[go: up one dir, main page]

JPH0352530B2 - - Google Patents

Info

Publication number
JPH0352530B2
JPH0352530B2 JP58107793A JP10779383A JPH0352530B2 JP H0352530 B2 JPH0352530 B2 JP H0352530B2 JP 58107793 A JP58107793 A JP 58107793A JP 10779383 A JP10779383 A JP 10779383A JP H0352530 B2 JPH0352530 B2 JP H0352530B2
Authority
JP
Japan
Prior art keywords
weight
concentration
magnetic
flux density
magnetic flux
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58107793A
Other languages
Japanese (ja)
Other versions
JPS602651A (en
Inventor
Norio Juki
Hideki Isayama
Original Assignee
Nippon Mining Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Mining Co filed Critical Nippon Mining Co
Priority to JP58107793A priority Critical patent/JPS602651A/en
Publication of JPS602651A publication Critical patent/JPS602651A/en
Publication of JPH0352530B2 publication Critical patent/JPH0352530B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Soft Magnetic Materials (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は磁気特性が優れたFe−Ni−Si−Cr系
磁性合金に関するものである。 Fe−Ni系の磁性合金は大別してPCパーマロイ
とPBパーマロイに分けられるが、PCパーマロイ
は高い透磁率と低い保磁力を有するが、飽和磁束
密度が低く、高価であるという弱点があり、一方
PBパーマロイは飽和磁束密度は高いが、透磁率
はPCパーマロイにくらべて低いという弱点があ
る。したがつて、例えば高い透磁率と高い飽和磁
束密度が要求される部品に対しては既存の磁性合
金を適用することができない。このような高透磁
率および高飽和磁束密度を有する材料は、具体的
には磁気ヘツド等のシールド材、電磁力の鉄心等
その用途は広い。 そこで本発明者等は多くの実験により材料探索
を行つた結果、以下に示すFe−Ni−Si−Cr系の
合金が優れた磁気特性を有することを見い出し、
上記用途に対して好適な磁性合金であることを確
認した。 すなわち本発明は、Ni40〜60重量%、Si0.05〜
1.5重量%、Cr0.01〜1.5重量%、O0.01重量%以
下、N0.005重量%以下、残部Feおよび不可避的
不純物からなる磁性合金を要旨とするものであ
る。 本発明磁性合金は、従来から用いられている
PBパーマロイの有する高い飽和磁束密度を損ね
ることなく最大透磁率を高め、保磁力を低めたも
のである。その具体的な特徴は第1表に示す通り
である。
The present invention relates to a Fe-Ni-Si-Cr magnetic alloy with excellent magnetic properties. Fe-Ni magnetic alloys can be broadly divided into PC permalloy and PB permalloy. PC permalloy has high magnetic permeability and low coercive force, but has the disadvantages of low saturation magnetic flux density and high price.
PB permalloy has a high saturation magnetic flux density, but its magnetic permeability is lower than that of PC permalloy. Therefore, existing magnetic alloys cannot be applied to parts that require high magnetic permeability and high saturation magnetic flux density, for example. Materials having such high magnetic permeability and high saturation magnetic flux density have a wide range of uses, including shielding materials for magnetic heads and the like, and iron cores for electromagnetic force. As a result of conducting many experiments to search for materials, the present inventors discovered that the Fe-Ni-Si-Cr alloy shown below has excellent magnetic properties.
It was confirmed that this magnetic alloy is suitable for the above applications. That is, in the present invention, Ni40 to 60% by weight and Si 0.05 to
The gist of the magnetic alloy is 1.5% by weight, 0.01 to 1.5% by weight of Cr, 0.01% by weight or less of O, 0.005% by weight or less of N, and the remainder Fe and inevitable impurities. The magnetic alloy of the present invention has been used conventionally.
The maximum magnetic permeability is increased and the coercive force is lowered without impairing the high saturation magnetic flux density of PB permalloy. Its specific characteristics are shown in Table 1.

【表】 すなわち、本発明磁性合金は最大透磁率および
保磁力が従来のPBパーマロイよりも優れており、
飽和磁束密度もPBパーマロイ程度を実現してい
る。また、PCパーマロイにくらべてPBパーマロ
イ同様、安価に製造できる。 以上のように本発明磁性合金は高い透磁率、低
い保磁力および高い飽和磁束密度を有し、かつ安
価に得られるため各種用途に好適な合金である。 以下に本発明磁性合金の組成範囲の限定理由を
述べる。 Ni;PBパーマロイ程度の飽和磁束密度を確保
するために少くとも40重量%以上含有させる必要
がある。しかし、60重量%を越えて含有させる
と、飽和磁束密度が低下するほか、コスト高とな
り経済的に不利になるため40〜60重量%の範囲に
限定した。 Si;最大透磁率の向上に極めて効果的な元素で
あり、従来4%程度以上含有させることにより最
大透磁率を上昇させていたが、今回後で述べるよ
うにOを0.001重量%以下、かつNを0.005重量%
以下にすることにより、Siを0.05重量%以上含有
することで最大透磁率の上昇を実現できた。しか
し、Si含有量の増加は飽和磁束密度を低下させる
ので、PBパーマロイ程度の飽和磁束密度を維持
するために、上限を1.5%と定めた。 Cr;Siと同様に最大透磁率を向上させる元素
である。ただし、含有量が0.01重量%未満ではほ
とんど効果がなく、1.5重量%を超えると逆に最
大透磁率を低下させるので好ましくない。 O;添加元素すなわち、CrやSiと酸化物を作
り、この酸化物が最大透磁率を低下させる原因と
なつていた。またこの酸素は固溶していても磁気
特性を劣化させるので、含有量0.01重量%以下に
おさえた。これにより、Si、Crが酸化物となつ
て消耗することを防ぎ、上記Si、Cr量で最大透
磁率70000以上を実現することができた。 N;前記酸素と同様に窒素は添加元素すなわち
SiやCrと窒化物を作り、この窒化物が最大透磁
率を低下させる原因となつていた。またこの窒素
は固溶していても磁気特性を劣化させるので、含
有量を0.005重量%以下におさえた。これにより、
Si、Crが窒化物となつて消耗することを防ぎ、
上記Si、Cr量で最大透磁率70000以上を実現する
ことができた。 このほか、Crの含有は合金の耐食性の向上に
も有効である。 次に本発明磁性合金の特徴を実施例により詳細
に説明する。 実施例 1 第2表に示す成分組成の磁性合金を水素雰囲気
中1100℃で1時間焼鈍し、これを磁気特性測定に
供した。その結果を第3表に示す。
[Table] In other words, the magnetic alloy of the present invention has better maximum magnetic permeability and coercive force than conventional PB permalloy,
The saturation magnetic flux density is also comparable to PB permalloy. Also, compared to PC permalloy, it can be manufactured at a lower cost, similar to PB permalloy. As described above, the magnetic alloy of the present invention has high magnetic permeability, low coercive force, and high saturation magnetic flux density, and can be obtained at low cost, so it is an alloy suitable for various uses. The reason for limiting the composition range of the magnetic alloy of the present invention will be described below. Ni: Must be contained at least 40% by weight to ensure a saturation magnetic flux density comparable to that of PB permalloy. However, if the content exceeds 60% by weight, the saturation magnetic flux density will decrease and the cost will increase, resulting in an economic disadvantage, so the content is limited to a range of 40 to 60% by weight. Si: This is an extremely effective element for improving maximum magnetic permeability. Conventionally, the maximum permeability was increased by containing about 4% or more, but as will be described later, we have added O to 0.001% by weight or less and N 0.005% by weight
By doing the following, it was possible to increase the maximum magnetic permeability by containing 0.05% by weight or more of Si. However, since an increase in Si content lowers the saturation magnetic flux density, the upper limit was set at 1.5% in order to maintain a saturation magnetic flux density comparable to that of PB permalloy. Cr: Like Si, it is an element that improves maximum magnetic permeability. However, if the content is less than 0.01% by weight, it will have almost no effect, and if it exceeds 1.5% by weight, the maximum magnetic permeability will decrease, which is not preferable. O: Forms an oxide with additive elements such as Cr and Si, and this oxide causes a decrease in maximum magnetic permeability. Furthermore, even if this oxygen is in solid solution, it deteriorates the magnetic properties, so the content was kept to 0.01% by weight or less. This prevents Si and Cr from becoming oxides and being consumed, making it possible to achieve a maximum magnetic permeability of 70,000 or more with the above amounts of Si and Cr. N; Similar to the oxygen mentioned above, nitrogen is an additive element, i.e.
Nitride is formed with Si and Cr, and this nitride is the cause of lowering the maximum magnetic permeability. Further, even if this nitrogen is in solid solution, it deteriorates the magnetic properties, so the content was kept to 0.005% by weight or less. This results in
Prevents Si and Cr from becoming nitrides and being consumed.
We were able to achieve a maximum magnetic permeability of 70,000 or more with the above amounts of Si and Cr. In addition, the inclusion of Cr is also effective in improving the corrosion resistance of the alloy. Next, the characteristics of the magnetic alloy of the present invention will be explained in detail using examples. Example 1 A magnetic alloy having the composition shown in Table 2 was annealed at 1100° C. for 1 hour in a hydrogen atmosphere, and then subjected to measurement of magnetic properties. The results are shown in Table 3.

【表】【table】

【表】【table】

【表】 第3表から明らかなように、Si含有量が0.05重
量%未満である供試材No.1およびNo.2においては
最大透磁率μmaxが31900、21100と極端に低くま
た保磁力Hc(Oe)も0.129、0.159と大きくなつて
好ましくない。 またCr含有量が1.5重量%を超える供試材No.10
においては、飽和磁束密度B10(G)が低く適し
ない。 供試材No.13に示すようにOおよびNの含有量が
本発明の範囲を超えて多いと最大透磁率が低す
ぎ、また保磁力が大きくなつて好ましくない。 第1図および第2図は供試材1〜7におけるSi
濃度に依存する最大透磁率の変化を示したもので
ある。第2図より最大透磁率はSi濃度0.05重量%
以上で著しく高い値をとることがわかる。第3図
は同様にSi濃度に依存する保磁力の変化を示した
ものである。この図により保磁力はSi濃度0.05重
量%以上で著しく低い値をとることがわかる。第
4図は同様にSi濃度に依存する飽和磁束密度の変
化を示したものである。この図より飽和磁束密度
はSi濃度の増加につれ直線的に減少していること
がわかる。第5図は供試材7〜10におけるCr
濃度に依存する最大透磁率の変化を示したもので
ある。この図よりCr濃度0.8重量%付近で極大値
をもつことがわかる。 第6図は同様にCr濃度に依存する保磁力の変
化を示したものである。この図よりCr濃度1重
量%付近まではCr濃度の増加にしたがい保磁力
が低下するが、それ以上では再び増大することが
わかる。 第7図は同様にCr濃度に依存する飽和磁束密
度の変化を示したものである。この図より飽和磁
束密度はCr濃度の増加にしたがい直線的に減少
していることがわかる。 以上の実施例にみられるごとく、本発明磁性合
金は最大透磁率70000以上、保磁力0.10Oe以下、
飽和磁束密度13000G以上の磁気特性が得られる
ため、高い透磁率と高い飽和磁束密度が要求され
る部品等に好適な磁性合金である。
[Table] As is clear from Table 3, in sample materials No. 1 and No. 2 with a Si content of less than 0.05% by weight, the maximum magnetic permeability μmax is extremely low at 31900 and 21100, and the coercive force Hc (Oe) also increases to 0.129 and 0.159, which is not desirable. Also, test material No. 10 with Cr content exceeding 1.5% by weight
In this case, the saturation magnetic flux density B 10 (G) is low and it is not suitable. As shown in sample material No. 13, if the content of O and N exceeds the range of the present invention, the maximum magnetic permeability will be too low and the coercive force will become large, which is not preferable. Figures 1 and 2 show Si in specimens 1 to 7.
This figure shows the change in maximum magnetic permeability depending on concentration. From Figure 2, the maximum magnetic permeability is Si concentration 0.05% by weight.
It can be seen from the above that the values are extremely high. FIG. 3 similarly shows the change in coercive force depending on the Si concentration. This figure shows that the coercive force takes a significantly low value when the Si concentration is 0.05% by weight or more. FIG. 4 similarly shows the change in saturation magnetic flux density depending on the Si concentration. This figure shows that the saturation magnetic flux density decreases linearly as the Si concentration increases. Figure 5 shows Cr in test materials 7 to 10.
This figure shows the change in maximum magnetic permeability depending on concentration. From this figure, it can be seen that the Cr concentration has a maximum value around 0.8% by weight. FIG. 6 similarly shows the change in coercive force depending on the Cr concentration. It can be seen from this figure that the coercive force decreases as the Cr concentration increases up to a Cr concentration of around 1% by weight, but increases again above that point. FIG. 7 similarly shows the change in saturation magnetic flux density depending on the Cr concentration. This figure shows that the saturation magnetic flux density decreases linearly as the Cr concentration increases. As seen in the above examples, the magnetic alloy of the present invention has a maximum magnetic permeability of 70,000 or more, a coercive force of 0.10 Oe or less,
Since it has magnetic properties with a saturation magnetic flux density of 13,000 G or more, it is a magnetic alloy suitable for parts that require high magnetic permeability and high saturation magnetic flux density.

【図面の簡単な説明】[Brief explanation of drawings]

第1図および第2図はSi濃度に依存する最大透
磁率の変化を示すグラフ、第3図はSi濃度に依存
する保磁力の変化を示すグラフ、第4図はSi濃度
に依存する飽和磁束密度の変化を示すグラフ、第
5図はCr濃度に依存する最大透磁率の変化を示
すグラフ、第6図はCr濃度に依存する保磁力の
変化を示すグラフ、第7図はCr濃度に依存する
飽和磁束密度の変化を示すグラフである。
Figures 1 and 2 are graphs showing changes in maximum magnetic permeability depending on Si concentration, Figure 3 is a graph showing changes in coercive force depending on Si concentration, and Figure 4 is a graph showing saturation magnetic flux depending on Si concentration. Graph showing changes in density; Figure 5 is a graph showing changes in maximum permeability depending on Cr concentration; Figure 6 is a graph showing changes in coercive force depending on Cr concentration; Figure 7 is a graph showing changes in coercive force depending on Cr concentration. 3 is a graph showing changes in saturation magnetic flux density.

Claims (1)

【特許請求の範囲】[Claims] 1 Ni40〜60重量%、Si0.05〜1.5重量%、
Cr0.01〜1.5重量%、O0.01重量%以下、N0.005重
量%以下、残部Feおよび不可避的不純物からな
る磁性合金。
1 Ni40-60% by weight, Si0.05-1.5% by weight,
A magnetic alloy consisting of 0.01 to 1.5% by weight of Cr, 0.01% by weight or less of O, 0.005% by weight or less of N, and the balance Fe and unavoidable impurities.
JP58107793A 1983-06-17 1983-06-17 Magnetic alloy Granted JPS602651A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58107793A JPS602651A (en) 1983-06-17 1983-06-17 Magnetic alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58107793A JPS602651A (en) 1983-06-17 1983-06-17 Magnetic alloy

Publications (2)

Publication Number Publication Date
JPS602651A JPS602651A (en) 1985-01-08
JPH0352530B2 true JPH0352530B2 (en) 1991-08-12

Family

ID=14468167

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58107793A Granted JPS602651A (en) 1983-06-17 1983-06-17 Magnetic alloy

Country Status (1)

Country Link
JP (1) JPS602651A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0250931A (en) * 1988-05-13 1990-02-20 Nkk Corp Manufacture of ferromagnetic ni-fe alloy and slab of the same alloy having excellent surface properties
JP4240823B2 (en) 2000-09-29 2009-03-18 日本冶金工業株式会社 Method for producing Fe-Ni permalloy alloy
JP5312139B2 (en) * 2009-03-27 2013-10-09 株式会社Neomaxマテリアル High-strength temperature-sensitive magnetic alloy and heating member for induction heating
GB2484568B (en) * 2010-09-10 2014-01-01 Vacuumschmelze Gmbh & Co Kg Electric motor and process for manufacturing a rotor or a stator of an electric motor
CN116162868B (en) * 2023-01-17 2024-06-14 北京北冶功能材料有限公司 Medium nickel soft magnetic alloy and preparation method thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50161696A (en) * 1974-06-20 1975-12-27
JPS58123848A (en) * 1982-01-20 1983-07-23 Res Inst Electric Magnetic Alloys Wear resistant high permeability alloy for magnetic recording and reproducing head, its manufacture and magnetic recording and reproducing head

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50161696A (en) * 1974-06-20 1975-12-27
JPS58123848A (en) * 1982-01-20 1983-07-23 Res Inst Electric Magnetic Alloys Wear resistant high permeability alloy for magnetic recording and reproducing head, its manufacture and magnetic recording and reproducing head

Also Published As

Publication number Publication date
JPS602651A (en) 1985-01-08

Similar Documents

Publication Publication Date Title
US5158624A (en) Soft-magnetic nickel-iron-chromium alloy
JPH0352530B2 (en)
KR910009974B1 (en) High saturated magnetic flux density alloy
US3837844A (en) Wear resisting magnetic material having high permeability
US1568422A (en) Self-induction coil
JPS597780B2 (en) soft magnetic material
JPH0138862B2 (en)
US4608228A (en) Ni-Fe magnetic head including 1.5-2% Ta
JPH01252756A (en) Ni-fe-cr soft magnetic alloy
JPS631642B2 (en)
JPS5919986B2 (en) Corrosion resistant magnetic alloy
JPS5813617B2 (en) Wear resistant high permeability alloy
JPS6151023B2 (en)
JPS5850006B2 (en) Weather-resistant sintered soft magnetic material
JPS60128235A (en) Magnetic alloy having high magnetic permeability
JPS62222B2 (en)
JPS5927373B2 (en) Fe↓-Co magnetic material
JPS58204155A (en) Corrosion-resistant alloy with high saturation magnetic flux density and high magnetic permeability
JPS6244683B2 (en)
JPS6018133B2 (en) Magnetic alloy for magnetic head shield case
JPS6150133B2 (en)
JPS6154102B2 (en)
JPS63213221A (en) Member for electric contact
JPS61205000A (en) Magnetic shield part
JPS6144932B2 (en)