[go: up one dir, main page]

JPH035326A - Reactor and production of goethite - Google Patents

Reactor and production of goethite

Info

Publication number
JPH035326A
JPH035326A JP13572589A JP13572589A JPH035326A JP H035326 A JPH035326 A JP H035326A JP 13572589 A JP13572589 A JP 13572589A JP 13572589 A JP13572589 A JP 13572589A JP H035326 A JPH035326 A JP H035326A
Authority
JP
Japan
Prior art keywords
goethite
oxidation
reaction
reactor
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13572589A
Other languages
Japanese (ja)
Inventor
Nobuhiro Fukuda
福田 信弘
Mitsuyoshi Hashimoto
順義 橋本
Hitoshi Murozono
室園 均
Kimiteru Tagawa
公照 田川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Toatsu Chemicals Inc
Original Assignee
Mitsui Toatsu Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Toatsu Chemicals Inc filed Critical Mitsui Toatsu Chemicals Inc
Priority to JP13572589A priority Critical patent/JPH035326A/en
Publication of JPH035326A publication Critical patent/JPH035326A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/18Stationary reactors having moving elements inside
    • B01J19/1868Stationary reactors having moving elements inside resulting in a loop-type movement
    • B01J19/1875Stationary reactors having moving elements inside resulting in a loop-type movement internally, i.e. the mixture circulating inside the vessel such that the upwards stream is separated physically from the downwards stream(s)
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/0053Details of the reactor
    • B01J19/006Baffles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/0053Details of the reactor
    • B01J19/0066Stirrers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00049Controlling or regulating processes
    • B01J2219/00051Controlling the temperature
    • B01J2219/00074Controlling the temperature by indirect heating or cooling employing heat exchange fluids
    • B01J2219/00087Controlling the temperature by indirect heating or cooling employing heat exchange fluids with heat exchange elements outside the reactor
    • B01J2219/00094Jackets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00761Details of the reactor
    • B01J2219/00763Baffles
    • B01J2219/00779Baffles attached to the stirring means

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Compounds Of Iron (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Abstract

PURPOSE:To improve the uniformity in the grain size distribution of the goethite by supplying an aq. ferrous salt soln. and an aq. alkaline soln. to the reactor provided with an agitating means, a liq. flow control cylinder and a gas introducing means and supplying an oxidizing gas while agitating the solns. to oxide CONSTITUTION:N2 is supplied into the reactor from a gas sparger 5 to replace the internal atmosphere with N2. An aq. alkaline soln. of NaOH, etc., is then supplied from an alkali hydroxide supply port 7, and an aq. soln. of a ferrous salt such as FeSO4 is added from a supply port 6, the solns. are agitated, and air is simultaneously introduced from the gas sparger 5. The liq. reactant is kept at 40 deg.C and oxidized at the rate of 5%/min until when initial 30% oxidation is completed. The amt. of air to be introduced is then decreased, and the oxidation is allowed to proceed at the rate of 3%/min to convert the hydroxide to goethite. After oxidation is finished, the mixture is agitated for about one hour in the atmosphere, and the liq. reactant is discharged from a discharge port 8 and filtered. The precipitate is washed with water and then dried to obtain the fine grains having uniform mol.wt. distribution and having >=100m<2>/g specific surface.

Description

【発明の詳細な説明】 「技術分野」 本発明は、撹拌槽型の気液混合型反応器ならびに当該反
応器を用いる粒度分布の揃った微細な針状ゲーサイトの
製法に関し、特に高密度磁気記録材料用の原料として好
適なゲーサイトの製造装置ならびに製造方法に関する。
Detailed Description of the Invention [Technical Field] The present invention relates to a stirred tank type gas-liquid mixing reactor and a method for producing fine acicular goethite with a uniform particle size distribution using the reactor, and in particular to a method for producing fine acicular goethite with a uniform particle size distribution. The present invention relates to an apparatus and method for producing goethite suitable as a raw material for recording materials.

「背景技術」 粉末原料を加工して有用な製品にするときには、その粒
子形態に起因する性質が重要な役割を果たす、さて、磁
性材料においても、出発原料であるゲーサイト(オキシ
水酸化鉄)粒子の形態は、それから得られる磁気記録材
料の性質を大きく左右する。このような形態制御に関し
て多くの検討がなされてきたが、なかでも粒子のサイズ
とその粒度分布を揃えることが最も困難とされてきた。
"Background technology" When processing powder raw materials into useful products, the properties resulting from the particle form play an important role.In magnetic materials as well, goethite (iron oxyhydroxide), which is the starting material, plays an important role. The morphology of the particles greatly influences the properties of the magnetic recording material obtained from them. Although many studies have been made regarding such morphology control, it has been said that the most difficult task has been to make the particle size and particle size distribution uniform.

粒度分布を揃える方法としては、たとえば、特公昭52
−21720号、特開昭53−56196号、特開昭5
3−53200号、特開昭53−75199号、特開昭
54−20998号、特開昭54−79200号、特開
昭54−93697号、特開昭51−86795号、特
開昭52−59095号、特開昭52−59096号、
特開昭52−59097号、特開昭56−22637号
、特開昭56−22638号等の公報に記載された方法
が知られている。これらを大別すると、(イ)特公昭5
2−21720号公報のように非酸化性の状態で数時間
強力に撹拌して均一な水酸化物とした後酸化してゲーサ
イト化する方法、(ロ)特開昭53−56196号、特
開昭53−57200号、特開昭53−75199号、
特開昭54−20998号、特開昭54−79200号
、特開昭54−93697号公報などには可溶性ケイ酸
塩の共存下に中和反応を行って均一な水酸化物よりなる
フロックの均整化を図り、かつその後に針状晶ゲーサイ
ト粒子の均一な生成反応を行う方法、(ハ)特開昭51
−86795号、特開昭52−59095号、特開昭5
2−59096号、特開昭52−59097号公報など
に番よ水酸化第1鉄の酸化速度を制限してゲーサイトに
酸化する方法、(ニ)特開昭56−22637号、特開
昭56−22638号公報などには常温で調整した種晶
を用いる方法等が開示されている。しかしながら、(イ
)の方法においては、数時間、好ましくは2〜4時間の
強力な撹拌を要し、しかもこの撹拌手段のみでは不均一
な水酸化第1銖粒子からなるフロックを十分に均一化す
ることが困難である。(ロ)の方法においては、使用す
る可溶性ケイ酸塩はStとしてFeに対し0.1〜1.
7原子%用いる必要があり、しかもゲーサイトはケイ酸
塩をとり込んで、あたかもケイ酸塩で希釈されたことと
同じ形になるので、これを常法によって還元して得られ
る鉄粉末の磁気的性質は低下する(ハ)の方法において
は、ゲーサイト製造工程において、酸化速度を遅くして
種々変化させねばならず時間を要するうえに、酸化速度
を遅くすることは粒子の成長につながり、高密度記録材
料の特性として要求されている粒子の微細化の問題を克
服することができない、(ニ)の方法においては、種晶
を用いてはいるが、反応条件、特に温度条件を厳密に管
理しないとゲーサイトよりもマグネタイトが生成する危
険性がある。さらに、これらの公知の技術では反応時間
が長いために得られるゲーサイト粒子は大きく成長し、
BET法による比表面積(以下SAと記す)で4On(
/g以下となりやすく、高密度記録用の磁性材料を得る
ことは困難であった0本出願人は先に比表面積50〜1
00rrf/Hの高密度記録用の磁性材料を効率良く製
造する技術、たとえば、特開昭57−209834号、
特開昭58−32028号、特開昭58−140327
.特開昭59−18119号等の技術を開示した。
As a method for making the particle size distribution uniform, for example,
-21720, JP-A No. 53-56196, JP-A-5
3-53200, JP 53-75199, JP 54-20998, JP 54-79200, JP 54-93697, JP 51-86795, JP 52- No. 59095, JP-A No. 52-59096,
Methods described in publications such as JP-A-52-59097, JP-A-56-22637, and JP-A-56-22638 are known. Broadly speaking, these can be divided into (a) Tokuko Sho 5;
2-21720, a method of vigorously stirring for several hours in a non-oxidizing state to form a uniform hydroxide and then oxidizing it to goethite; (b) JP-A-53-56196, JP-A-53-57200, JP-A-53-75199,
JP-A-54-20998, JP-A-54-79200, JP-A-54-93697, etc. disclose methods of forming uniform flocs of hydroxide by carrying out a neutralization reaction in the coexistence of soluble silicate. A method of achieving uniformity and then carrying out a uniform production reaction of acicular goethite particles, (c) JP-A-51
-86795, JP-A No. 52-59095, JP-A No. 52-59095
No. 2-59096, JP-A No. 52-59097, etc. A method of oxidizing ferrous hydroxide to goethite by limiting the oxidation rate, (d) JP-A No. 56-22637, JP-A-Sho. No. 56-22638 and the like disclose a method using seed crystals prepared at room temperature. However, method (a) requires strong stirring for several hours, preferably 2 to 4 hours, and this stirring method alone is insufficient to homogenize the flocs consisting of non-uniform hydroxide primary particles. difficult to do. In the method (b), the soluble silicate used has an St of 0.1 to 1.
It is necessary to use 7 atomic percent, and since goethite incorporates silicate and becomes the same form as if it had been diluted with silicate, the magnetic properties of iron powder obtained by reducing it by a conventional method In method (c), the oxidation rate must be slowed down and various changes must be made in the goethite manufacturing process, which requires time, and slowing down the oxidation rate leads to particle growth. In the method (d), which cannot overcome the problem of particle miniaturization required as a characteristic of high-density recording materials, although seed crystals are used, the reaction conditions, especially the temperature conditions, are not strictly controlled. If not managed, there is a danger that magnetite will be generated more than goethite. Furthermore, due to the long reaction time of these known techniques, the resulting goethite particles grow large;
The specific surface area (hereinafter referred to as SA) determined by the BET method is 4On (
/g or less, making it difficult to obtain magnetic materials for high-density recording.
Techniques for efficiently manufacturing magnetic materials for high-density recording of 00rrf/H, for example, Japanese Patent Application Laid-Open No. 57-209834,
JP-A-58-32028, JP-A-58-140327
.. The technology was disclosed in Japanese Patent Application Laid-open No. 59-18119.

しかしながら、磁性材料にたいする性能の要求の進展は
現実の技術の進歩以上に早く、さらなる高密度記録用の
材料が要求されている。たとえば、高品位テレビ用ビデ
オテープに用いるものは比表面積が10On(/g以上
で磁性材料粒子の長辺/短辺のアスペクト比が10以下
、例えば7程度のものが要求されている0本発明は、本
出願人が先に出願した技術をさらに劇的に改良したもの
であり、100n(/g以上の比表面積を有する高密度
記録用の磁性材料を安定して製造することを可能にする
技術である。すなわち、ゲーサイトの微細化ならびに粒
度分布の均一化を行うためには、栄、速醸化を行えば良
い、しかして、酸化速度を大きくしなければならないこ
とは、特開昭59−181190に開示したが、これは
、100r+(/g未満の比表面積を有するゲーサイト
を得る技術についてのみ開示されている0本発明の目的
とする100ポ/g以上の比表面積を有する微細なゲー
サイトを得るためには、従来技術で用いられている撹拌
槽型反応器や気泡塔型反応器では安定して実現すること
が困難なほど速い酸化反応速度が要求されるものであっ
た。
However, performance requirements for magnetic materials are progressing faster than actual technology progress, and materials for even higher density recording are required. For example, those used in high-definition television video tapes are required to have a specific surface area of 10 On/g or more and an aspect ratio of long side/short side of magnetic material particles of 10 or less, for example, about 7. is a further dramatic improvement on the technology previously filed by the applicant, and makes it possible to stably produce a magnetic material for high-density recording having a specific surface area of 100n(/g or more). In other words, in order to make goethite finer and have a more uniform particle size distribution, it is sufficient to perform Sakae and Sokubrewing, but the need to increase the oxidation rate was disclosed in Japanese Patent Application Laid-open No. 59-181190, which discloses only the technique for obtaining goethite having a specific surface area of less than 100r+(/g). In order to obtain goethite, a fast oxidation reaction rate is required, which is difficult to achieve stably using the stirred tank reactor or bubble column reactor used in conventional technology. .

「発明の基本的着想」 本発明は以上の要請に鑑みなされたもので、高速酸化を
安定して実現するためには酸化性ガスと被酸化物との接
触を一層良好にすることで達成できることを見出した。
"Basic idea of the invention" The present invention was made in view of the above requirements, and it is possible to achieve stable high-speed oxidation by improving the contact between the oxidizing gas and the object to be oxidized. I found out.

そしてさらに具体的には、特定の反応装置を使用して酸
化性ガスと被酸化物の接触を良好にする一方で、酸化反
応初期の反応率を大にし高速酸化することにより、比表
面積100n(/g以上の微細ゲーサイトが安定して得
られることを見出したところに本発明の基本的着想があ
る。
More specifically, by using a specific reaction device to improve the contact between the oxidizing gas and the oxidized material, and by increasing the reaction rate at the initial stage of the oxidation reaction and achieving high-speed oxidation, the specific surface area is 100n ( The basic idea of the present invention lies in the discovery that fine goethite with a particle size of 1.2 g or more can be stably obtained.

「発明の詳細な開示」 すなわち、本発明は気体と液体の接触状態を劇的に良好
にすべく改善された微細ゲーサイトの製造に適した反応
装置および、当該装置を用いる微細ゲーサイトの製造方
法である。
``Detailed Disclosure of the Invention'' That is, the present invention provides a reaction apparatus suitable for producing fine goethite that has been improved to dramatically improve the contact state between gas and liquid, and production of fine goethite using the apparatus. It's a method.

本発明は、撹拌槽型反応器の内部に少なくとも2段以上
の撹拌羽根を有する撹拌手段、液流制御筒および、気体
導入手段が設備された反応装置であり、当該装置を用い
て行うゲーサイトの製造方法である。
The present invention is a reaction device equipped with a stirring means having at least two or more stages of stirring blades, a liquid flow control cylinder, and a gas introduction means inside a stirred tank reactor, and a reaction device in which goethite is produced using the device. This is a manufacturing method.

好ましいゲーサイトの製造方法として、撹拌槽型反応器
の内部に少なくとも2段以上の撹拌羽根を有する撹拌手
段、液流制御筒および、気体導入手段が設備された反応
装置に、第1鉄塩水溶液とアルカリ水溶液とを供給して
、撹拌しつつ、気体導入手段から酸化性ガスを供給して
酸化することを特徴とするゲーサイトの製造法である。
As a preferred method for producing goethite, a ferrous salt aqueous solution is added to a reactor equipped with a stirring means having at least two or more stages of stirring blades, a liquid flow control tube, and a gas introduction means inside a stirred tank reactor. This method for producing goethite is characterized by supplying and stirring an aqueous alkaline solution and oxidizing it by supplying an oxidizing gas from a gas introducing means.

本発明の特徴は、気体と液体の接触状態がきわめて改善
された反応装置であり、この反応装置を用いることによ
り、微細かつ粒度分布の均一性にすぐれたゲーサイトを
製造することである。
A feature of the present invention is that it is a reaction apparatus in which the contact state between gas and liquid is extremely improved, and that by using this reaction apparatus, goethite that is fine and has an excellent uniformity of particle size distribution can be produced.

以下、図面を参照しつつ本発明を説明する。The present invention will be described below with reference to the drawings.

第1図は本発明の反応装置の一例である0図中100は
その撹拌槽型反応器の例である。1は撹拌機であり、撹
拌羽II2および撹拌羽根3が2段に取り付けられてい
る。好ましくは、撹拌羽根2はプロペラ型であり、撹拌
羽根3はタービン型である。プロペラ型の羽根は好まし
くは液流制御筒4の内外で反応液の循環を効率良く行う
ためのものである。第1図の場合には、反応液は液流制
御筒4の中を上昇し、その外側を下向して流れ、全体と
して、反応器内部を上下に循環する。タービン型の撹拌
羽根3は気体導入手段より供給される気体を反応液に効
率よく分散溶解せしめるために、設けられるものである
。この撹拌羽根を取り囲んで液流制御筒4が撹拌機シャ
フトならびに反応器と同心状に設備されている。液流制
御筒はドラフトチューブとして作用し、反応液の上昇を
効果的に補助するものである。当該液流制御筒を用いる
ことにより、気液の分散にも効果があり、撹拌機の動力
を低く抑えることができることも本発明の特徴の一つで
ある。たとえば、後記実施例に示すように5イの内容積
を有する反応器の場合には、酸化速度を十分に高めるた
めに必要な撹拌機の回転数112〜450 PPMを得
るためには、IIK−程度の動力の電動機で十分である
。この液流制御筒の内側には、好ましくは、反応液の撹
拌状態をいっそう良好にするために邪魔板が設備される
。液流制?11簡の下部には、パイプ状の気体導入手段
5が設けられている。好ましい気体導入手段としては、
直径2〜5IIII11の孔が5〜10mの等間隔でパ
イプの円周上において、下向きにあけられているもので
ある(以下リングスパージャ−と称する)。
FIG. 1 shows an example of a reactor according to the present invention. Reference numeral 100 in FIG. 1 shows an example of a stirred tank type reactor. 1 is a stirrer, and stirring blades II 2 and stirring blades 3 are attached in two stages. Preferably, the stirring blades 2 are of the propeller type, and the stirring blades 3 are of the turbine type. The propeller-type blades are preferably used to efficiently circulate the reaction liquid inside and outside the liquid flow control cylinder 4. In the case of FIG. 1, the reaction liquid rises in the liquid flow control cylinder 4, flows downward on the outside thereof, and circulates up and down inside the reactor as a whole. The turbine-type stirring blade 3 is provided in order to efficiently disperse and dissolve the gas supplied from the gas introducing means into the reaction liquid. A liquid flow control tube 4 is provided surrounding the stirring blade and concentrically with the stirrer shaft and the reactor. The liquid flow control cylinder acts as a draft tube and effectively assists the rise of the reaction liquid. One of the features of the present invention is that the use of the liquid flow control cylinder is effective in dispersing gas and liquid, and that the power of the stirrer can be kept low. For example, in the case of a reactor having an internal volume of IIK-II as shown in the Examples below, in order to obtain the stirrer rotation speed of 112 to 450 PPM necessary to sufficiently increase the oxidation rate, An electric motor with moderate power is sufficient. Preferably, a baffle plate is installed inside the liquid flow control cylinder in order to improve the stirring state of the reaction liquid. Liquid flow system? A pipe-shaped gas introduction means 5 is provided at the bottom of the 11-piece. Preferred gas introduction means include:
Holes with a diameter of 2 to 5III11 are drilled downward at equal intervals of 5 to 10 m on the circumference of the pipe (hereinafter referred to as a ring sparger).

このリングスパージャ−は空気や酸素等の酸化性の気体
ならびに窒素や不活性ガス等の非酸化性の気体のいずれ
をも反応液中に供給できるように、それぞれの気体の供
給源と接続されていることが好ましい、酸化性の気体な
らびに非酸化性の気体を瞬時に切り換えて、導入するこ
とが可能であるから、酸化反応の初期から終了にいたる
までの酸化速度の時間変化を精緻に制御することができ
ることも本発明の特徴の一つである。また、反応器上部
には第1鉄塩や水酸化アルカリ等の原料供給口、排気孔
(図示されず)が設けられており、反応器底部には反応
液の取り出し口が設備されている0反応器の温度制御手
段として、好ましくは反応器外筒に水冷ジャケットが取
り付けられており、なお図示されていないが、加熱用の
水蒸気吹き込み口も設備されていることが好ましい。水
蒸気は反応液中に直接導入されて、急速加熱を可能にす
るものであり、加熱時間を短縮できるように、製造装置
としての実用性を考慮されたものである、また、加圧反
応を可能にするため、数kg / ctA Gの加圧状
態を保持できるように耐圧を考慮して本発明の反応器を
設計することは好ましいことである。というのは、加圧
状態で酸化反応を行うことは特開昭59−18119で
開示したように■酸化性の気体(以下酸化性ガスと称す
る)のフラッディング状態を回避できるので、酸化性ガ
スを効率よく使用できて、酸化速度を増加できる、■比
較的低い水酸化アルカリの使用量でよい、■反応温度範
囲を広くできる等の便利さが本発明においても利用でき
るからである。
This ring sparger is connected to the respective gas supply sources so that both oxidizing gases such as air and oxygen as well as non-oxidizing gases such as nitrogen and inert gases can be supplied to the reaction liquid. Since it is possible to instantly switch and introduce oxidizing gas and non-oxidizing gas, which is preferably present, it is possible to precisely control the temporal change in oxidation rate from the beginning of the oxidation reaction to the end. It is also one of the features of the present invention that it can be done. In addition, the upper part of the reactor is provided with a feed port for raw materials such as ferrous salt and alkali hydroxide, and an exhaust hole (not shown), and the bottom of the reactor is provided with an outlet for taking out the reaction liquid. As a temperature control means for the reactor, a water cooling jacket is preferably attached to the reactor outer cylinder, and although not shown, it is also preferable that a steam inlet for heating is also provided. Water vapor is directly introduced into the reaction liquid to enable rapid heating, and it is designed to be practical as a manufacturing device so as to shorten heating time.It also enables pressurized reactions. Therefore, it is preferable to design the reactor of the present invention in consideration of pressure resistance so as to be able to maintain a pressurized state of several kg/ctAG. This is because performing the oxidation reaction under pressure can avoid flooding of oxidizing gas (hereinafter referred to as oxidizing gas), as disclosed in JP-A-59-18119. This is because the conveniences such as being able to use it efficiently and increasing the oxidation rate, (1) requiring a relatively low amount of alkali hydroxide, and (2) widening the reaction temperature range can also be utilized in the present invention.

本発明者らは、100rrf/g以上の比表面積で粒度
分布の揃ったゲーサイトを得るためには、酸化率が30
%以下の酸化反応の初期状態において、反応率の時間変
化を少なくとも3%/分以上、好ましくは5%/分以上
の高速酸化を行うように制御することである。この変化
率はゲーサイトの比表面積により決定される。なお、本
発明は、100rd/g未満の比表面積のゲーサイトを
得ることを目的にしてはいないが、本出願人の先の発明
にあるところの10.0イ/g未満の比表面積のゲーサ
イトを得ることをなんら妨げるものではない。酸化反応
の反応率の時間変化を低く制御することにより、効果的
に粒度分布の均一な100rd/g未満の比表面積のゲ
ーサイトを得ることができることも本発明の特徴の一つ
である。
The present inventors have found that in order to obtain goethite with a specific surface area of 100rrf/g or more and a uniform particle size distribution, the oxidation rate is 30%.
% or less, the time change in reaction rate is controlled to perform high-speed oxidation of at least 3%/min or more, preferably 5%/min or more. This rate of change is determined by the specific surface area of goethite. Note that the present invention does not aim at obtaining goethite with a specific surface area of less than 100rd/g, but it is intended to obtain goethite with a specific surface area of less than 10.0rd/g as described in the applicant's previous invention. This does not prevent you from obtaining the site in any way. Another feature of the present invention is that goethite with a uniform particle size distribution and a specific surface area of less than 100 rd/g can be effectively obtained by controlling the time change in the reaction rate of the oxidation reaction to be low.

本発明において、第1鉄塩とは、水溶性の鉄塩であり硫
酸塩、塩酸塩、硝酸塩等が有効であり、単独または、二
種類以上を併用して使用される。
In the present invention, the ferrous salt is a water-soluble iron salt, and sulfates, hydrochlorides, nitrates, etc. are effective, and they are used alone or in combination of two or more.

これらは工業的に人手可能な製品の品質で十分であり、
本発明の効果を発揮できる。さらに、これらを水に溶解
させた第1銖塩水溶液を限外ろ過半段でろ過し、微細に
不溶解物質を除去することは、本発明の原料前処理方法
として有効であり、微細なゲーサイトの安定製造を保証
するものである本発明は鉄単独の反応において効果を有
することは当然であるが、鉄以外の成分の共存をなんら
妨げるものではない、たとえば、ニッケル、亜鉛、マン
ガン、胴、クロムなどの共沈により得られる水酸化物を
酸化して、これらの金属成分を含有するゲーサイトを製
造する場合においても有効である。鉄以外の成分の共存
は得られるゲーサイトの形状や比表面積等に二次的に影
響を与えるものであり、本発明の効果を妨げるものでは
なく、むしろ、その効果を促進することもある。
The quality of these products is sufficient for industrial production.
The effects of the present invention can be exhibited. Furthermore, it is effective as a raw material pretreatment method of the present invention to filter the first fertile salt aqueous solution in which these are dissolved in water through a half-stage ultrafiltration to remove finely insoluble substances. It goes without saying that the present invention, which guarantees stable production of iron, is effective in the reaction of iron alone, but it does not in any way prevent the coexistence of components other than iron, such as nickel, zinc, manganese, It is also effective in producing goethite containing these metal components by oxidizing hydroxides obtained by co-precipitation of chromium and the like. The coexistence of components other than iron has a secondary effect on the shape, specific surface area, etc. of the goethite obtained, and does not impede the effects of the present invention, but may in fact promote the effects.

本発明に使用する水酸化アルカリは、第1鉄塩と反応し
て水酸化物を生成するものであればよく、たとえば、水
酸化物カリウムや水酸化物ナトリウム等の水溶液を有効
に用いることができる。
The alkali hydroxide used in the present invention may be any one as long as it reacts with ferrous salt to produce hydroxide. For example, aqueous solutions of potassium hydroxide, sodium hydroxide, etc. can be effectively used. can.

本発明において、酸化性ガスは酸素を含むガスであり、
具体的には、酸素や空気、あるいはこれらを窒素や水蒸
気等で希釈した混合ガスも有効に用いることができる。
In the present invention, the oxidizing gas is a gas containing oxygen,
Specifically, oxygen, air, or a mixed gas obtained by diluting these with nitrogen, water vapor, or the like can also be effectively used.

ゲーサイトの製造条件については、本発明において、水
酸化物の酸化反応における酸化率の時間変化を制御する
ことを除いては、とくに限定されるものはない0反応温
度ならびに反応圧力は二次的にゲーサイトの粒子形態を
変更するものであるが、本発明はこれらの製造条件の制
御を精緻に実施できるものである。たとえば、反応温度
を低下させたり、反応圧力を増加せしめるとゲーサイト
の比表面積は大きくなる0反応温度は20〜60°C1
好ましくは30〜50℃である0反応圧力は大気圧〜5
kg/cjGで十分である。
In the present invention, there are no particular limitations on the production conditions for goethite, except for controlling the change in oxidation rate over time in the oxidation reaction of hydroxide.The reaction temperature and reaction pressure are secondary. However, the present invention allows precise control of these manufacturing conditions. For example, if the reaction temperature is lowered or the reaction pressure is increased, the specific surface area of goethite will increase.The reaction temperature is 20-60°C.
The reaction pressure is preferably between 30 and 50°C and is between atmospheric pressure and 50°C.
kg/cjG is sufficient.

「実施例1」 撹拌槽型反応器の内部に少なくとも2段以上の撹拌羽根
を有する撹拌手段、液流制御筒および、気体導入手段が
設備された反応装置(以下反応装置と略称する)を用い
てゲーサイトの製造を実施した。用いた内容積5rrr
の反応装置の断面図を模式的に第1図に示した0反応装
置内部をガススパージャ−5から窒素を供給することに
より窒素で置換した。ついで、水酸化ナトリウム水溶液
(濃度14.3 mat/L) 690 Lを水酸化ア
ルカリ供給ロアから加えた。硫酸第1鉄水溶液(硝酸ニ
ッケルならびに硫酸亜鉛を硫酸第1鉄100モルに対し
て、それぞれ3モルおよび1モルを含有、濃度0.55
4mol/L)を361OLを第1鉄塩の供給口6から
加え、撹拌開始と同時にガススパージャ−5から空気を
導入した。初期30%酸化までは5%/分の酸化率の時
間変化を維持して、その後、空気導入量を低下せしめて
、3%/分で酸化反応を進行せしめて水酸化物をゲーサ
イトに転化せしめた。酸化反応の進行中は反応液の温度
を40°Cに保持した0反応終了時、懸濁液は黄かっ色
から鮮やかな黄色を呈し、酸化反応が終了したことが確
認された。大気中で1時間撹拌の後、反応液の取り出し
口8から反応液を抜きだし、ろ過、水洗後120″Cで
乾燥した。このゲーサイトは比表面積(BET法による
、以下、同じ)102 rrf/gの微細粒子であり、
長軸長さの変動の標準偏差/長軸の長さが0.38であ
るきわめて均一性に冨む粒度分布を有していた。
"Example 1" A reaction device (hereinafter referred to as the reaction device) was used, which was equipped with a stirring means having at least two or more stages of stirring blades, a liquid flow control tube, and a gas introduction means inside a stirred tank reactor. We carried out the production of game site. Internal volume used: 5rrr
A sectional view of the reactor is schematically shown in FIG. 1. The inside of the reactor was purged with nitrogen by supplying nitrogen from a gas sparger 5. Then, 690 L of an aqueous sodium hydroxide solution (concentration 14.3 mat/L) was added from the alkali hydroxide supply lower. Ferrous sulfate aqueous solution (contains 3 mol and 1 mol of nickel nitrate and zinc sulfate, respectively, per 100 mol of ferrous sulfate, concentration 0.55)
361OL of 4 mol/L) was added from the ferrous salt supply port 6, and air was introduced from the gas sparger 5 at the same time as stirring was started. The oxidation rate was maintained at a time change of 5%/min until the initial 30% oxidation, and then the amount of air introduced was reduced to allow the oxidation reaction to proceed at a rate of 3%/min to convert hydroxide to goethite. I forced it. The temperature of the reaction solution was maintained at 40° C. during the progress of the oxidation reaction. At the end of the reaction, the suspension changed from yellow-brown to bright yellow, confirming that the oxidation reaction was complete. After stirring in the atmosphere for 1 hour, the reaction solution was taken out from the reaction solution outlet 8, filtered, washed with water, and dried at 120"C. This goethite had a specific surface area (by BET method, the same hereinafter) of 102 rrf /g of fine particles,
It had a highly uniform particle size distribution in which the standard deviation of the variation in major axis length/the length of major axis was 0.38.

また、透過型電子顕微鏡で10万倍の倍率で粒子を観察
したが、粒子中には双晶や樹脂状具はほとんど観察され
なかった。
Furthermore, when the particles were observed using a transmission electron microscope at a magnification of 100,000 times, almost no twins or resin-like particles were observed in the particles.

「実施例2」 実施例1において、硫酸亜鉛の添加を行わず、酸化率の
時間変化を初期から反応終了時末で5%/分として実施
した0反応温度は35°Cを維持した、これ以外の製造
条件は実施例1と同じにした。
"Example 2" In Example 1, zinc sulfate was not added and the oxidation rate was changed over time from the initial stage to the end of the reaction at 5%/min, and the reaction temperature was maintained at 35 °C. The other manufacturing conditions were the same as in Example 1.

このゲーサイトは比表面積106 rrf/Hの微細粒
子であり、長袖長さの変動の標準偏差/長軸の長さが0
.36であるきわめて均一性に冨む粒度分布を有してい
た。また、透過型電子顕微鏡で10万倍の倍率で粒子を
観察したが、粒子中には双晶や樹脂状具はほとんど観察
されなかった。
This goethite is a fine particle with a specific surface area of 106 rrf/H, and the standard deviation of variation in long sleeve length/long axis length is 0.
.. It had a very uniform particle size distribution of 36 mm. Furthermore, when the particles were observed using a transmission electron microscope at a magnification of 100,000 times, almost no twins or resin-like particles were observed in the particles.

「実施例3」 実施例1において、硫酸亜鉛ならびに硝酸ニッケルの添
加を行わず、酸化率の時間変化を初期から酸化率50%
まで10%/分とし、その後反応終了時までは5%/分
として実施した。10%/分の反応率の時間変化を行う
ために、酸化性ガスとして酸素を用いた0反応温度は3
0’Cを維持した。これ以外の製造条件は実施例1と同
じにした。このゲーサイトは比表面積101 rrr/
gの微細粒子であり、長袖長さの変動の標準偏差/長軸
の長さが0.39であるきわめて均一性に冨む粒度分布
を有していた。また、透過型電子顕微鏡でlO万倍の倍
率で粒子を観察したが、粒子中には双晶や樹脂状具はほ
とんど観察されなかった。
"Example 3" In Example 1, zinc sulfate and nickel nitrate were not added, and the oxidation rate was changed over time to 50% from the initial stage.
The rate was 10%/min until the end of the reaction, and then 5%/min until the end of the reaction. To perform a time change of reaction rate of 10%/min, the 0 reaction temperature with oxygen as the oxidizing gas is 3
0'C was maintained. The other manufacturing conditions were the same as in Example 1. This goethite has a specific surface area of 101 rrr/
g of fine particles, and had an extremely uniform particle size distribution in which the standard deviation of variation in long sleeve length/long axis length was 0.39. In addition, when the particles were observed using a transmission electron microscope at a magnification of 10,000 times, almost no twins or resinous particles were observed in the particles.

「発明の効果」 以上の実施例に明らかなように、本発明は、液流制御筒
付撹拌型反応器を用い、高速酸化反応を行うことにより
、高品位テレビジョン用の磁気記録材料としての性能を
満足する100 rd/g以上の微細かつ粒度分布の均
一性にすぐれたゲーサイトを製造できるすぐれた方法で
ある0本発明はまた、種々の微粒子の形態制御技術とし
ても有用な技術である。すなわち、金属酸化物系触媒、
高性能フェライト製品、印刷インク用顔料、磁性顔料、
製紙用填料、感光材料、電極材料等に用いられる機能性
粒子を製造する場合においても有用な技術である。
"Effects of the Invention" As is clear from the above examples, the present invention can be used as a magnetic recording material for high-quality television by performing a high-speed oxidation reaction using a stirred reactor equipped with a liquid flow control tube. This is an excellent method for producing goethite with fineness of 100 rd/g or more and excellent uniformity of particle size distribution, which satisfies performance requirements.The present invention is also a useful technology for controlling the morphology of various fine particles. . That is, metal oxide catalysts,
High-performance ferrite products, pigments for printing inks, magnetic pigments,
This technique is also useful in producing functional particles used in paper-making fillers, photosensitive materials, electrode materials, etc.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施の態様の例を示す説明図である0
図中100−・・−・・・−・撹拌槽型反応器、l・・
−・・−・・−撹拌機、2−・・・・・−・・・プロペ
ラ型の撹拌羽根、3−・−・・・・・・−・タービン型
の撹拌羽根、4   液流制御筒、訃−・−・・−・気
体導入手段(ガススパージャ−)、6   第1鉄塩の
供給口、7・・・・・・・・・−水酸化アルカリの供給
口、8   反応液の取り出し口を示す。 図面 第1図
FIG. 1 is an explanatory diagram showing an example of an embodiment of the present invention.
In the figure, 100-...-- Stirred tank reactor, l...
-・・・・・・Stirrer, 2−・・・・・Propeller type stirring blade, 3−・・・・・・Turbine type stirring blade, 4 Liquid flow control cylinder , gas introduction means (gas sparger), 6 ferrous salt supply port, 7 ...... - alkali hydroxide supply port, 8 removal of reaction liquid Show mouth. Drawing figure 1

Claims (2)

【特許請求の範囲】[Claims] (1)撹拌槽型反応器の内部に少なくとも2段以上の撹
拌羽根を有する撹拌手段、液流制御筒および、気体導入
手段が設備された反応装置。
(1) A reaction device equipped with a stirring means having at least two or more stages of stirring blades, a liquid flow control cylinder, and a gas introduction means inside a stirred tank reactor.
(2)撹拌槽型反応器の内部に少なくとも2段以上の撹
拌羽根を有する撹拌手段、液流制御筒および、気体導入
手段が設備された反応装置に、第1鉄塩水溶液とアルカ
リ水溶液とを供給して、撹拌しつつ、気体導入手段から
酸化性ガスを供給して酸化することを特徴とするゲーサ
イトの製造法。
(2) A ferrous salt aqueous solution and an alkali aqueous solution are placed in a reactor equipped with a stirring means having at least two or more stages of stirring blades, a liquid flow control tube, and a gas introducing means inside a stirred tank reactor. A method for producing goethite, which comprises supplying and stirring an oxidizing gas from a gas introduction means for oxidation.
JP13572589A 1989-05-31 1989-05-31 Reactor and production of goethite Pending JPH035326A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13572589A JPH035326A (en) 1989-05-31 1989-05-31 Reactor and production of goethite

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13572589A JPH035326A (en) 1989-05-31 1989-05-31 Reactor and production of goethite

Publications (1)

Publication Number Publication Date
JPH035326A true JPH035326A (en) 1991-01-11

Family

ID=15158424

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13572589A Pending JPH035326A (en) 1989-05-31 1989-05-31 Reactor and production of goethite

Country Status (1)

Country Link
JP (1) JPH035326A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6422736B1 (en) * 2000-06-21 2002-07-23 Eastman Kodak Company Scalable impeller apparatus for preparing silver halide grains
JP4691801B2 (en) * 2001-02-23 2011-06-01 富士電機リテイルシステムズ株式会社 Raw material input shooter device for cup type vending machine

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6422736B1 (en) * 2000-06-21 2002-07-23 Eastman Kodak Company Scalable impeller apparatus for preparing silver halide grains
JP4691801B2 (en) * 2001-02-23 2011-06-01 富士電機リテイルシステムズ株式会社 Raw material input shooter device for cup type vending machine

Similar Documents

Publication Publication Date Title
JPH0222011B2 (en)
KR101815779B1 (en) A Method Of Preparing An Active Material Precursor Whereby Particle Size And Particle Size Distribution Can Be Controlled
US20110251054A1 (en) Method for preparing iron oxides
US7910085B2 (en) Process for production of iron oxyhydroxide particles
CN113046555A (en) Iron removal device for nickel-cobalt-manganese-sulfuric acid solution and method for continuously removing iron ions in nickel-cobalt-manganese-sulfuric acid solution at low temperature
CN108807881A (en) A kind of body mutually mixes the preparation method of aluminium cobaltosic oxide
KR101818132B1 (en) Apparatus and method for manufacturing precursor
JPH035326A (en) Reactor and production of goethite
JP2023078253A (en) Method for precipitating carbonates or (oxy)hydroxides
KR20160083617A (en) Reactor, methods for preparing precursors of cathode active materials for lithium ion secondary batteries by using the same, precursors prepared by the same, cathode active materials
JPH0245570A (en) New iron oxide pigment and its preparation and use
JP2009173519A (en) Process for production of iron oxyhydroxide particles
CN113753969B (en) Preparation method of superfine particle size spherical cobalt carbonate particles
US4256723A (en) Process for preparing precipitated red iron oxides
US7939463B1 (en) Preparation of iron oxides
JPH035325A (en) Production of iron oxyhydroxide
GB2085860A (en) Methods of producing gamma ferric hydroxyoxide powder
CN214655164U (en) Iron removal device for nickel cobalt manganese sulfuric acid solution
JPH03228829A (en) Production of goethite
JPH03228828A (en) Production of goethite
KR100255929B1 (en) A method for preparing high pure trimanganese tetraoxide as a magnetic material
JP2829644B2 (en) Production method of α-iron oxide
JPH05170451A (en) Production for iron oxyhydroxide
JPS5951499B2 (en) Goethite manufacturing method
JPH028972B2 (en)