[go: up one dir, main page]

JPH0351761A - Automatic analyzer and photometric data processing - Google Patents

Automatic analyzer and photometric data processing

Info

Publication number
JPH0351761A
JPH0351761A JP18465489A JP18465489A JPH0351761A JP H0351761 A JPH0351761 A JP H0351761A JP 18465489 A JP18465489 A JP 18465489A JP 18465489 A JP18465489 A JP 18465489A JP H0351761 A JPH0351761 A JP H0351761A
Authority
JP
Japan
Prior art keywords
reaction
reaction container
data
light
automatic analyzer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18465489A
Other languages
Japanese (ja)
Inventor
Fumihisa Hamazaki
浜崎 文寿
Hiroshi Hashimoto
橋本 汎
Hiroshi Umetsu
梅津 広
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP18465489A priority Critical patent/JPH0351761A/en
Publication of JPH0351761A publication Critical patent/JPH0351761A/en
Pending legal-status Critical Current

Links

Landscapes

  • Automatic Analysis And Handling Materials Therefor (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

PURPOSE:To determine the positions of measurements so as to match the optical characteristics of containers and to make it possible to perform highly accurate stationary measurement by stopping a plurality of the reaction containers at a plurality of the positions within one pitch from the specified position of the reaction container, and measuring the light. CONSTITUTION:A plurality of reaction containers wherein samples are contained are arranged in a reaction disk 1. The disk is turned with a pulse motor 10 of a driving mechanism 3. Luminous flux 9 is emitted. The light is measured with a photometer 7. At this time, the stopping position of the pulse motor 10 is set at the optically characteristic part of the reaction container 2, e.g. at the central part of the cylindrical container, and the measurement is performed. Then, a plurality of constant pulses are sent to a region within one pitch around the stopping position. The measurement is performed at each stopping position. The data are analyzed, and the objective position is determined. Thus the light is measured. Since the measuring position is determined based on the optical characteristics of the reaction container 2, the light can be measured highly accurately at high reproducibility.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、自動分析装置の測光方法に係り、特に測光位
置ばらつきの補正方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a photometric method for an automatic analyzer, and particularly to a method for correcting variations in photometric positions.

〔従来の技術〕[Conventional technology]

従来の自動分析装置は、反応容器停止位置による測光の
ばらつきを防ぐため、反応容器を動がしながら測光して
いる。
Conventional automatic analyzers measure light while moving the reaction vessel in order to prevent variations in photometry due to the stop position of the reaction vessel.

また、特開昭63−12962号にみられるように、表
面に試薬のついたビーズの測光時停止位置のばらつきが
、測光に与える影響を小さくするため、ビーズを磁場に
より振動させながら測光する例もある。
In addition, as seen in JP-A-63-12962, an example is shown in which beads with reagents attached to their surfaces are vibrated by a magnetic field while photometry is performed in order to reduce the influence of variations in the stopping position during photometry on the photometry. There is also.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上記従来技術は、反応容器やビーズを動がしながら測光
するので、反応容器やビーズの広い範囲を平均化するた
め、反応容器やビーズの製造上のばらつきを取り込みや
すく、高精度域での再現性が出にくいという問題があっ
た。
The above conventional technology measures light while moving the reaction vessels and beads, so it averages over a wide range of reaction vessels and beads, which makes it easy to incorporate manufacturing variations in reaction vessels and beads, making it possible to reproduce in a high precision range. There was a problem that it was difficult to express sexuality.

本発明の目的は、検知板を光検知することにより停止位
置を決定する際に発生する±1パルスの停止誤差を除外
し、静止して測光し、高再現性を実現することにある。
An object of the present invention is to eliminate a stop error of ±1 pulse that occurs when determining a stop position by optically detecting a detection plate, perform photometry while standing still, and achieve high reproducibility.

〔課題を解決するための手段〕[Means to solve the problem]

上記目的は、まず、反応容器の光学的に特徴のある部分
の付近にパルスモータ停止位置を設定し、光検知等によ
り反応容器を移動し、停止したら測光する6次に、この
停止位置のまわりの複数箇所へ定パルス送りし、各停止
位置で測光する。このようにして、光学的に特徴のある
部分のまbりの複数個の測光データが得られたら、これ
らのデータを解析して、目標位置を決定し、必要があれ
ば目標位置へ定パルス送りして、測光を行なう。
The above purpose is to first set the pulse motor stop position near an optically distinctive part of the reaction vessel, move the reaction vessel by light detection, etc., and measure the light when it stops. Send constant pulses to multiple locations, and measure light at each stop position. In this way, once multiple pieces of photometric data are obtained from areas with optical characteristics, these data are analyzed to determine the target position, and if necessary, a constant pulse is applied to the target position. Send it and perform photometry.

なお、この目標位置は、上記複数個のデータの測光位置
に含まれている必要はない。
Note that this target position does not need to be included in the photometric positions of the plurality of data.

ここに反応容器の光学的に特徴ある部分とは、サンプル
を反応容器中に入れて測光することにより、位置の確認
ができるような部分である。
The optically characteristic portion of the reaction vessel is a portion whose position can be confirmed by placing a sample into the reaction vessel and photometrically measuring the sample.

例えば円筒容器なら、反応容器中心部がこれに当たり、
ここで吸光度または蛍光強度が極大となる。
For example, in the case of a cylindrical container, this would be the center of the reaction container.
At this point, the absorbance or fluorescence intensity reaches its maximum.

〔作用〕[Effect]

上記のようにして得られた複数個のデータを解析して目
標測光位置を決定すれば、個々の反応容器そのものの光
学的特徴によって測光位置が決定されるため、反応容器
の停止位置のばらつきによる測光データのばらつきが改
善される。
If the target photometry position is determined by analyzing the multiple pieces of data obtained as described above, the photometry position is determined by the optical characteristics of each reaction vessel itself. Dispersion of photometric data is improved.

〔実施例〕〔Example〕

以下、本発明の実施例を第2図により説明する。 Embodiments of the present invention will be described below with reference to FIG.

実施例1 第1図は、本装置の概要を示す。Example 1 FIG. 1 shows an overview of this device.

回転型円板状の反応ディスク1の円周上に複数個の反応
容器2を配列し、反応ディスク1を駆動機構3により回
転する。その駆動機構3により反応容器2を1ピッチず
つ間欠回転したり、又は短周期往復運動可能にする。反
応ディスク1は、微小振幅で高速往復動され、反応容器
2内の液が攪拌される。
A plurality of reaction vessels 2 are arranged on the circumference of a rotating disk-shaped reaction disk 1, and the reaction disk 1 is rotated by a drive mechanism 3. The drive mechanism 3 enables the reaction container 2 to be rotated intermittently by one pitch or to be reciprocated in short periods. The reaction disk 1 is reciprocated at high speed with minute amplitude, and the liquid in the reaction container 2 is stirred.

反応ディスク1に装着される反応容器2には、アクリル
コーティングされたパーマロイ製の攪拌ボール4が入っ
ている。
A reaction vessel 2 attached to the reaction disk 1 contains an acrylic-coated Permalloy stirring ball 4.

反応容器2は、内径6.2m+’t”深さが30I1m
lノ円筒状となっており、底面に平滑な入射窓5を有し
、側面に平滑な出射窓6を有している。この反応容器2
は透光性材料であるガラス又はアクリル樹脂からなる。
The reaction vessel 2 has an inner diameter of 6.2 m + 't'' depth of 30 I1 m.
It has a cylindrical shape, and has a smooth entrance window 5 on the bottom and a smooth exit window 6 on the side. This reaction vessel 2
is made of a translucent material such as glass or acrylic resin.

光度計7のある測光位置付近に第2図に示すように永久
磁石又は電磁石8を配置する。この永久磁石又は電磁石
8により測光位置に来た反応容器2内の攪拌ボール4が
出射窓6とは反対側の側壁に引き付けられるので、光束
9の通路を攪拌ボール4が妨げることはない。
A permanent magnet or electromagnet 8 is placed near the photometric position of the photometer 7, as shown in FIG. Since the permanent magnet or electromagnet 8 attracts the stirring ball 4 in the reaction vessel 2 that has come to the photometry position to the side wall opposite to the exit window 6, the stirring ball 4 does not obstruct the path of the light beam 9.

第2図に、反応容器を1パルスずつ前進させた時の反応
容器のスペクトル形状を示す。
FIG. 2 shows the spectral shape of the reaction vessel when the reaction vessel is advanced one pulse at a time.

振動攪拌を効率よく行なうために、反応容器2が円筒形
をしているため、反応容器2毎のスペクトル形状がでこ
ぼこしていることがわかる。そのため、反応容器2の中
心を測光停止位置に設定し、■ステップ送りにより、各
反応容器の同濃度サンプルの蛍光強度を測定しても、ば
らついている。
It can be seen that the spectral shape of each reaction container 2 is uneven because the reaction container 2 is cylindrical in order to perform vibrational stirring efficiently. Therefore, even if the center of the reaction container 2 is set at the photometry stop position and the fluorescence intensity of the same concentration sample in each reaction container is measured by step feeding, the fluorescence intensity varies.

この第1の原因は、パルスモータ10が反応容器2運搬
の駆動源であり、各反応容器2に一対一に対応する検知
板を光検知することにより各反応容器2の停止位置を決
定しており、約±1パルスの停止位置のばらつきが生じ
るためである。
The first reason for this is that the pulse motor 10 is the driving source for transporting the reaction containers 2, and determines the stopping position of each reaction container 2 by optically detecting the detection plates that correspond to each reaction container 2 one-to-one. This is because the stop position varies by about ±1 pulse.

第1図に2つの異なる連続する反応容器をパルスモータ
で1パルスずつ送ったときの蛍光スペクトル形状を示す
。縦軸が蛍光強度出力、横軸が積算パルス数である。
Figure 1 shows the shape of the fluorescence spectrum when two different successive reaction vessels were fed one pulse at a time using a pulse motor. The vertical axis is the fluorescence intensity output, and the horizontal axis is the cumulative number of pulses.

スペクトル形状が階段状になっているのは、パルスモー
タによるパルス送りで量子化誤差が生じるためである。
The reason why the spectrum shape is step-like is that quantization errors occur when the pulses are sent by the pulse motor.

上記±1パルスの停止位置のばらつきによる測定値のば
らつきを解消するため、反応容器2中心部、第1図中C
Iまたはc2がら2つ前AxまたはA2に最初の停止位
置を設定し、1秒間隔で1パルスずつ、計4パルス反応
容器2を送った。この際、これら5つの停止位置におい
て、0.5秒間かけて測光を行ない、反応容器中心付近
での。
In order to eliminate variations in measurement values due to variations in the stopping position of the above ±1 pulse,
The first stop position was set at Ax or A2 two positions before I or c2, and a total of 4 pulses were sent to the reaction vessel 2, one pulse at a time interval of 1 second. At this time, photometry was carried out for 0.5 seconds at these five stop positions, and photometry was performed near the center of the reaction vessel.

1パルス間隔で5箇所で停止させ、蛍光強度を測定した
The fluorescence intensity was measured by stopping at five locations at one pulse interval.

これら5つの蛍光強度の最大値が反応容器中心部の蛍光
強度なので、これをサンプルの蛍光強度とすることによ
り、サンプル毎のばらつきを改善した。
Since the maximum value of these five fluorescence intensities was the fluorescence intensity at the center of the reaction vessel, by using this as the fluorescence intensity of the sample, variations among samples were improved.

実施例2 同濃度サンプルの蛍光強度測定値の各反応容器2毎のば
らつきの第2の原因は1反応容器2の反応ディスク1へ
の取り付は位置誤差によるものである。
Example 2 The second cause of variations in the fluorescence intensity measurements of samples of the same concentration for each reaction vessel 2 is due to positional errors in the attachment of the reaction vessels 2 to the reaction disk 1.

第2図中の2つのスペクトルの形状を比較すると、この
取り付は位置の誤差によりスペクトル形状がわずかに異
なっている。例えばこれは、Cs−B1;6Cz−B2
となっていることにより確認できる。
Comparing the shapes of the two spectra in FIG. 2, this installation has slightly different spectral shapes due to positional errors. For example, this is Cs-B1;6Cz-B2
This can be confirmed by .

この取り付は位置の誤差を解消するため、実施例1のよ
うにして得られた5つの蛍光強度の最大値と、2番目に
大き′い値の平均値を計算し、この平均値をサンプルの
蛍光強度とすることにより、サンプル毎のばらつきを改
善した。
In this installation, in order to eliminate positional errors, the average value of the maximum value of the five fluorescence intensities obtained as in Example 1 and the second largest value is calculated, and this average value is used for the sample. By setting the fluorescence intensity to , the variation among samples was improved.

もちろん5つの測定値のうち、値の大きい方から3.4
.5番目までのそれぞれの平均値をサンプルの蛍光強度
としてもばらつきは改善される。
Of course, among the five measured values, the one with the largest value is 3.4
.. The variation can also be improved by using each average value up to the fifth as the fluorescence intensity of the sample.

以上は上記おのおのの場合のサンプル蛍光強度のCVの
一例である。
The above is an example of the CV of sample fluorescence intensity in each of the above cases.

1点測光・・・1.49%          ・・・
05点測光の最大値採用・・・0.19%   ・・・
■5データの大きい方から2データの平均値採用・・・
0.31% ・・・■ 5データの大きい方から3データの平均値採用・・0.
28% ・・・■ 5データの大きい方から4データの平均値採用・・・0
.30% ・・・■ 5データの大きい方から5データの平均値採用・・・0
.37% ・・・■ これより5点測光のCvはどれも1点測光のCvより小
さくなっており(■H■〜■比較)。
1-point metering...1.49%...
05-point photometry maximum value adopted...0.19%...
■Using the average value of 2 data from the larger 5 data...
0.31%...■ Adopt the average value of 3 data from the largest of 5 data...0.
28%...■ Adopt the average value of 4 data from the largest of 5 data...0
.. 30%...■ Adopt the average value of the 5 data from the largest of the 5 data...0
.. 37%...■ From this, the Cv of 5-point photometry is all smaller than the Cv of 1-point photometry (Comparison of ■H■ to ■).

その中でも平均するデータ数の少ない方がCvは良い傾
向にある(■〜■比較)、特に5点測光の最大値をサン
プル蛍光強度とした場合(■)が最も良いCVを与えて
いる。
Among them, the Cv tends to be better when the number of data to be averaged is smaller (Comparisons from ■ to ■). In particular, when the maximum value of 5-point photometry is taken as the sample fluorescence intensity (■) gives the best CV.

〔発明の効果〕〔Effect of the invention〕

本発明によれば反応容器の光学的特徴により反応容器の
測光位置を決定するので、高精度の測光ができる。
According to the present invention, since the photometric position of the reaction container is determined based on the optical characteristics of the reaction container, highly accurate photometry can be performed.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は2つの異なる反応容器の蛍光スペクトル形状図
、第2図は実施例における要部概略構成図である。 1・・・反応ディスク、2・・・反応容器、3・・・駆
動機構。 4・・・攪拌ボール、5・・・入射窓、6・・・出射窓
、7・・・光度計、8・・・永久磁石又は電磁石、9・
・・光束、第 図
FIG. 1 is a diagram of the fluorescence spectrum shapes of two different reaction vessels, and FIG. 2 is a schematic diagram of the main parts in the example. DESCRIPTION OF SYMBOLS 1... Reaction disk, 2... Reaction container, 3... Drive mechanism. 4... Stirring ball, 5... Entrance window, 6... Output window, 7... Photometer, 8... Permanent magnet or electromagnet, 9...
...Luminous flux, diagram

Claims (1)

【特許請求の範囲】 1、サンプルの入る1または複数の反応容器と、これら
の反応容器が、円周上に配置されたターンテーブルと、
ターンテーブルの駆動用パルスモータと、上記反応容器
に光を照射してこの反応容器内の反応液を測光する光度
計とを備えた自動分析装置において、各反応容器が1ピ
ッチ内の複数位置で停止し測光されることを特徴とする
自動分析装置。 2、特許請求の範囲第1項記載の自動分析装置で得られ
た、各反応容器毎の複数のデータのうち、最大または最
小値を選択し、これをサンプルデータとすることを特徴
とする測光データ処理方法。 3、特許請求の範囲第1項記載の自動分析装置で得られ
た、各反応容器毎の複数のデータのうち、いくつかの平
均値をサンプルデータとすることを特徴とする測光デー
タ処理方法。
[Claims] 1. One or more reaction vessels containing a sample, and a turntable on which these reaction vessels are arranged on the circumference;
In an automatic analyzer equipped with a pulse motor for driving a turntable and a photometer that measures the reaction liquid in the reaction container by irradiating light onto the reaction container, each reaction container is arranged at multiple positions within one pitch. An automatic analyzer characterized by stopping and measuring light. 2. Photometry characterized by selecting the maximum or minimum value from a plurality of data for each reaction container obtained by the automatic analyzer according to claim 1, and using this as sample data. Data processing method. 3. A photometric data processing method, characterized in that among a plurality of data for each reaction container obtained by the automatic analyzer according to claim 1, some average values are taken as sample data.
JP18465489A 1989-07-19 1989-07-19 Automatic analyzer and photometric data processing Pending JPH0351761A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18465489A JPH0351761A (en) 1989-07-19 1989-07-19 Automatic analyzer and photometric data processing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18465489A JPH0351761A (en) 1989-07-19 1989-07-19 Automatic analyzer and photometric data processing

Publications (1)

Publication Number Publication Date
JPH0351761A true JPH0351761A (en) 1991-03-06

Family

ID=16157021

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18465489A Pending JPH0351761A (en) 1989-07-19 1989-07-19 Automatic analyzer and photometric data processing

Country Status (1)

Country Link
JP (1) JPH0351761A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011215021A (en) * 2010-03-31 2011-10-27 Fujifilm Corp Fluorescence detecting apparatus and method
JP2015028468A (en) * 2013-07-05 2015-02-12 株式会社東芝 Automatic analyzer
WO2016136377A1 (en) * 2015-02-25 2016-09-01 株式会社 日立ハイテクノロジーズ Automated analysis device

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011215021A (en) * 2010-03-31 2011-10-27 Fujifilm Corp Fluorescence detecting apparatus and method
US8749787B2 (en) 2010-03-31 2014-06-10 Fujifilm Corporation Fluorescence detecting apparatus and fluorescence detecting method
JP2015028468A (en) * 2013-07-05 2015-02-12 株式会社東芝 Automatic analyzer
WO2016136377A1 (en) * 2015-02-25 2016-09-01 株式会社 日立ハイテクノロジーズ Automated analysis device
CN107209195A (en) * 2015-02-25 2017-09-26 株式会社日立高新技术 Automatic analysing apparatus
JPWO2016136377A1 (en) * 2015-02-25 2017-10-12 株式会社日立ハイテクノロジーズ Automatic analyzer
CN107209195B (en) * 2015-02-25 2018-10-16 株式会社日立高新技术 Automatic analysing apparatus

Similar Documents

Publication Publication Date Title
US8852511B2 (en) Automatic analyzer
JP2656564B2 (en) Immunoassay method
US10168345B2 (en) Automatic analysis apparatus and sample measuring method
US4539296A (en) Method of analyzing chemical substances
US9080972B2 (en) Automatic analyzer
US9459271B2 (en) Analyzer and automatic analyzer
JPH0255744B2 (en)
EP2587250B1 (en) Automatic analysis device
JP2000258341A (en) Measuring apparatus for absorbance
US3861197A (en) Method and apparatus for determining the viscosity of a liquid sample
US20120282137A1 (en) Automatic analyzer
US4372683A (en) Photometer with rotating sample container
US11692929B2 (en) Automatic analyzer and standard solution for evaluating scattered light measurement optical system thereof
JPH0351761A (en) Automatic analyzer and photometric data processing
JP2000131233A (en) Optical in-process control type nephelometry analyzing and detecting unit
JP2020091185A (en) Analysis device and analysis method
JP6313960B2 (en) Automatic analyzer
JP2000180368A (en) Chemical analyzer
JP7520672B2 (en) Automatic analyzer, tool, and method for calibrating automatic analyzer
JPH05273118A (en) Method and apparatus for analyzing concentration or composition of test sample liquid
US10684228B2 (en) System and method of nephelometric determination of an analyte
RU2772562C1 (en) Reaction vessel for an automatic analyser
JP2534624Y2 (en) Automatic analyzer
CN117396748A (en) Photometry device and analysis device
JP2003083884A (en) Automatic regulator of optical measuring member in analytical apparatus