sample 10 in Figure 5
0, optical inspection may be performed to determine whether there is a defect b on the front surface 100a, inside, or back surface. The specimen 100 shown in FIG. 6 may be inspected for defects c such as scratches, stains, and dust on the surface 100a and between layers, and defects d such as peeling between layers.

上記検体100を光学的に検査する場合、従来
では第7図に示すような方法で検査を行なつてい
た。すなわち、先端部に受光部111を有するプ
ローブ110と、電球からなる照射部112とを
互いに離れた位置に配置する。そして、照射部1
12の光を凹面鏡113により反射させて検体1
00に供給し、さらに検体100の表面100a
で反射させて受光部111に供給する。このよう
にして、検体100を高輝度に照らし出し、この
検体100の欠陥a,b,c,d(第4図〜第6
図)を検出する。
When the specimen 100 is optically inspected, conventionally the inspection has been carried out using a method as shown in FIG. That is, the probe 110 having the light receiving section 111 at its tip and the irradiating section 112 made of a light bulb are arranged at positions separated from each other. And irradiation part 1
12 is reflected by the concave mirror 113 and
00, and further the surface 100a of the specimen 100.
The light is reflected by the light receiving section 111 and supplied to the light receiving section 111. In this way, the specimen 100 is illuminated with high brightness, and the defects a, b, c, d (Figs. 4 to 6) of the specimen 100 are illuminated with high brightness.
Figure) is detected.

しかしながら、上述した従来の方法では、照射
部112と受光部111とが別体であるためコス
ト高となつた。
However, in the conventional method described above, the irradiating section 112 and the light receiving section 111 are separate bodies, resulting in high cost.

そこで、第8図に示すように、プローブ120
を一般の内視鏡の挿入部と同様に構成し、プロー
ブ120の先端部に受光部121と照射部122
とを設け、検体100の正面から、照明光を照射
して検査を行なうことが考えられる。しかし、こ
の検査方法では、高輝度の照射部の122像が、
検体100の表面100aで反射して受光部12
1に入射し、ハレーシヨンを生じるため、例えば
画像信号処理の段階で著しくS/N比が悪化し、
必要とする欠陥像を確実に検出することができな
い。
Therefore, as shown in FIG.
The probe 120 has a light receiving section 121 and an irradiating section 122 at the tip of the probe 120.
It is conceivable to provide a test specimen 100 and irradiate illumination light from the front of the specimen 100 to perform the test. However, with this inspection method, 122 images of the high-intensity irradiation area are
It is reflected by the surface 100a of the specimen 100 and the light receiving part 12
1 and causes halation, resulting in a significant deterioration of the S/N ratio during image signal processing, for example.
The required defect image cannot be reliably detected.

また、上記プローブ120を検体100に対し
て斜めに配置し、照明光を検体100の表面10
0aに対して斜めに照射して、照射部122の像
が受光部121に入射しないようにすることも考
えられる。しかしこの場合には、照明光が検体1
00の表面100aに反射して背景を照らし出
し、この背景像が検体100の表面100aで反
射して受光部121に入射するため、上記と同様
にS/N比が悪化し、必要とする欠陥像を確実に
検出することができない。
Further, the probe 120 is arranged diagonally with respect to the specimen 100, and the illumination light is applied to the surface 100 of the specimen 100.
It is also conceivable to irradiate obliquely to 0a so that the image of the irradiating section 122 does not enter the light receiving section 121. However, in this case, the illumination light is
This background image is reflected on the surface 100a of the specimen 100 and enters the light receiving section 121, which deteriorates the S/N ratio as described above and eliminates the necessary defect. The image cannot be detected reliably.

(発明が解決しようとしている問題点) 上記の事情から、安価かつ検査作業が簡単であ
り、検体の欠陥を確実に検出できるプローブの開
発が待たれていた。
(Problems to be Solved by the Invention) Due to the above-mentioned circumstances, the development of a probe that is inexpensive, easy to inspect, and can reliably detect defects in specimens has been awaited.

発明の構成 (問題点を解決するための手段) 本発明は上記問題点を解決するためになされた
もので、その要旨は、反射面を有する検体を光学
的に検査する方法において、照射部と受光部とを
先端部に備えたプローブの照射部から、照明光を
斜め方向に検体に照射し、この検体の像を受光部
でとらえるとともに、検体の反射面を介しての照
射部の照射範囲および受光部の視野範囲を、遮蔽
体でほぼ塞ぐようにしたことを特徴とする光学的
検査方法にある。
Structure of the Invention (Means for Solving the Problems) The present invention has been made to solve the above problems, and its gist is to provide a method for optically inspecting a specimen having a reflective surface. Illumination light is irradiated obliquely onto the specimen from the irradiating part of the probe, which has a light receiving part at its tip, and the image of the specimen is captured by the light receiving part, and the irradiation range of the irradiating part is determined through the reflective surface of the specimen. and an optical inspection method characterized in that the viewing range of the light receiving section is substantially covered by a shielding body.

(実施例) 以下、本発明の一実施例を第1図を参照して説
明する。第1図中1はプローブを示す。プローブ
1は、一般の硬性内視鏡の挿入部と似た構成を有
し長尺に形成されている。プローブ1には画像伝
送光学系2と光フアイバー束3とが互いに平行を
なして内蔵されている。プローブ1の先端部には
画像伝送光学系2の受光部5および対物レンズが
配置されている。画像伝送光学系2は、さらにプ
ローブ1の基端部に配置された接眼レンズ(図示
しない)と、この接眼レンズに至るまでのレンズ
群(図示しない)を有している。光フアイバー束
3の先端面はプローブ1の先端部において露出
し、照射部6となつている。照射部6は受光部5
の近傍位置に配置されている。画像伝送光学系2
の光軸Aと光フアイバー束3光軸Bはほぼ平行に
なつている。
(Example) An example of the present invention will be described below with reference to FIG. 1 in FIG. 1 indicates a probe. The probe 1 has a configuration similar to the insertion section of a general rigid endoscope, and is elongated. An image transmission optical system 2 and an optical fiber bundle 3 are built into the probe 1 in parallel with each other. At the tip of the probe 1, a light receiving section 5 of an image transmission optical system 2 and an objective lens are arranged. The image transmission optical system 2 further includes an eyepiece (not shown) disposed at the base end of the probe 1 and a lens group (not shown) leading to this eyepiece. The distal end surface of the optical fiber bundle 3 is exposed at the distal end of the probe 1 and serves as an irradiation section 6. The irradiating section 6 is the light receiving section 5
It is located near the . Image transmission optical system 2
The optical axis A of the optical fiber bundle 3 and the optical axis B of the optical fiber bundle 3 are substantially parallel to each other.

光フアイバー束3の基端部は光源装置に接続さ
れており、この光源装置の光を先端の照射部6か
ら照射するようになつている。また、画像伝送光
学系2の基端部では接眼レンズを通して肉眼で検
査を行なつたり、カメラやテレビカメラ等により
撮影するようになつている。
The base end of the optical fiber bundle 3 is connected to a light source device, and the light from this light source device is irradiated from the irradiation section 6 at the tip. Further, at the base end of the image transmission optical system 2, inspection can be performed with the naked eye through an eyepiece, or images can be taken with a camera, television camera, or the like.

図中9は遮蔽体であり、この遮蔽体9の面9a
は無模様の白色拡散面からなり、光を乱反射する
ようになつている。
9 in the figure is a shielding body, and a surface 9a of this shielding body 9
consists of a patternless white diffuser surface that reflects light diffusely.

本例では第4図〜第6図に示すいずれの検体1
00でも検査することができる。
In this example, any specimen 1 shown in Figures 4 to 6
00 can also be tested.

まず、上記プローブ1を検体100に対して斜
めに配置する。また、遮蔽体9を検体100に対
して傾けるとともに、検体100の表面100a
を介してプローブ1の先端部と鏡像位置関係にな
るように配置する。すなわち、遮蔽体9を、検体
100の表面100aでの反射を介しての照射部
6の照射範囲および受光部5の視野範囲をほぼ塞
ぐようにして配置する。
First, the probe 1 is placed diagonally with respect to the specimen 100. In addition, the shielding body 9 is tilted with respect to the specimen 100, and the surface 100a of the specimen 100 is
It is arranged so that it has a mirror image positional relationship with the tip of the probe 1 via the probe. That is, the shielding body 9 is arranged so as to substantially block the irradiation range of the irradiation section 6 and the field of view of the light receiving section 5 through reflection on the surface 100a of the specimen 100.

上記配置状態で、照射部6から照明光を検体1
00に照射する。照射方向は検体100の表面1
00aに対して傾斜している。照射された光は検
体100の表面100aで反射されて遮蔽体9に
至りここで乱反射され、検体100を明かるく照
らし出す。照らし出された検体100の像は、受
光部5から画像伝送光学系2によつて伝送されテ
レビカメラ等より撮像される。この際、検体10
0が明かるくむらなく照らし出されているため、
表面100aのみならず内部、裏面等の欠陥を確
実に検出できる。なお、第6図に示すように欠陥
が剥離dである場合には虹彩として検出できる。
In the above arrangement, illumination light is applied to the specimen 1 from the irradiation unit 6.
Irradiate to 00. The irradiation direction is the surface 1 of the specimen 100.
It is inclined with respect to 00a. The irradiated light is reflected by the surface 100a of the specimen 100, reaches the shield 9, and is diffusely reflected there, illuminating the specimen 100 brightly. The illuminated image of the specimen 100 is transmitted from the light receiving section 5 by the image transmission optical system 2 and captured by a television camera or the like. At this time, sample 10
Because 0 is illuminated brightly and evenly,
Defects not only on the front surface 100a but also on the inside, back surface, etc. can be reliably detected. Note that, as shown in FIG. 6, if the defect is a peeling d, it can be detected as an iris.

また、照射方向が検体100の表面100aに
対して傾斜しており、高輝度の照射部6の像が遮
蔽体9方向へ反射され、この遮蔽体9で乱反射さ
れるため、受光部5に入射しない。したがつて、
例えば画像処理の段階でのS/N比が悪化せず、
検体100の欠陥像を確実に検査できる。
In addition, since the irradiation direction is inclined with respect to the surface 100a of the specimen 100, the image of the high-intensity irradiation part 6 is reflected toward the shielding body 9, and is diffusely reflected by the shielding body 9, so that it is incident on the light receiving part 5. do not. Therefore,
For example, the S/N ratio at the image processing stage does not deteriorate,
The defect image of the specimen 100 can be reliably inspected.

また、照明光は検体100の表面100aによ
つて反射されるが、遮蔽体9に遮ぎられるため背
景を照らし出すことがなく、しかも背景像が遮蔽
体9に遮ぎられるため検体100の表面100a
で反射して受光部5に入射することがなく、この
点からもS/N比の悪化を防止でき、検体100
の欠陥像を確実に検出することができる。
In addition, although the illumination light is reflected by the surface 100a of the specimen 100, it is blocked by the shielding body 9, so it does not illuminate the background, and furthermore, since the background image is blocked by the shielding body 9, the illumination light 100a
Since the sample 100 is not reflected by the sample and enters the light receiving section 5, deterioration of the S/N ratio can be prevented from this point as well.
Defect images can be reliably detected.

本発明は上記実施例に制約されず種々の態様が
可能である。例えば、第2図に示すようにしても
よい。なお、この実施例において第1図に対応す
る部材には同番号を付してその詳細な説明を省略
する。以下の実施例についても同様である。本例
では遮蔽体10を凹面鏡としている。照射部6か
らの照明光は遮蔽体10に反射されて検体100
の表面100aに戻され、この表面100aで反
射されて受光部5に供給される。遮蔽体10の焦
点は受光部5の近傍で結ぶようにする。なお、照
射部6の像は凹面鏡をなす遮蔽体10で反射され
るため、画像としては受光部5に供給されず、欠
陥検出の障害となることはない。本例では、第1
図の場合よりもさらに高い輝度で検体を照らし出
すことができ、特に検体100の内部や裏面の欠
陥を検出するのに適している。
The present invention is not limited to the above embodiments, and various embodiments are possible. For example, it may be configured as shown in FIG. In this embodiment, members corresponding to those in FIG. 1 are given the same numbers and detailed explanation thereof will be omitted. The same applies to the following examples. In this example, the shield 10 is a concave mirror. The illumination light from the irradiation unit 6 is reflected by the shield 10 and illuminates the specimen 100.
The light is returned to the surface 100a, reflected by this surface 100a, and supplied to the light receiving section 5. The focus of the shielding body 10 is set near the light receiving section 5. In addition, since the image of the irradiation part 6 is reflected by the shielding body 10 which forms a concave mirror, it is not supplied to the light receiving part 5 as an image, and does not become an obstacle to defect detection. In this example, the first
The specimen can be illuminated with even higher brightness than the case shown in the figure, and is particularly suitable for detecting defects inside or on the back surface of the specimen 100.

また、遮蔽体の面を黒色吸収面とし、遮蔽体に
供給された光を反射する事なく吸収してもよい。
この例では、表面が鏡面をなす検体において直接
プローブの方向へ照射光を反射するような傷等の
欠陥を検出する場合に用いられる。
Alternatively, the surface of the shield may be a black absorption surface, and the light supplied to the shield may be absorbed without being reflected.
This example is used to detect defects such as scratches that would cause irradiated light to be reflected directly in the direction of the probe in a specimen having a mirror surface.

さらに、上記実施例では光フアイバー束の先端
によつて照射部を構成したが、第3図に示すよう
にプローブ1の先端部に、凹面鏡11付きの電球
12(照射部)を配置し、画像伝送光学系4の光
軸Aとほぼ平行の光軸Bをなす照明光を照射する
ようにしてもよい。
Furthermore, in the above embodiment, the irradiation section was configured by the tip of the optical fiber bundle, but as shown in FIG. Illumination light having an optical axis B substantially parallel to the optical axis A of the transmission optical system 4 may be applied.

また、上記実施例では受光部を一般の内視鏡の
挿入部に似た構成としたが、光電センサー、固体
撮像素子を用いてもよい。
Further, in the above embodiment, the light receiving section has a structure similar to the insertion section of a general endoscope, but a photoelectric sensor or a solid-state image sensor may be used.

また、背景に、無模様の壁や紙、梨地処理した
アルミ板からなるケース等が配置されている場合
には、この背景物自体を遮蔽体としてもよい。
Furthermore, if a plain wall, paper, a case made of a satin-finished aluminum plate, or the like is placed in the background, this background object itself may be used as a shield.

発明の効果 以上説明したように、本発明によれば、先端部
に照射部と受光部を備えたプローブを用いること
により、安価になる。しかも、照射部の像が受光
部に供給されず、また、模様等がある背景像が受
光部に供給されないため、確実に検体の欠陥を検
出することができる。
Effects of the Invention As explained above, according to the present invention, the cost can be reduced by using a probe having an irradiating section and a light receiving section at its tip. Furthermore, since the image of the irradiation section is not supplied to the light receiving section and the background image with a pattern etc. is not supplied to the light receiving section, defects in the specimen can be reliably detected.

【図面の簡単な説明】[Brief explanation of drawings]

第1図〜第3図は本発明の異なる実施例をそれ
ぞれ示す図、第4図から第6図は検体の異なる態
様をそれぞれ示す図、第7図は従来例を示す図、
第8図は本発明を発案するまでの過程で考えた例
を示す図である。 1……プローブ、5……受光部、6,12……
照射部、9,10……遮蔽体、100……検体、
100a……検体の表面(反射面)。
FIGS. 1 to 3 are views showing different embodiments of the present invention, FIGS. 4 to 6 are views showing different aspects of the specimen, and FIG. 7 is a view showing a conventional example.
FIG. 8 is a diagram showing an example considered in the process of devising the present invention. 1... Probe, 5... Light receiving section, 6, 12...
Irradiation section, 9, 10...shielding body, 100... specimen,
100a...Surface (reflecting surface) of the specimen.

Claims (1)

【特許請求の範囲】[Claims] 1 反射面を有する検体を光学的に検査する方法
において、照射部と受光部とを先端部に備えたプ
ローブの照射部から、照明光を斜め方向に検体に
照射し、この検体の像を受光部でとらえるととも
に、検体の反射面を介しての照射部の照射範囲お
よび受光部の視野範囲を、遮蔽体でほぼ塞ぐよう
にしたことを特徴とする光学的検査方法。
1 In a method of optically inspecting a specimen having a reflective surface, illumination light is irradiated obliquely onto the specimen from the irradiating part of the probe, which has an irradiating part and a light receiving part at the tip, and an image of the specimen is received. 1. An optical inspection method characterized in that the irradiation range of the irradiation part and the viewing range of the light receiving part through the reflective surface of the specimen are substantially covered by a shielding body.
JP17099784A 1984-08-18 1984-08-18 Optical examination method Granted JPS6150044A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP17099784A JPS6150044A (en) 1984-08-18 1984-08-18 Optical examination method
US06/765,670 US4718760A (en) 1984-08-18 1985-08-14 Apparatus for optically inspecting object having reflecting surface
US07/072,121 US4732474A (en) 1984-08-18 1987-07-10 Apparatus for optically inspecting object having reflecting surface

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17099784A JPS6150044A (en) 1984-08-18 1984-08-18 Optical examination method

Publications (2)

Publication Number Publication Date
JPS6150044A JPS6150044A (en) 1986-03-12
JPH0354784B2 true JPH0354784B2 (en) 1991-08-21

Family

ID=15915198

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17099784A Granted JPS6150044A (en) 1984-08-18 1984-08-18 Optical examination method

Country Status (1)

Country Link
JP (1) JPS6150044A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1126273A1 (en) * 2000-02-09 2001-08-22 Orbis Oy Method and arrangement for inspecting a transparent object for flaws
GB201718699D0 (en) 2017-11-13 2017-12-27 Rolls-Royce Ltd Measuring surface roughness
CN109632824B (en) * 2019-01-11 2020-04-21 英特尔产品(成都)有限公司 Object inspection system for object anomaly inspection

Also Published As

Publication number Publication date
JPS6150044A (en) 1986-03-12

Similar Documents

Publication Publication Date Title
US6034766A (en) Optical member inspection apparatus
JP3668294B2 (en) Surface defect inspection equipment
JP3692685B2 (en) Defect inspection equipment
JPS58219441A (en) Apparatus for detecting defect on surface of convex object
US6091834A (en) Method of illuminating a digital representation of an image
KR20160121716A (en) Surface inspection apparatus based on hybrid illumination
JPH06294749A (en) Flaw inspection method for plat glass
JP3677133B2 (en) Transparency inspection device
US20030117616A1 (en) Wafer external inspection apparatus
JPH04122839A (en) Inspecting method of surface
JPH11316195A (en) Surface defect detecting device of transparent plate
KR19980080031A (en) Transparent object inspection method, apparatus and inspection system used
JPH0354784B2 (en)
JPH0329737Y2 (en)
JP2821460B2 (en) Inspection device for transparent substrate
JPH0623960Y2 (en) Optical inspection probe
JP2000097867A (en) Defect detecting device and method for translucent substrate
JPH09218162A (en) Surface defect inspection device
JP2002014058A (en) Method and apparatus for checking
JP2000295639A (en) Lighting device for inspecting solid-state image pickup element and adjustment tool used for the same
JPH04344447A (en) Detecting device for defect in transparent glass substrate
JPS58184116A (en) Examining method of defect on surface of light-transmittable object
CN219016120U (en) Detection device
JP3360795B2 (en) Optical member inspection device
JP2966729B2 (en) Light guide element and method of using the same