JPH0351731A - Cable-tension measuring method - Google Patents
Cable-tension measuring methodInfo
- Publication number
- JPH0351731A JPH0351731A JP1186239A JP18623989A JPH0351731A JP H0351731 A JPH0351731 A JP H0351731A JP 1186239 A JP1186239 A JP 1186239A JP 18623989 A JP18623989 A JP 18623989A JP H0351731 A JPH0351731 A JP H0351731A
- Authority
- JP
- Japan
- Prior art keywords
- cable
- tension
- jig
- frequency
- same
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000000034 method Methods 0.000 title claims description 22
- 230000035939 shock Effects 0.000 claims abstract description 5
- 238000010183 spectrum analysis Methods 0.000 claims description 10
- 230000001133 acceleration Effects 0.000 claims description 4
- 239000002184 metal Substances 0.000 abstract description 2
- 229910052751 metal Inorganic materials 0.000 abstract description 2
- 150000002739 metals Chemical class 0.000 abstract 1
- 238000010586 diagram Methods 0.000 description 12
- 238000005259 measurement Methods 0.000 description 7
- 238000001228 spectrum Methods 0.000 description 4
- 230000000694 effects Effects 0.000 description 3
- 239000000725 suspension Substances 0.000 description 3
- 238000005452 bending Methods 0.000 description 2
- 238000004364 calculation method Methods 0.000 description 2
- 238000010276 construction Methods 0.000 description 2
- 238000004132 cross linking Methods 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 230000032683 aging Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000007689 inspection Methods 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 238000012418 validation experiment Methods 0.000 description 1
Landscapes
- Force Measurement Appropriate To Specific Purposes (AREA)
Abstract
Description
【発明の詳細な説明】 「産業上の利用分野j 本発明は、ケーブル張力測定方法に関する。[Detailed description of the invention] "Industrial field of application" The present invention relates to a method for measuring cable tension.
「従来の技術」
吊橋形式や斜張橋形式等のケーブル構造の施工時や維持
管理時等においては、形状の保持、剛性の確保のために
ケーブル張力の管理を行なうことが重要である。、
例えば第8図に示される吊橋形式のアーケードにあって
は、屋根を形成する主柱1.・・・間に架設の主トラス
2.・・・は該主柱l上に立設の支柱3゜・・・間に架
は渡たされたメインケーブル4.・・・より吊下される
サブケーブル5.・・・によって吊り支持されるが、そ
の形状の保持、剛性の確保はサブケーブル5.・・・が
所定の張力下に調整されることによってなされる。"Prior Art" When constructing and maintaining cable structures such as suspension bridges and cable-stayed bridges, it is important to manage cable tension in order to maintain shape and ensure rigidity. For example, in the suspension bridge type arcade shown in FIG. 8, the main pillars 1. ...main truss erected between 2. . . . is the main cable 4. The frame is crossed between the pillars 3° and 4. ...Sub cable suspended from 5. It is suspended and supported by sub-cable 5., but its shape is maintained and rigidity is ensured by sub-cable 5. ... is adjusted to a predetermined tension.
か様な際に必要となる既存のケーブル張力の測定方性と
しては以下に述べるものがある。The existing methods for measuring cable tension that are required in such cases are as follows.
(1)歪ゲージ貼付法
ケーブル端部金物やケーブル長調整用のターンバックル
等に、歪ゲージを貼り付け、出力される歪量から張力を
求める方法であるが、施工時や長期荷重時にはケーブル
の歪量は通常小さく、特殊な工夫をしない限り、高精度
は望めない。(1) Strain gauge attachment method This method involves attaching a strain gauge to a cable end metal fitting or a turnbuckle for adjusting cable length, and determining the tension from the amount of strain output. The amount of distortion is usually small, and high accuracy cannot be expected unless special measures are taken.
(2) ロードセル取付法
ケーブルの端部あるいは中間部にロードセルを取り付け
る方法で、かなりの高精度が期待できるが、ロードセル
が建物竣工後まで残るため、センサーの耐力が建物全体
の耐力に大きな影響を及ぼす。このため恒久建築物には
余り用いられない。また取付部のデイテールが複雑にな
り、コスト高。(2) Load cell installation method By attaching the load cell to the end or middle of the cable, a fairly high degree of accuracy can be expected, but since the load cell remains until after the building is completed, the strength of the sensor has a large effect on the strength of the entire building. affect For this reason, it is rarely used in permanent buildings. Also, the details of the mounting part become complicated, which increases the cost.
(3)振動法
土木の橋梁分野で用いられている、ケーブルの張力と振
動数の関係を利用する方法で、何らかの方法でケーブル
に衝撃力を与え、発生振動数から引張力を求めるもので
ある。(3) Vibration method Used in the field of civil engineering and bridges, this is a method that utilizes the relationship between cable tension and vibration frequency, in which an impact force is applied to the cable by some method and the tensile force is determined from the generated vibration frequency. .
すなわち、−JGにケーブルは導入された張力が大きく
なるにつれて振動数が増加する性質を持つ。That is, the -JG cable has the property that the frequency increases as the tension introduced increases.
例えば質量分布が一定で曲げ剛性の全くない理想的なケ
ーブルの場合、張力と振動動数の関係は一般に次式で表
わされる。For example, in the case of an ideal cable with a constant mass distribution and no bending rigidity, the relationship between tension and vibration frequency is generally expressed by the following equation.
但しf:弦の振動数(Hz)
L:弦の長さ(a+)
+に単位長さ当りの質it (kg−sec”/m2)
n:固有振動数の次数
T:弦の張力(kg)
しかし、実際にはケーブルは曲げ剛性を持つため、断面
形状や素線構成の影響を受け、(1)式と異なる性状を
示す。However, f: String frequency (Hz) L: String length (a+) + Quality per unit length it (kg-sec”/m2)
n: Order of natural frequency T: String tension (kg) However, in reality, the cable has bending rigidity, so it is affected by the cross-sectional shape and wire configuration, and exhibits properties different from those in equation (1).
さらに、上記の性質はケーブル長、ケーブル端部条件、
ケーブル中間部に取り付くケーブルクリップ、ターンバ
ックル等の集中質量の位置と大きさ等によって影響を受
けるため、同じ断面、素線構成のケーブルでも、同一の
関係を示さない。Furthermore, the above properties depend on the cable length, cable end conditions,
Because it is affected by the position and size of concentrated masses such as cable clips and turnbuckles attached to the intermediate portion of the cable, cables with the same cross section and wire configuration do not show the same relationship.
それ故、この振動法の適用事例が比較的多い橋梁分野に
おいては、精度確保のために、多くの時間と入力を伴う
較正作業(測定対象と同じ端部条件、断面構成、長さ、
取付金物のケーブルを用いて、予め種類毎に張力−振動
数関係を採集しておくこと。)をして、これに照合しつ
つ行っているのが現状である。Therefore, in the bridge field, where this vibration method is applied relatively often, calibration work that requires a lot of time and input (the same end conditions, cross-sectional configuration, length,
Collect the tension-frequency relationship for each type of cable in advance using the attached cable. ), and the current situation is that we are checking this.
上述の事情から精度、コスト、実用性等の点で、「振動
法」がケーブル張力測定に適用されるのが好適である。In view of the above-mentioned circumstances, it is preferable to apply the "vibration method" to cable tension measurement in terms of accuracy, cost, practicality, etc.
「発明が解決しようとする課題」
「振動法」では、単にケーブルに加速度計を取り付けれ
ばよく、測定時に特殊な治具が不要であること、簡単に
測定が実施できることなどの利点を持つにも拘らず、上
記の「較正作業」を要すること、しいては設計や施工時
におけるデイテールや形状の変更に柔軟に対応ができな
いという点が障害となって広範囲の分野で利用されてい
ないのが実状である。``Problem to be solved by the invention'' The ``vibration method'' has the advantages of simply attaching an accelerometer to a cable, eliminating the need for special jigs during measurement, and making measurements easy. However, the reality is that it is not used in a wide range of fields due to the above-mentioned "calibration work" required and the inability to flexibly respond to changes in details and shapes during design and construction. It is.
本発明は、畝上の障害(ケーブル端部条件、ケーブル金
物の存在、ケーブル長により張力−振動数関係が異なる
ため、較正作業に多くの手間がかかること)を解消した
張力と振動数の関係を用いる「振動法」を提供すること
を目的としている。The present invention provides a relationship between tension and frequency that eliminates the problem of ridges (the tension-frequency relationship differs depending on the cable end conditions, the presence of cable hardware, and the length of the cable, which requires a lot of effort for calibration work). The purpose is to provide a "vibration method" that uses
[課題を解決するための手段」
上記目的を達成するために、本発明の測定方法において
は、測定対象のケーブルの2点間に着脱自在の架橋治具
を装着し、当該治具で挾まれた部分のケーブルに衝撃を
加えて、生じた振動を同部分に取り付けた加速度計によ
り測定したうえ当該挾まれた部分の固有振動数を割り出
し、挾まれ間隔が同一の場合には径2素線構成が同一の
同種のケーブルではケーブル長、ケーブル端部条件、集
中質量等に影響されることなく同じ張力−振動数関係に
あることを利用して、予め該同種のケーブルについて求
めた該治具で挾まれた部分に於ける張力−振動数関係グ
ラフから張力を割り出すとしたものである。[Means for Solving the Problems] In order to achieve the above object, in the measurement method of the present invention, a removable bridging jig is attached between two points of the cable to be measured, and A shock is applied to the cable in the pinched part, the resulting vibration is measured with an accelerometer attached to the same part, and the natural frequency of the pinched part is determined. The jig is determined in advance for the same type of cable by taking advantage of the fact that cables of the same type with the same configuration have the same tension-frequency relationship regardless of cable length, cable end conditions, concentrated mass, etc. The tension is determined from the tension-frequency relationship graph in the part sandwiched by .
上記の固有振動数の割り出しのスペクトル解析に際し、
架橋治具にも加速度計を取り付けてケーブル全長につい
ての固有振動数を測定し、両振動数の差を計算して両者
の相対加速度についてのスペクトル解析を行うとしても
よい。When performing spectrum analysis to determine the above natural frequency,
An accelerometer may also be attached to the bridging jig to measure the natural frequency for the entire length of the cable, and the difference between the two frequencies may be calculated to perform spectrum analysis on the relative acceleration between the two.
「作用」
上記のように構成された本発明の測定方法によれば、較
正作業は同種のケーブルについては架橋治具の同一の挾
まれ間隔で一度求めれば済むこととなる。"Operation" According to the measuring method of the present invention configured as described above, the calibration work only needs to be performed once for cables of the same type at the same clamping interval of the bridging jig.
これに加え、請求項2の発明にあっては、スペクトル解
析にあって、ケーブル全長についての反応が消し去られ
て架橋治具で挾まれた部分の反応の割り出しが容易化さ
れる。In addition, in the invention according to claim 2, in the spectrum analysis, the reaction for the entire length of the cable is eliminated, making it easier to determine the reaction for the portion sandwiched by the bridging jig.
「実施例」 実施例について図面を参照して説明する。"Example" Examples will be described with reference to the drawings.
第1図は本発明の詳細な説明したもので、対象とするケ
ーブル6の2点間に、簡単に取外しできる機構を持つ例
えば「コ」の字型の架橋治具7を取り付け、この治具7
で挾まれた部分のケーブル6aに何らかの方法で衝撃を
加えて、生じた振動を同部分に取り付けた加速度計8に
より測定し、さらに固有振動数を図示の振動数演算装置
を用いて求める。振動数演算装置には、スペクトル・ア
ナライザーのようなアナログ処理装置やコンピュータを
用いたデジタル処理装置を用いる。FIG. 1 shows a detailed explanation of the present invention, in which a U-shaped bridging jig 7, for example, which has a mechanism that can be easily removed, is attached between two points of the target cable 6, and this jig is 7
A shock is applied by some method to the cable 6a at the pinched portion, and the resulting vibration is measured by an accelerometer 8 attached to the same portion, and the natural frequency is determined using the frequency calculation device shown in the figure. As the vibration frequency calculation device, an analog processing device such as a spectrum analyzer or a digital processing device using a computer is used.
該治具7については第2図に詳示している。尚同図中9
は該加速度計8取り付は用の治具を示す。The jig 7 is shown in detail in FIG. 9 in the same figure
indicates the jig used to attach the accelerometer 8.
これにより得られる第3図に示すパワースペクトル図は
、ケーブル6全長り及び治具7長さj2 (5001m
程度のもの)をそれぞれ1次モードとする2種類のモー
ドー−Aモード、Bモードー−が卓越する。The resulting power spectrum diagram shown in FIG. 3 is based on the total length of the cable 6 and the length of the jig 7
Two types of modes - A mode and B mode - are predominant, each with the primary mode being the one with a certain degree of intensity.
この内、Bモードに対応する固有振動数f、はケーブル
長(L)、治具7の取付位置(S)と重量、ケーブル6
端部(i、j)の固定条件、集中質量(ケーブルクリッ
プやターンバックルなど)の大きさや位置によって影響
を受ける。一方Aモードに対応する固有振動数fAは治
具7の長さ(1)が一定の場合、同種のケーブル(ケー
ブルの径、素線構成が同一)では同じ張力−振動数関係
が得られる。このため同種のケーブルについての(f)
についての張力振動数関係を予め求めておけば済むこと
となり、従来の振動法で多(の時間、人手を要していた
較正作業の大幅な低減ができる。Among these, the natural frequency f corresponding to B mode is the cable length (L), the mounting position (S) and weight of the jig 7, and the cable 6
It is affected by the fixing conditions of the ends (i, j) and the size and position of concentrated masses (cable clips, turnbuckles, etc.). On the other hand, for the natural frequency fA corresponding to the A mode, when the length (1) of the jig 7 is constant, the same tension-frequency relationship is obtained for cables of the same type (the cable diameter and wire configuration are the same). Therefore, (f) for the same type of cable
It is only necessary to obtain the tension frequency relationship for , in advance, and the calibration work, which required a lot of time and manpower with the conventional vibration method, can be significantly reduced.
畝上の機器構成を用いて得られたスペクトル図及び張力
−振動数関係を一例として第4.5図に示す、なお第5
図はケーブル長(L)が異なる3種の試験体による結果
を示したものであるが、上述したようにケーブル長に係
わらずほぼ同一の性状を示している。An example of the spectrum diagram and tension-frequency relationship obtained using the equipment configuration on the ridge is shown in Figure 4.5.
The figure shows the results of three types of test specimens with different cable lengths (L), but as described above, the properties are almost the same regardless of the cable length.
第6図は、本発明の他の実施態様を示し、前記の第3図
で得られるモードの内、測定対象の振動モード(Aモー
ド)以外のモード(主にBモード)をスペクトル図から
除去する方法を紹介している。FIG. 6 shows another embodiment of the present invention, in which modes (mainly B mode) other than the vibration mode of the measurement target (A mode) among the modes obtained in FIG. 3 above are removed from the spectrum diagram. We'll show you how to do it.
第3図の構成と異なる点は、治具7にもう一つの加速度
計lOを取り付け、2つの加速度の差を計算することに
より、両者の相対加速度についてスペクトル解析を行な
う点である。この方法により、2つの測定点が同位相で
振動するモード、即ち第6図におけるBモードは削除さ
れる。このため第3図の場合と比較して、必要とする固
有振動数へが得られ易いという特長を持つ。The difference from the configuration shown in FIG. 3 is that another accelerometer lO is attached to the jig 7, and by calculating the difference between the two accelerations, spectrum analysis is performed on the relative accelerations between the two. By this method, the mode in which the two measurement points vibrate in the same phase, ie, the B mode in FIG. 6, is eliminated. Therefore, compared to the case shown in FIG. 3, it has the advantage that it is easier to obtain the required natural frequency.
第7図にこの方式で得られた例を第3図の場合と対比し
て示す。上下の比較をすると、上述したように目標とす
る固有振動数が得られている。FIG. 7 shows an example obtained using this method in comparison with the case shown in FIG. Comparing the upper and lower parts, the target natural frequency has been obtained as described above.
「発明の効果」
本発明は、以上説明したように構成されているので、以
下に記載されるような効果を奏する。"Effects of the Invention" Since the present invention is configured as described above, it produces the effects described below.
本発明を用いると、簡単な治具を取り付けるだけで従来
の振動法の持つ欠点が克服でき、携帯性、使用性に優れ
た張力測定センサーが実現できる。By using the present invention, the drawbacks of the conventional vibration method can be overcome by simply attaching a simple jig, and a tension measurement sensor with excellent portability and usability can be realized.
以下に本発明の特徴を列記する。The features of the present invention are listed below.
(1)測定対象とするケーブルと同種(同径、同素線構
成)のケーブルについて、−度較正値(張力−振動数関
係)を求めれば、ケーブル長、ケーブル各種金物の有無
、ケーブル端部の固定条件に係わらず、同一の関係に基
づいて、張力を求めることができる。(1) For a cable of the same type (same diameter, same strand composition) as the cable to be measured, -degree calibration value (tension - frequency relationship) can be determined by determining the cable length, the presence or absence of various cable hardware, and the cable end. Regardless of the fixed conditions, the tension can be determined based on the same relationship.
(2)特殊な操作や機械、治具を用いずに、治具の取り
付けや取外しが容易にでき(6!認実験では手で取り付
けるのみで良好な結果が得られた)、簡単にケーブル張
力を測定することができる。(2) The jig can be easily installed and removed without using any special operations, machines, or jigs (6! Good results were obtained by simply installing it by hand in the validation experiment), and the cable tension can be easily adjusted. can be measured.
このため施工時や維持管理時・定期点検時等における張
力管理に適する。Therefore, it is suitable for tension management during construction, maintenance, periodic inspection, etc.
(3)センサーを継続してケーブルに取り付けていない
ため、センサーの経年変化による誤差の発生が生じず、
常に安定した精度の高い計測が可能である。(3) Since the sensor is not continuously attached to the cable, errors due to aging of the sensor will not occur.
Stable and highly accurate measurements are always possible.
第1図は本発明方法に於けるスペクトル分析説明図、第
2図は本発明で使用の架橋治具の使用態様図、第3図は
本発明に於けるスペクトル分析図、第4図、第5図は本
発明の架橋治具を用いてのスペクトル分析図、張力−振
動数関係図、第6図は本発明の他の実施態様になるスペ
クトル分析説明図、第7図は第3図と第6図との分析結
果の対比図、第8図は吊橋形式のアーケードの説明図で
ある。
■・・・主柱、 2・・・主!−
・・・メインケーブル、 5
ケーブル、 7・・・治具、
治具、 10・・・加速度計。
ラス、 3・・・支柱、
・・・サブケーブル、
8・・・加速度計、
6・・・
9・・・
ンラレ7勿
ラノ廖
10−1才、1針
ラJ
OLsl、9m + Lml、5m OLsl、Imう
27tFig. 1 is an explanatory diagram of spectrum analysis in the method of the present invention, Fig. 2 is a diagram of how the crosslinking jig used in the present invention is used, Fig. 3 is a diagram of spectrum analysis in the present invention, Fig. 4, Figure 5 is a spectrum analysis diagram and tension-frequency relationship diagram using the crosslinking jig of the present invention, Figure 6 is an explanatory diagram of spectrum analysis according to another embodiment of the present invention, and Figure 7 is a diagram similar to Figure 3. A comparison diagram of the analysis results with FIG. 6, and FIG. 8 is an explanatory diagram of a suspension bridge type arcade. ■... Main pillar, 2... Lord! -... Main cable, 5 cable, 7... jig, jig, 10... accelerometer. Lath, 3... Prop, ... Sub cable, 8... Accelerometer, 6... 9... Nrare 7 course Rano Liao 10-1 year old, 1 needle La J OLsl, 9m + Lml, 5m OLsl, Im 27t
Claims (2)
具を装着し、当該治具で挾まれた部分のケーブルに衝撃
を加えて、生じた振動を同部分に取り付けた加速度計に
より測定したうえ当該挾まれた部分の固有振動数を割り
出し、挾まれ間隔が同一の場合には径、素線構成が同一
の同種のケーブルではケーブル長、ケーブル端部条件、
集中質量等に影響されることなく同じ張力−振動数関係
にあることを利用して、予め該同種のケーブルについて
求めた該治具で挾まれた部分に於ける張力−振動数関係
グラフから張力を割り出すとしたことを特徴とするケー
ブル張力測定方法。(1) A removable bridging jig is attached between two points on the cable to be measured, a shock is applied to the part of the cable held by the jig, and the resulting vibration is measured by an accelerometer attached to the same part. After measuring, determine the natural frequency of the sandwiched part, and if the sandwiching interval is the same, the cable length, cable end condition,
Taking advantage of the fact that the tension-frequency relationship is the same without being affected by concentrated mass, etc., the tension can be calculated from the tension-frequency relationship graph at the part held by the jig, which was previously determined for the cable of the same type. A method for measuring cable tension, characterized in that the cable tension is determined.
トル解析に際し、架橋治具にも加速度計を取り付けてケ
ーブル全長についての固有振動数を測定し、両振動数の
差を計算して両者の相対加速度についてのスペクトル解
析を行うとしたことを特徴とするケーブル張力測定方法
。(2) When performing spectrum analysis for determining the natural frequency according to claim 1, an accelerometer is also attached to the bridging jig to measure the natural frequency for the entire length of the cable, and the difference between both frequencies is calculated. A method for measuring cable tension, characterized in that a spectrum analysis of relative acceleration is performed.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1186239A JPH0351731A (en) | 1989-07-19 | 1989-07-19 | Cable-tension measuring method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1186239A JPH0351731A (en) | 1989-07-19 | 1989-07-19 | Cable-tension measuring method |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0351731A true JPH0351731A (en) | 1991-03-06 |
Family
ID=16184789
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1186239A Pending JPH0351731A (en) | 1989-07-19 | 1989-07-19 | Cable-tension measuring method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0351731A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007155475A (en) * | 2005-12-05 | 2007-06-21 | Shikoku Electric Power Co Inc | Tension detecting method for tendon |
CN105823591A (en) * | 2016-02-05 | 2016-08-03 | 浙江大学 | Tension identification method for in-service arch bridge short suspender with complex boundary |
JP2018059779A (en) * | 2016-10-04 | 2018-04-12 | 東京瓦斯株式会社 | Tightening torque measurement device and tightening torque measurement method |
JP2019082347A (en) * | 2017-10-30 | 2019-05-30 | 西日本高速道路エンジニアリング中国株式会社 | Non-destructive diagnosis method of installation device for heavy object in tunnel |
-
1989
- 1989-07-19 JP JP1186239A patent/JPH0351731A/en active Pending
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007155475A (en) * | 2005-12-05 | 2007-06-21 | Shikoku Electric Power Co Inc | Tension detecting method for tendon |
CN105823591A (en) * | 2016-02-05 | 2016-08-03 | 浙江大学 | Tension identification method for in-service arch bridge short suspender with complex boundary |
JP2018059779A (en) * | 2016-10-04 | 2018-04-12 | 東京瓦斯株式会社 | Tightening torque measurement device and tightening torque measurement method |
JP2019082347A (en) * | 2017-10-30 | 2019-05-30 | 西日本高速道路エンジニアリング中国株式会社 | Non-destructive diagnosis method of installation device for heavy object in tunnel |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Ren et al. | Empirical formulas to estimate cable tension by cable fundamental frequency | |
CN103791850A (en) | Temperature-self-compensating-integrated fiber bragg grating strain transducer and method for monitoring cable force of inhaul cable through integrated temperature self-compensating fiber bragg grating strain transducer | |
Zhang et al. | Strain flexibility identification of bridges from long-gauge strain measurements | |
CN112613204A (en) | Method and device for calculating cable force of arch bridge suspender | |
KR100856734B1 (en) | Standard experimental device for measuring cable tension in suspension systems | |
JPH0351731A (en) | Cable-tension measuring method | |
KR20040110740A (en) | Magnetoelastic system of stress monitoring in steel tendons and cables | |
KR101566297B1 (en) | Estimation system for converting actually measured strain into displacement using predetermined strain-displacement coefficient, and method for the same | |
Pavic et al. | Experimental assessment of vibration serviceability of existing office floors under human-induced excitation | |
Luna Vera et al. | Flexural performance correlation with natural bending frequency of post-tensioned concrete beam: Experimental investigation | |
Carbonari et al. | Tests on two 18-years-old prestressed thin walled roof elements | |
Hicke et al. | Vibration Monitoring of Large-Scale Bridge Model using Distributed Acoustic Sensing | |
Santoso et al. | Evaluation of Cable Tension Using Static and Dynamic Test on RH Fisabilillah Cable-Stayed Bridge, Batam-Indonesia | |
HASSAN et al. | Displacements at shear crack in beams with shear reinforcement under static and fatigue loadings | |
Yardimci et al. | Tests on beam-column strong and weak axis connections | |
EP4097438A1 (en) | A method and a system for estimating the tension of a tension member | |
JP3550296B2 (en) | Measuring method of tension and bending stiffness of structures | |
JPH0587007U (en) | Cable temperature measuring device | |
RU2372593C2 (en) | Method for measurement of armature tension | |
JPH11258102A (en) | Segment ring rigidity test method | |
KR101793372B1 (en) | Prestress estimation method of bonded prestressed steel using electric impedance | |
JP3396173B2 (en) | Tensile cable tension measuring method and lateral load measuring jig | |
Anastasopoulos et al. | Modal strain identification from low-amplitude FBG data using an improved wavelength detection algorithm | |
Iwaniec et al. | Investigation into Power Line Supporting Structure Dynamic Properties by Means of Impulse Test. Energies 2022, 15, 5707 | |
RU2764026C1 (en) | Method for non-destructive testing of the bearing capacity of single-span bearers |