[go: up one dir, main page]

JPH0354311B2 - - Google Patents

Info

Publication number
JPH0354311B2
JPH0354311B2 JP58075262A JP7526283A JPH0354311B2 JP H0354311 B2 JPH0354311 B2 JP H0354311B2 JP 58075262 A JP58075262 A JP 58075262A JP 7526283 A JP7526283 A JP 7526283A JP H0354311 B2 JPH0354311 B2 JP H0354311B2
Authority
JP
Japan
Prior art keywords
current
measuring device
grounding
resistance measuring
component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP58075262A
Other languages
Japanese (ja)
Other versions
JPS59200974A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP58075262A priority Critical patent/JPS59200974A/en
Publication of JPS59200974A publication Critical patent/JPS59200974A/en
Publication of JPH0354311B2 publication Critical patent/JPH0354311B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Measurement Of Resistance Or Impedance (AREA)

Description

【発明の詳細な説明】 この発明は超高圧の変電所、開閉所などにおけ
る接地抵抗の測定に用いられる接地抵抗測定装置
に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a grounding resistance measuring device used for measuring grounding resistance in ultra-high voltage substations, switching stations, etc.

超高圧の変電所や開閉所では機器の保護と取扱
上の安全を確保するため所謂接地接続がなされて
いる。
In ultra-high voltage substations and switchyards, so-called grounding connections are made to protect equipment and ensure safe handling.

この場合、このような接地接続による大地間の
抵抗には限界値が定められており常に規定以下に
なるようにしなければならない。
In this case, a limit value is determined for the resistance between the earth and the ground due to such a ground connection, and it must be kept below the specified value at all times.

このため、従来よりかかる接地抵抗を測定する
ものとして各種の測定装置が考えられている。
For this reason, various measuring devices have been conventionally considered for measuring such ground resistance.

第1図は従来のこの種の接地抵抗測定装置の一
例を示すもので商用周波電源AC(=200V)をス
イツチS1、ヒユーズF、オートトランスT1を介
して絶縁トランスT2に接続し、このトランスT2
の2次巻線側を切換スイツチS2を介して補助接地
するとともに同切換スイツチS2、電流計Aを介し
て被測定系たる接地網Nに接続し、この接地網N
と零電位の間に電圧計Vを接続し、オートトラン
スT1にて電流計Aに流れる電流値Iを調整する
とともにスイツチS2を左右に切換えたときの電圧
計Vの指示値E1,E2を夫々読み取ることにより
接地抵抗Rを求めるようにしている。
Figure 1 shows an example of a conventional ground resistance measuring device of this type, in which a commercial frequency power supply AC (=200V) is connected to an isolation transformer T2 via a switch S1 , a fuse F, and an autotransformer T1 . This transformer T 2
The secondary winding side of the is connected to the grounding network N, which is the system to be measured, through the switching switch S 2 and the switching switch S 2 and the ammeter A.
A voltmeter V is connected between and zero potential, and the autotransformer T1 adjusts the current value I flowing through the ammeter A, and the indicated value of the voltmeter V when the switch S2 is switched left and right is E1 , The grounding resistance R is determined by reading E2 .

この場合、諸設備が運転状態にあつて浮遊電位
(I=0のときの電圧計Vの指示値)をEoとする
と第2図に示すベクトル合成関係が成立し となり、これより接地抵抗Rが求められる。つま
り、接地抵抗Rは電圧計Vの指示値E1,E2およ
び電流計Aの指示値Iに加えて浮遊電位E0によ
つて求められることになる。ところが、周知のよ
うに浮遊電位E0は周囲条件により変動し易いだ
けでなく再現性にも欠けるため、かかる浮遊電位
E0の影響を大きく受ける上述の従来装置では正
確な測定結果が得られない欠点があつた。
In this case, when the equipment is in operation and the floating potential (indication value of voltmeter V when I = 0) is Eo, the vector composition relationship shown in Figure 2 is established. From this, the grounding resistance R can be found. In other words, the ground resistance R is determined by the floating potential E 0 in addition to the indicated values E 1 and E 2 of the voltmeter V and the indicated value I of the ammeter A. However, as is well known, the floating potential E 0 not only fluctuates easily depending on the surrounding conditions but also lacks reproducibility.
The conventional apparatus described above, which is greatly affected by E 0 , has the disadvantage that accurate measurement results cannot be obtained.

そこで、従来では浮遊電位E0の影響を極力小
さくするため電流計Aに流れる電流Iを大きくす
るなどしているが、これによるとトランス容量が
いたずらに大きくなるため装置が大形になるだけ
でなく価格的にも高価なものになつてしまう。一
方、接地抵抗を測定する際変電所や開閉所を一時
全面停電させて浮遊電位E0の影響を除去するこ
とも考えられるが、このように運転中の変電所や
開閉所を全面停電することは容易でないため、運
転開始前の建設時に将来必要となる接地抵抗まで
下げておくことが必要となりこのための先行投資
を要するという欠点がある。
Therefore, in the past, in order to minimize the influence of the floating potential E 0 , the current I flowing through the ammeter A was increased, but this only increased the size of the device because the transformer capacitance increased unnecessarily. However, it becomes expensive in terms of price. On the other hand, when measuring ground resistance, it is possible to remove the influence of floating potential E 0 by temporarily shutting down the substation or switchyard; Since this is not easy, it is necessary to lower the grounding resistance to the level that will be required in the future during construction before the start of operation, which has the disadvantage of requiring upfront investment.

この発明は上記欠点を除去するためなされたも
ので、諸設備が運転状態のままでも浮遊電位E0
の影響を受けることなく高精度に接地抵抗を測定
することができる接地抵抗測定装置を提供するこ
とを目的とする。
This invention was made to eliminate the above-mentioned drawbacks, and even when various equipment is in operation, the floating potential E 0
An object of the present invention is to provide a grounding resistance measuring device that can measure grounding resistance with high accuracy without being affected by

以下、この発明の一実施例を図面に従い説明す
る。
An embodiment of the present invention will be described below with reference to the drawings.

第3図において、1は電源で、この電源1にス
イツチ2、ヒユーズ3を介して発振器4を接続し
ている。この発振器4はAcosωt、Asinωtの信号
を第1および第2の参照信号として出力するよう
にしている。このときこれら信号の周波数ωは周
波数の差による誤差低減のためラインの商用周波
数ω0とわずかに異なるようにしている。
In FIG. 3, 1 is a power source, and an oscillator 4 is connected to this power source 1 via a switch 2 and a fuse 3. This oscillator 4 outputs the Acosωt and Asinωt signals as first and second reference signals. At this time, the frequencies ω of these signals are set to be slightly different from the commercial frequency ω 0 of the line in order to reduce errors due to frequency differences.

発振器4に電流発生手段例えば定電流増巾器5
を接続している。この増巾器5は一方の出力端子
を補助接地するとともに他方の出力端子を電流計
6を介して被測定系例えば接地網7に接続し、常
時電流計6を介して定電流Icos(ωt−θ)を与え
るようにしている。
The oscillator 4 is provided with current generating means, such as a constant current amplifier 5.
are connected. This amplifier 5 has one output terminal connected to auxiliary ground, and the other output terminal connected to the system to be measured, for example, a grounding network 7, via an ammeter 6, and a constant current Icos (ωt− θ).

接地網7と零電位の間に演算手段として電圧測
定部8を接続している。この測定部8には上記発
振器4の参照信号が与えられている。この場合、
測定部8は第4図に示すように測定入力Vが与え
られるとともに上記発振器4より参照信号
Acosωt、Asinωtが各別に与えられる乗算器81
1,812、これら乗算器811,812の出力
x,yが与えられる狭帯域のローパスフイルタ8
21,822、これらローパスフイルタ821,
822の出力,が与えられる二乗器831,
832、これら二乗器831,832の出力を加
算する加算器84およびこの加算器84の出力を
開平する開平器85を有している。
A voltage measuring section 8 is connected between the grounding network 7 and the zero potential as a calculation means. A reference signal from the oscillator 4 is given to this measuring section 8 . in this case,
As shown in FIG. 4, the measurement section 8 receives a measurement input V and receives a reference signal from the oscillator 4.
Multiplier 81 to which Acosωt and Asinωt are given separately
1,812, a narrow band low-pass filter 8 to which the outputs x and y of these multipliers 811 and 812 are given.
21,822, these low pass filters 821,
A squarer 831 is given the output of 822,
832, an adder 84 that adds the outputs of these squarers 831 and 832, and a squarer 85 that squares the output of the adder 84.

次にその作用を説明する。 Next, its effect will be explained.

いま、発振器4より参照信号Acosωt、Asinωt
が電圧測定器8に与えられ、また定電流増巾器5
より定電流Icos(ωt−θ)が電流計6を通して与
えられているものとすると、電圧測定部8には測
定入力Vとして浮遊電位E0cosω0tと測定信号
IRcos(ωt−θ)を重畳した V=E0cosω0t+IRcos(ωt−θ) が得られる。この測定入力Vは乗算器811,8
12に夫々与えられ参照信号と乗算される。する
と乗算器811より x=AV・cosωt=AVE0/2{cos(ω0+ω)t+co
s(ω0−ω)t}+AIR/2{cos(2ωt−θ)+cosθ
} が得られ、また乗算器812より y=AV・sinωt=AVE0/2{sin(ω0+ω)t+si
n(ω0−ω)t}+AIR/2{sin(2ωt−θ)+sinθ
} が得られる。そして、これら出力x,yがローパ
スフイルタ821,822に与えられると、x,
yの各項のうち交流成分が減衰され参照信号で同
期検定された直流成分のみ残され、これにより x=ARI/2cosθ、y=ARI/2sinθ が得られる。さらにこれら出力x,yは二乗器8
31,832を介して加算器84に与えられ√
(x)2+(y)2が得られ、これを開平器85を介し
て演算すると√()2+()2=ARI/2(√2
− sin2θ)=ARI/2とな電圧測定部8での指示値E= ARI/2が得られる ここで、指示値ARI/2におけるIは定電流増巾 器5の出力電流として電流計6にて直読でき、ま
たAは任意に足めることができるのでA=2とす
ればR=E/Iとなり上記指示値より接地抵抗R
を容易に算出できることになる。
Now, reference signals Acosωt and Asinωt are generated from the oscillator 4.
is given to the voltage measuring device 8, and the constant current amplifier 5
Assuming that a constant current Icos (ωt−θ) is applied through the ammeter 6, the voltage measuring section 8 receives the floating potential E 0 cosω 0 t and the measurement signal as the measurement input V.
V=E 0 cosω 0 t+IRcos(ωt-θ) is obtained by superimposing IRcos(ωt-θ). This measurement input V is applied to multipliers 811, 8
12 and are multiplied by the reference signal. Then, from the multiplier 811, x=AV・cosωt=AVE 0 /2 {cos(ω 0 +ω)t+co
s(ω 0 −ω)t}+AIR/2{cos(2ωt−θ)+cosθ
} is obtained, and from the multiplier 812, y=AV・sinωt=AVE 0 /2 {sin(ω 0 +ω)t+si
n(ω 0 −ω)t}+AIR/2{sin(2ωt−θ)+sinθ
} is obtained. Then, when these outputs x and y are given to low-pass filters 821 and 822, x,
Among the terms of y, the AC component is attenuated and only the DC component synchronized with the reference signal is left, thereby obtaining x=ARI/2cosθ and y=ARI/2sinθ. Furthermore, these outputs x and y are squared by a squarer 8
31,832 to the adder 84 and √
(x) 2 + (y) 2 is obtained, and when this is calculated via the square rooter 85, √() 2 + () 2 = ARI/2(√ 2
- sin 2 θ) = ARI/2, and the indicated value E = ARI/2 at the voltage measuring section 8 is obtained. Here, I in the indicated value ARI/2 is the output current of the constant current amplifier 5, 6 can be read directly, and A can be added arbitrarily, so if A=2, R=E/I, and from the above indicated value, the grounding resistance R
can be easily calculated.

したがつて、このような構成によれば浮遊電位
E0を含む交流成分を除去し接地抵抗Rの測定に
必要な指示値ARI/2のみを算出できるので、変電 所や開閉所の諸設備が運転中にあつても浮遊電位
E0の影響を何ら受けることなく高精度に接地抵
抗Rを測定できることになる。これにより従来浮
遊電位E0の影響を小さくするためトランス容量
を大きくするものに比べ装置の小形化を図り得る
とともに価格的にも安価にでき、さらに接地抵抗
を将来必要となる値まで下げておくために要する
費用の先行投資を抑制できる。
Therefore, with such a configuration, the floating potential
Since AC components including E 0 can be removed and only the indicated value ARI/2 required for measuring ground resistance R can be calculated, floating potentials can be eliminated even when equipment at substations and switchyards is in operation.
This means that the grounding resistance R can be measured with high precision without being affected by E 0 at all. This makes it possible to make the device smaller and cheaper than the conventional method that increases the transformer capacitance to reduce the influence of the floating potential E 0 , and also lowers the grounding resistance to a value that will be required in the future. The upfront investment required for this can be suppressed.

なお、この発明は上記実施例にのみ限定されず
要旨を変更しない範囲で適宜変形して実施でき
る。例えば上述では電圧測定部8の乗算器81
1,812に測定入力Vと参照信号Acosωt,
Asinωtを与えx,yを得るようにしたが、これ
に代えて測定入力Vを周波数ωの方形波にて直接
スイツチングするようにしてもよい。また上述で
は電圧測定部8においてローパスフイルタ82
1,822の出力,を二乗器831,832
を介して加算器84に与え、これを開平器85に
加えて指示値ARI/2を得るようにしたが例えば第 5図に示すように出力x,yをcosωt,sinωtを
基本波とする方形波にて各別にスイツチングした
のち加算器9に与え、ここで xcosωt+ysinωt=√22cos{ωt−cos−1y/x
} を得、これをバンドパスフイルタ10を通したの
ち検波回路11にて検波することにより指示値
ARI/2を得るようにしてもよい。さらに上述では 定電流増巾器5より定電流出力を得るようにした
が、この出力は必ずしも定電流でなくともよい。
It should be noted that the present invention is not limited to the above-mentioned embodiments, but can be implemented with appropriate modifications without changing the gist. For example, in the above case, the multiplier 81 of the voltage measuring section 8
1,812 is the measurement input V and the reference signal Acosωt,
Although Asinωt is given and x and y are obtained, instead of this, the measurement input V may be directly switched with a square wave of frequency ω. Furthermore, in the above description, the low pass filter 82 is used in the voltage measuring section 8.
1,822 output, squarer 831,832
This is applied to the adder 84 via the square rooter 85 to obtain the indicated value ARI/2. For example, as shown in FIG. After switching each wave separately, it is applied to the adder 9, where xcosωt+ysinωt=√ 2 + 2 cos{ωt−cos− 1 y/x
} is obtained, passed through a bandpass filter 10, and then detected by a detection circuit 11 to obtain the indicated value.
It may be possible to obtain ARI/2. Further, in the above description, a constant current output is obtained from the constant current amplifier 5, but this output does not necessarily have to be a constant current.

以上述べたようにこの発明によれば諸設備が運
転状態のままでも浮遊電位E0の影響を受けるこ
となく高精度に接地抵抗Rを測定することができ
る接地抵抗測定装置を提供できる。
As described above, according to the present invention, it is possible to provide a ground resistance measuring device that can measure the ground resistance R with high precision without being affected by the floating potential E 0 even when various equipment is in operation.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の接地抵抗測定装置の一例を示す
概略的構成図、第2図は同装置を説明するための
ベクトル図、第3図はこの発明の一実施例を示す
概略的構成図、第4図は同実施例に用いられる電
圧測定部を示すブロツク図、第5図はこの発明の
他実施例を示す概略的構成図である。 1…電源、2…スイツチ、3…ヒユーズ、4…
発振器、5…定電流増巾器、6…電流計、7…接
地網、8…電圧測定部、811,812…乗算
器、821,822…ローパスフイルタ、83
1,832…二乗器、84,9…加算器、85…
開平器、10…バンドパスフイルタ、11…検波
回路。
FIG. 1 is a schematic configuration diagram showing an example of a conventional ground resistance measuring device, FIG. 2 is a vector diagram for explaining the device, and FIG. 3 is a schematic configuration diagram showing an example of the present invention. FIG. 4 is a block diagram showing a voltage measuring section used in the same embodiment, and FIG. 5 is a schematic configuration diagram showing another embodiment of the present invention. 1...power supply, 2...switch, 3...fuse, 4...
Oscillator, 5... constant current amplifier, 6... ammeter, 7... grounding network, 8... voltage measuring section, 811, 812... multiplier, 821, 822... low pass filter, 83
1,832...squarer, 84,9...adder, 85...
Square rooter, 10...Band pass filter, 11...Detection circuit.

Claims (1)

【特許請求の範囲】 1 商用周波数とわずかに異なる周波数を有し互
に90゜位相の異なる第1および第2の参照信号を
発生する発振手段と、これらのうち1つの参照信
号が与えられこれを一定振巾の電流に変換して被
測定接地系に与える電流発生手段と、上記被測定
接地系の接地抵抗に上記電流が流れることによつ
て生じる電圧降下および商用周波数を有する浮遊
電位が重畳された測定信号が与えられるとともに
この測定信号に上記第1の参照信号を乗算する手
段および上記測定信号に上記第2の参照信号を乗
算する手段を有しこれらの各出力より各直流分の
みを取り出しこれら二つの直流成分振幅値を各々
二乗して加算し且つ開平した値を得る演算手段を
具備したことを特徴とする接地抵抗測定装置。 2 上記電流発生手段は定電流を発生する定電流
増巾器からなることを特徴とする特許請求の範囲
第1項記載の接地抵抗測定装置。 3 上記演算手段は直流分のみを取り出す手段と
して狭帯域のローパスフイルタを用いたことを特
徴とする特許請求の範囲第1項又は第2項記載の
接地抵抗測定装置。 4 上記演算手段は上記各直流成分振幅値を二乗
する二乗器、加算器および開平器を有することを
特徴とする特許請求の範囲第1項乃至第3項のい
ずれかに記載の接地抵抗測定装置。
[Claims] 1. Oscillating means for generating first and second reference signals having a frequency slightly different from the commercial frequency and having a phase difference of 90 degrees from each other; A current generating means converts the current into a current with a constant amplitude and supplies it to the grounding system under test, and a voltage drop caused by the current flowing through the grounding resistance of the grounding system under test and a floating potential having a commercial frequency are superimposed. and a means for multiplying the measured signal by the first reference signal and a means for multiplying the measured signal by the second reference signal, and extracts only each DC component from each of these outputs. 1. A grounding resistance measuring device characterized by comprising an arithmetic means for taking out, squaring and adding these two DC component amplitude values, and obtaining a square root value. 2. The earth resistance measuring device according to claim 1, wherein the current generating means comprises a constant current amplifier that generates a constant current. 3. The earth resistance measuring device according to claim 1 or 2, wherein the calculation means uses a narrow band low-pass filter as a means for extracting only the DC component. 4. The earth resistance measuring device according to any one of claims 1 to 3, wherein the calculation means includes a squarer, an adder, and a square rooter for squaring each of the DC component amplitude values. .
JP58075262A 1983-04-28 1983-04-28 Device for measuring earthing resistance Granted JPS59200974A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58075262A JPS59200974A (en) 1983-04-28 1983-04-28 Device for measuring earthing resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58075262A JPS59200974A (en) 1983-04-28 1983-04-28 Device for measuring earthing resistance

Publications (2)

Publication Number Publication Date
JPS59200974A JPS59200974A (en) 1984-11-14
JPH0354311B2 true JPH0354311B2 (en) 1991-08-19

Family

ID=13571126

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58075262A Granted JPS59200974A (en) 1983-04-28 1983-04-28 Device for measuring earthing resistance

Country Status (1)

Country Link
JP (1) JPS59200974A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6265881B1 (en) * 1991-04-05 2001-07-24 Georgia Tech Research Corporation Method and apparatus for measuring ground impedance
KR100657855B1 (en) 2005-12-15 2006-12-21 벽산엔지니어링주식회사 How to Identify Corrosion and Disconnection Points in Substation Ground Wire Networks
KR101164148B1 (en) 2011-07-15 2012-07-11 한국 전기안전공사 Risk voltage measurement system
FR2986618B1 (en) * 2012-02-08 2014-09-05 Renault Sa SECURE LOADING SYSTEM FOR CHARGING THE BATTERY OF A MOTOR VEHICLE FROM A POWER SUPPLY NETWORK
KR101876358B1 (en) * 2016-11-24 2018-07-11 한국전기안전공사 System for evaluground impedance measurement system

Also Published As

Publication number Publication date
JPS59200974A (en) 1984-11-14

Similar Documents

Publication Publication Date Title
US4871971A (en) High impedance fault analyzer in electric power distribution networks
US8044672B2 (en) Method for measuring D-Q impedance of polyphase power grid components
CN101663589B (en) Measuring instrument for a resistive electric leakage current
US7640118B2 (en) Measuring method for deciding direction to a flickering source
JPH0354311B2 (en)
JPH0467631B2 (en)
JP2617324B2 (en) Insulation resistance measurement method
JPS61155869A (en) Measuring method of phase-compensated insulation resistance
JPH079447B2 (en) Insulation resistance measuring method and device
JPH0552466B2 (en)
JPH04109174A (en) Impedance measuring device
JPS61155868A (en) Simple measuring method of insulation resistance
JP2896572B2 (en) Simple insulation resistance measurement method
JPS58127172A (en) Insulation resistance measuring apparatus for electric line with suppressed stray capacity
JPS606877A (en) Method and device for detecting reactive power
JP2764584B2 (en) Measurement method of insulation resistance of branch circuit
JPH0632255B2 (en) Method of measuring leakage current of lightning arrester
JPS6240663B2 (en)
JPH0690240B2 (en) Clamp sensor
JP2750705B2 (en) Insulation resistance measurement method
JPH1048282A (en) DC stray current measuring method and measuring device for measuring DC stray current of cable ground wire
JPS6159267A (en) Method for measuring insulating resistance of electric circuit
JPH01159988A (en) Leak current measuring method for lightening protector
JPS60162963A (en) Simple measuring method of insulation resistance
JPS637349B2 (en)