[go: up one dir, main page]

JPH0350908B2 - - Google Patents

Info

Publication number
JPH0350908B2
JPH0350908B2 JP57228238A JP22823882A JPH0350908B2 JP H0350908 B2 JPH0350908 B2 JP H0350908B2 JP 57228238 A JP57228238 A JP 57228238A JP 22823882 A JP22823882 A JP 22823882A JP H0350908 B2 JPH0350908 B2 JP H0350908B2
Authority
JP
Japan
Prior art keywords
vibration
engine
operating state
amount
ignition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57228238A
Other languages
Japanese (ja)
Other versions
JPS59126073A (en
Inventor
Yoshitaka Tawara
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mazda Motor Corp
Original Assignee
Mazda Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mazda Motor Corp filed Critical Mazda Motor Corp
Priority to JP57228238A priority Critical patent/JPS59126073A/en
Publication of JPS59126073A publication Critical patent/JPS59126073A/en
Publication of JPH0350908B2 publication Critical patent/JPH0350908B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P5/00Advancing or retarding ignition; Control therefor
    • F02P5/04Advancing or retarding ignition; Control therefor automatically, as a function of the working conditions of the engine or vehicle or of the atmospheric conditions
    • F02P5/145Advancing or retarding ignition; Control therefor automatically, as a function of the working conditions of the engine or vehicle or of the atmospheric conditions using electrical means
    • F02P5/15Digital data processing
    • F02P5/152Digital data processing dependent on pinking
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Testing Of Engines (AREA)
  • Electrical Control Of Ignition Timing (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Description

【発明の詳細な説明】 本発明は、ノツキングの発生状況に応じて点火
時期を制御するようにしたエンジンの点火時期制
御装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an ignition timing control device for an engine that controls ignition timing depending on the occurrence of knocking.

この種のエンジンの点火時期制御装置の従来例
としては特開昭54−162032号公報に示す如きもの
が知られているが、この公報に示された点火時期
制御装置は、エンジン振動としてはノツキングに
よる振動とノツキング以外のノズルによる振動が
あるにも拘わらず、一定レベル以上のエンジン振
動を全てノツキング振動として検出し、このノツ
キング振動の検出割合が予じめ設定した基準値よ
り大きい場合には点火時期を遅らせ、基準値より
小さい場合には点火時期を進めるようにしている
ため、実際にノツキングが発生していない場合で
あつても一定レベル以上のノズル振動があればこ
れをノツキングとして検出することになり、この
結果、点火時期の不必要な遅角によつてエンジン
の出力損失を招くというような問題があつた。
As a conventional example of an ignition timing control device for this type of engine, the one shown in Japanese Patent Application Laid-Open No. 162032/1983 is known, but the ignition timing control device shown in this publication does not cause engine vibrations such as knocking. Even though there are vibrations caused by nozzles other than knocking, all engine vibrations above a certain level are detected as knocking vibrations, and if the detection rate of knocking vibrations is greater than a preset reference value, the ignition is activated. Since the ignition timing is delayed and the ignition timing is advanced if it is smaller than the reference value, if there is nozzle vibration above a certain level, even if no knocking is actually occurring, this can be detected as knocking. As a result, there was a problem in that the unnecessary retardation of the ignition timing caused a loss in engine output.

本発明は、上記の如き従来のエンジンの点火時
期制御装置の問題に鑑み、不必要な点火時期の遅
角を防止することによつてエンジンの燃焼特性及
び出力特性の向上を図るようにしたエンジンの点
火時期制御装置を提供することを目的としてなさ
れたものであつて、エンジン振動に対応した信号
を出力する振動センサーと、エンジンの運転状態
を検出する運転状態センサーと、エンジン運転状
態ごとの基本点火時期をあらかじめ記憶している
第1記憶装置と、エンジン運転状態ごとに点火時
期遅角量に対する所定レベル以上のエンジン振動
の発生頻度が記憶される第2記憶装置と、エンジ
ンの運転状態に対応して上記第1記憶装置より求
められる基本点火時期と当該運転状態における前
回の点火時の遅角量とから実行点火時期を演算す
る実行点火時期演算手段と、該実行点火時期に基
づいて点火を実行する点火実行手段と、この点火
実行に伴うエンジン振動の発生を検出する振動判
定手段と、振動発生時には上記第2記憶装置に記
憶されている当該運転状態における前回の振動発
生頻度を所定値だけ増加補正し、また振動非発生
時には所定値だけ減少補正し且つこれを上記第2
記憶装置に当該運転状態における最新の振動発生
頻度として更新記憶させる振動発生頻度更新手段
と、振動発生時には上記第2記憶装置に記憶され
ている当該運転状態における前回の遅角量を所定
値だけ増加補正し、また振動非発生時には所定値
だけ減少補正し且つこれを当該運転状態における
最新の遅角量として該第2記憶装置に更新記憶さ
せる遅角量更新手段と、上記第2記憶装置に更新
記憶されている当該運転状態における最新の振動
発生頻度と該最新の更新遅角量よりも所定量だけ
大きい遅角量に対応する振動発生頻度とを比較す
る比較手段と、該比較手段による比較の結果その
偏差が零以外の場合にはそのまま上記制御を続行
させ、零である場合には上記更新後の遅角量を減
少側に再補正してこれを上記第2記憶装置に更新
記憶させた後に上記制御を続行させる制御続行手
段とを有する制御回路とを備えたことを特徴とし
ている。
In view of the problems of conventional engine ignition timing control devices as described above, the present invention provides an engine that improves the combustion characteristics and output characteristics of the engine by preventing unnecessary ignition timing retardation. The purpose of this device is to provide an ignition timing control device that includes a vibration sensor that outputs a signal corresponding to engine vibration, an operating state sensor that detects the operating state of the engine, and basic information for each engine operating state. A first storage device that stores the ignition timing in advance; a second storage device that stores the frequency of occurrence of engine vibration of a predetermined level or higher relative to the amount of ignition timing retardation for each engine operating state; an effective ignition timing calculating means for calculating an effective ignition timing from the basic ignition timing obtained from the first storage device and a retard amount at the previous ignition in the operating state; ignition execution means for executing the ignition; vibration determination means for detecting the occurrence of engine vibration accompanying the ignition execution; Increasing correction is made, and when vibration does not occur, reduction correction is made by a predetermined value, and this is
vibration occurrence frequency updating means for updating and storing in a storage device as the latest vibration occurrence frequency in the operating state, and increasing a previous retard amount in the operating state stored in the second storage device by a predetermined value when vibration occurs; a retard amount updating means that corrects the retardation amount and also decreases the retardation amount by a predetermined value when vibration does not occur, and updates and stores this in the second storage device as the latest retardation amount in the operating state; a comparison means for comparing the latest vibration occurrence frequency in the stored operating state with a vibration occurrence frequency corresponding to a retardation amount that is larger than the latest updated retardation amount by a predetermined amount; As a result, if the deviation is other than zero, the above control is continued as is, and if it is zero, the retard amount after the above update is corrected to the decreasing side, and this is updated and stored in the second storage device. The present invention is characterized by comprising a control circuit having control continuation means for subsequently continuing the above control.

以下、本発明のエンジンの点火時期制御装置を
添付図面に示す実施例に基づいて説明するが、ま
ず、この点火時期制御装置の構成説明に先だつ
て、この発明の基礎となつた技術的背景を説明す
ると、この発明は、振動センサーによつて、直接
エンジンから検出されるエンジン振動の発生原因
としては二つあり、その一つは点火時期の過早
(点火進角量の過大)によるノツキング振動であ
り、他のひとつは、ノツキング以外のノイズ振動
であるところから、よりエンジンの運転状態に対
して的確に点火時期を制御するためにはノツキン
グ振動とノイズ振動を明確に区別してノツキング
振動に応じた点火時期制御を行う必要があるとい
うことに着目してなされたものである。
The ignition timing control device for an engine according to the present invention will be described below based on an embodiment shown in the accompanying drawings. First, prior to explaining the configuration of the ignition timing control device, the technical background on which the present invention is based will be explained. To explain, this invention detects engine vibration directly from the engine using a vibration sensor. There are two causes of engine vibration, one of which is knocking vibration caused by premature ignition timing (excessive ignition advance). The other one is noise vibration other than knocking, so in order to control the ignition timing more accurately depending on the engine operating condition, it is necessary to clearly distinguish between knocking vibration and noise vibration and respond to knocking vibration. This was done with the focus on the need to perform ignition timing control.

本発明者は、このノツキング振動とノイズ振動
を区別する方法を模索する中で、ノツキング振動
は点火時期の過早によるものであるため点火時期
を遅らせる(点火遅角量を大きくする)ことによ
つて確実に減少させることができるが、ノイズ振
動は点火時期に無関係の現象であるため点火時期
をいくら遅らせても減少させることはできないと
いうことに着目し、このことから、点火時期の遅
角量を変化させた場合における一定レベル以上の
エンジン振動の発生頻度を調べることによつてノ
ツキング振動とノイズ振動とを明確に区別するこ
とができるはずであるという結論に至つた。
While searching for a method to distinguish between this knocking vibration and noise vibration, the inventor discovered that since knocking vibration is caused by premature ignition timing, the inventor decided to delay the ignition timing (increase the amount of ignition retardation). However, since noise vibration is a phenomenon unrelated to ignition timing, it cannot be reduced no matter how much the ignition timing is delayed. We came to the conclusion that it should be possible to clearly distinguish between knocking vibration and noise vibration by examining the frequency of occurrence of engine vibration above a certain level when changing the engine vibration.

さらに、これを定量的に把握するために、点火
時期の遅角量を横軸に、一定レベル以上のエンジ
ン振動の発生頻度(確率)を縦軸にとつて各運転
状態における遅角量変化に対するエンジン振動の
発生頻度を調べたところ、第2図に示すように遅
角量が0から次第に大きくなるに従つてエンジン
振動の発生頻度が次第に減少し、ある遅角量θK
達した後はいくら遅角量を大きくしてもエンジン
振動の発生頻度が横軸と平行になつて全く変化し
ない折曲線状の特性線図lを各運転状態において
それぞれ得ることができた。
Furthermore, in order to understand this quantitatively, we plotted the ignition timing retard amount on the horizontal axis and the frequency (probability) of occurrence of engine vibration above a certain level on the vertical axis. When the frequency of engine vibration was investigated, as shown in Figure 2, as the amount of retardation gradually increased from 0, the frequency of engine vibration gradually decreased, and after reaching a certain amount of retardation θ K. It was possible to obtain a curved characteristic line l in which the frequency of occurrence of engine vibration is parallel to the horizontal axis and does not change at all in each operating state, no matter how large the retardation amount is.

この特性線図lからは、この特性線図lの折曲
点Aに対応する遅角量θKより小さい遅角量の領域
においては遅角量を大きくするに従つて一定レベ
ル以上のエンジン振動の発生頻度が減少したので
あるから、この領域においてはノツキング振動が
発生していたということであり(この領域をノツ
キング発生領域という)、又、この折曲点Aに対
応する遅角量θKより大きい遅角量の領域において
は遅角量を大きくしてもエンジン振動の発生頻度
が変化しないのであるからこの領域においてはノ
ツキング振動は発生しておらずノイズ振動のみが
発生しているということが分かる(この領域をノ
ツキング非発生領域という)。
From this characteristic diagram l, it can be seen that in the region of the retardation amount smaller than the retardation amount θ K corresponding to the bending point A of this characteristic diagram l, as the retardation amount is increased, the engine vibration increases above a certain level. Since the frequency of occurrence of has decreased, it means that knocking vibration was occurring in this region (this region is called a knocking occurrence region), and the retardation amount θ K corresponding to this bending point A In the region where the retardation amount is larger, the frequency of engine vibration does not change even if the retardation amount is increased, which means that knocking vibration is not occurring in this region, only noise vibration is occurring. (This area is called the knocking non-occurrence area).

従つて、ノツキングを発生させることなくエン
ジン出力を最大限に引き出すためには、遅角量を
エンジンの各運転状態に対応させてそれぞれ第2
図に示す如き特性線図lの折曲点Aに可及的に近
付けるようにすればよいことになる。
Therefore, in order to maximize the engine output without causing knocking, it is necessary to adjust the retard amount to correspond to each operating state of the engine.
What is necessary is to make it as close as possible to the bending point A of the characteristic diagram l as shown in the figure.

本発明の点火時期制御装置は、上述の如き技術
的背景に立脚し、常にノツキングが発生しない適
正遅角量付近で点火を行わしめるようにするもの
であり、この適正遅角量を得るために点火時期の
学習制御を行うようにしている。
The ignition timing control device of the present invention is based on the above-mentioned technical background, and is designed to always perform ignition near the appropriate amount of retardation at which knocking does not occur.In order to obtain this appropriate amount of retardation, Learning control of ignition timing is performed.

以下、本発明のエンジンの点火時期制御装置を
第1図に示す自動車用エンジン1に装着された点
火時期制御装置Zを実施例として説明すると、こ
の点火時期制御装置Zは、エンジン1側に、該エ
ンジン1のクランク角を検出するためのクランク
角センサー5と、吸気管2内の負圧を検出するた
めの負圧センサー6と、エンジン振動を検出する
ための振動センサー7とを設けている。この各セ
ンサー内、クランク角センサー5と負圧センサー
6とで、エンジンの運転状態を検出する運転状態
センサーを構成している。この各センサーから入
力される信号に基づいて制御回路10によりイグ
ニツシヨンコイル8を制御し、点火栓3,3…の
点火時期を制御するようになつている。
Hereinafter, the engine ignition timing control device of the present invention will be described using an ignition timing control device Z installed in an automobile engine 1 shown in FIG. 1 as an example. A crank angle sensor 5 for detecting the crank angle of the engine 1, a negative pressure sensor 6 for detecting the negative pressure in the intake pipe 2, and a vibration sensor 7 for detecting engine vibration are provided. . Among these sensors, a crank angle sensor 5 and a negative pressure sensor 6 constitute an operating state sensor that detects the operating state of the engine. Based on the signals input from each sensor, the control circuit 10 controls the ignition coil 8 to control the ignition timing of the spark plugs 3, 3, . . .

又、この点火時期制御装置Zは、前述の如く各
運転状態における特性線図l(第2図)の折曲点
Aに対応する遅角量付近の点火時期で点火を行わ
しめるようにするものであり、この各運転状態に
おける特性線図lを得るために2つの記憶装置、
即ち第5図に示す如くエンジン1の各運転状態即
ち、エンジン回転数Nとマニホールド負圧Pに対
応させて基準点火時期θBを書き込んだ基本点火時
期マツプをもつた読み出し専用の第1記憶装置
(ROM)11と、第7図に示す如く遅角量とノ
ツキング(ノツク)の発生頻度の相関関係(特性
線図lに相当)を数値的に表したテーブルを、第
6図に示す如くエンジンの運転状態に対応させて
書き込んだノツク頻度テーブルを有する書き込み
読みだし両用の第2記憶装置12とを備え、各点
火毎にノツク頻度テーブル内の各テーブル値を適
正値に更新設定することにより、最終的に各運転
状態における前期特性線図lの折曲点Aを見付
け、以後この折曲点Aに対応する遅角量の点火時
期で点火を行わせるようにしている。
Further, as described above, this ignition timing control device Z is configured to perform ignition at an ignition timing near the retard amount corresponding to the bending point A of the characteristic diagram 1 (FIG. 2) in each operating state. In order to obtain the characteristic diagram l in each operating state, two storage devices,
That is, as shown in FIG. 5, a read-only first storage device has a basic ignition timing map in which reference ignition timing θB is written in correspondence with each operating state of the engine 1, that is, engine speed N and manifold negative pressure P. (ROM) 11, and a table numerically expressing the correlation between the retard amount and the frequency of knocking (corresponding to the characteristic diagram l) as shown in FIG. A second storage device 12 for both reading and writing has a knock frequency table written in correspondence with the operating state of the engine, and by updating and setting each table value in the knock frequency table to an appropriate value for each ignition, Finally, the bending point A of the early characteristic diagram l in each operating state is found, and thereafter ignition is performed at the ignition timing of the retard amount corresponding to this bending point A.

以下、第4図に示す制御フローチヤート等を参
照して適正点火時期の設定手順を説明すると、先
ず、エンジン1の回転数とマニホールド負圧とか
ら現在のエンジンの運転領域を判別し、この運転
領域に対応する点火時期を設定する。即ち、第8
図に示す如く前回のクランク角BTDC90°時の時
刻t1と今回のBTDC90°の時刻t2とからクランクの
回転周期T0(=t2−t1)を計算する(ステツプ21)
とともに、この回転周期T0から現在の回転数N
を算出し(ステツプ22)、さらに、この回転数N
と負圧センサー6によつて検出されるマニホール
ド負圧P(ステツプ23)とから現在のエンジンの
運転領域を判別し(ステツプ24)、第1記憶装置
11の基本点火時期マツプから現在の運転領域に
対応する基本点火時期θBを読み出す(ステツプ
25)。例えば、マニホールド負圧がPm-1〜Pmの
範囲内にあり、且つエンジン回転数がNn-1〜Nn
の範囲内にある場合には基本点火時期はθBon
なる。
Below, the procedure for setting the appropriate ignition timing will be explained with reference to the control flow chart shown in FIG. Set the ignition timing corresponding to the area. That is, the eighth
As shown in the figure, the crank rotation period T 0 (=t 2t 1 ) is calculated from time t 1 at the previous crank angle BTDC 90° and time t 2 at the current BTDC 90° (step 21).
Also, from this rotation period T 0 to the current rotation speed N
(Step 22), and further calculate this rotation speed N
The current operating range of the engine is determined from the manifold negative pressure P detected by the negative pressure sensor 6 (step 23) (step 24), and the current operating range is determined from the basic ignition timing map in the first storage device 11. Read out the basic ignition timing θ B corresponding to (step
twenty five). For example, if the manifold negative pressure is within the range of Pm -1 to Pm and the engine speed is Nn -1 to Nn
If it is within the range of , the basic ignition timing is θ Bo , n .

次に、この基本点火時期θBと、後述する如き制
御手順によつて前回に設定された遅角量θK(今回
の制御が初回である場合にはこの遅角量θKは0と
なる)とから今回の点火時期θ(=θK+θB)を算
出する(ステツプ26)。
Next, this basic ignition timing θ B and the retard amount θ K previously set by the control procedure as described later (if this control is the first time, this retard amount θ K will be 0). ), the current ignition timing θ (=θ KB ) is calculated (step 26).

点火時期θが決定されると、この点火時期に対
応した点火時刻を算出し(ステツプ27、28)、こ
の点火時刻において点火を行う(ステツプ29)。
さらに、点火実行後は次回の点火に備えてイグニ
ツシヨンコイル8への通電開始時刻を算出し(ス
テツプ30、31)、所定の通電開始時刻において通
電を開始する(ステツプ32)。
Once the ignition timing θ is determined, an ignition time corresponding to this ignition timing is calculated (steps 27, 28), and ignition is performed at this ignition time (step 29).
Furthermore, after the ignition is executed, the time to start energizing the ignition coil 8 is calculated in preparation for the next ignition (steps 30, 31), and energization is started at the predetermined energization start time (step 32).

点火栓3が点火されシリンダ内で燃焼が行われ
るとエンジン振動が発生するが、このエンジン振
動の内の一定レベル以上の振動を振動センサー7
で検出し、この振動センサー7の出力からノツク
強度IKを読み込み(ステツプ33)、これに基づい
てノツクが発生したかどうかを判定する(ステツ
プ34)。即ち、ノツク強度IK=0の場合にはノツ
クは発生しなかつたと判定し、逆に、IK>0の場
合にはノツクが発生したと判定する。
When the spark plug 3 is ignited and combustion occurs in the cylinder, engine vibration occurs, and vibrations above a certain level are detected by a vibration sensor 7.
The knock intensity I K is read from the output of the vibration sensor 7 (step 33), and based on this it is determined whether a knock has occurred (step 34). That is, when the knock strength I K =0, it is determined that no knock has occurred, and conversely, when I K >0, it is determined that a knock has occurred.

ノツク判定によりノツクの発生の有無が確認さ
れると、次に、各運転領域におけるノツクの発生
頻度と遅角量を書き込んだテーブル(第7図)を
有するノツク頻度テーブル(第6図)の該各テー
ブルの遅角量θKとノツク頻度Clを、ノツクの有無
に応じて適宜に補正して新しい遅角量θKとノツク
頻度Clに書きかえてゆく。
Once the presence or absence of knock occurrence is confirmed by the knock judgment, next, the knock frequency table (Fig. 6) containing the table (Fig. 7) in which the knock occurrence frequency and retardation amount in each driving range is written is checked. The retard amount θ K and the knock frequency Cl of each table are appropriately corrected depending on the presence or absence of a knock and are rewritten as a new retard amount θ K and knock frequency Cl.

即ち、ノツク判定の結果、ノツクが発生したと
された場合には、ノツク頻度テーブルの運転状態
に対応するテーブル値、例えばTab(n、m)か
ら前回設定した遅角量θKと該遅角量θKに対応する
ノツク頻度Clを読み出し、先ず、前回ノツク頻度
Clに0.01を加えて新しいノツク頻度Clとする(ス
テツプ35)。尚、このようにノツクが発生した場
合には、ノツク頻度の値を1%づつ大きくする
が、この場合、ノツク頻度Clは0≦Cl≦1の値で
なければならないからCl>1かどうかを調べ(ス
テツプ36)、もしCl>1となつた時には強制的に
Cl=1とする(ステツプ37)。
That is, if it is determined that a knock has occurred as a result of the knock judgment, the previously set retardation amount θ K and the retardation are calculated from the table value corresponding to the operating state in the knock frequency table, for example Tab (n, m). The knock frequency Cl corresponding to the amount θ K is read out, and first, the previous knock frequency is
Add 0.01 to Cl to obtain the new knock frequency Cl (step 35). In addition, when a knock occurs in this way, the value of the knock frequency is increased by 1%, but in this case, the knock frequency Cl must be a value of 0≦Cl≦1, so check whether Cl>1. Check (step 36), and if Cl > 1, forcefully
Set Cl=1 (step 37).

さらに、前回設定した遅角量θKにおいてノツク
が発生したのであるからこのノツクをなくするた
めには遅角量をノツク強度IK値に応じて大きくし
てやる必要があり、このため、前回の遅角量θK
補正遅角量K・IK(K:遅角定数)を加えたもの
を新しい遅角量θKとする(ステツプ38)。
Furthermore, since a knock occurred at the previously set retard amount θ K , in order to eliminate this knock it is necessary to increase the retard amount in accordance with the knock strength I K value. A new retard amount θ K is obtained by adding a corrected retard amount K·I K (K: retard constant) to the angular amount θ K (step 38).

一方、ノツクがないと判定された場合には、上
述のノツクがあると判定された場合の操作と全く
逆の操作によつて、新しいノツク頻度Clを前回の
ノツク頻度Clから0.01を引いた値(Cl−0.01)
に、また新しい遅角量θKを前回の遅角量θKから一
定値△θAだけ遅らせた値(θK−△θA)にそれぞれ
設定する(ステツプ39、ステツプ40)。
On the other hand, if it is determined that there is no knock, the new knock frequency Cl is set to the value obtained by subtracting 0.01 from the previous knock frequency Cl by performing the operation that is completely opposite to the operation described above when it was determined that there is a knock. (Cl−0.01)
In addition, a new retard amount θ K is set to a value (θ K −Δθ A ) that is delayed by a constant value Δθ A from the previous retard amount θ K (steps 39 and 40).

次に、上述の如くして求められた新しい遅角量
θKがノツク発生領域にあるのか非ノツク発生領域
にあるのか(換言すれば特性曲線lの折曲点Aの
どちら側にあるのか)を判定し、必要に応じて遅
角量θKを補正する。
Next, determine whether the new retard amount θ K obtained as described above is in the knock occurrence region or in the non-knock occurrence region (in other words, on which side of the bending point A of the characteristic curve l is it located?) is determined, and the retard amount θ K is corrected as necessary.

即ち、運転領域に対応するノツク頻度テーブル
の所定のテーブルTab(n、m)の遅角量θKに対
応するノツク頻度Cl(更新値)と該遅角量θKより
1区分だけ大きい遅角量(θK+1)に対応するノツ
ク頻度(Cl+1)との差△C〔=Cl−C(l+1)〕
を計算し(ステツプ41)、△C>0かどうかを調
べる(ステツプ42)(第3図参照)。
That is, the knock frequency Cl (updated value) corresponding to the retard amount θ K of the predetermined table Tab (n, m) of the knock frequency table corresponding to the operating region and the retard angle that is one class larger than the retard amount θ K. Difference between knock frequency (Cl+ 1) corresponding to quantity (θK + 1 ) △C [=Cl−C(l+ 1 )]
is calculated (step 41), and it is checked whether ΔC>0 (step 42) (see Figure 3).

ここで、△C>0であれば、この遅角量θKの値
は特性線図lの折曲点Aよりノツキング発生領域
側にあるので補正する必要がないとする。逆に、
△C=0である場合には、遅角量θKは特性線図l
の折曲点Aより非ノツキング領域側にあり、しか
も発生したエンジン振動はノイズ振動によるもの
であるということが分かる。従つて、この場合に
は遅角量を小さくしてやる必要があり、このため
ノツク判定により求めた新しい遅角量θKから所定
遅角量△θFだけ小さくした(進角させた)値(θK
−△θF)を遅角量θKの更新値としてテーブルTab
(n、m)に書き込む(ステツプ43)。尚、この
際、遅角量θKは負の値であつてはならないからθK
<0かどうかを調べ(ステツプ44)、θK>0の場
合にはそのまま、またθK<0の場合にはθK=0と
して更に更新する(ステツプ45)。
Here, if ΔC>0, the value of the retard amount θ K is located closer to the knocking occurrence region than the bending point A of the characteristic diagram l, and therefore there is no need to correct it. vice versa,
When △C=0, the retardation amount θ K is determined by the characteristic diagram l
It can be seen that the engine vibration is on the non-knocking region side from the bending point A, and that the generated engine vibration is due to noise vibration. Therefore, in this case, it is necessary to reduce the retard amount, and for this reason, the new retard amount θ K obtained by the knock judgment is reduced (advanced) by a predetermined retard amount △θ FK
−△θ F ) as the updated value of the retardation amount θ K
(n, m) (step 43). In this case, since the retard amount θ K must not be a negative value, θ K
It is checked whether θ K <0 (step 44), and if θ K >0, it is left unchanged, and if θ K <0, it is further updated as θ K =0 (step 45).

上述の如く、点火毎にその際発生したエンジン
振動のノツク判定を行い、それぞれ各運転領域に
対応したテーブルTab(n、m)に書き込まれた
遅角量θKとノツク頻度Clを更新することにより、
遅角量θKの値を次第に特性線図lの折曲点Aに対
応する遅角量に集束せしめることができる。従つ
て、このような更新制御を重ねるほど遅角量θK
ノツク頻度Clとが特性線図lの折曲点Aに可及的
に近づくこととなり、全運転領域を通してエンジ
ンを、ノツクが発生せず且つ最大エンジン出力が
得られる上記特性線図lの折曲点A付近での点火
時期で運転することが可能となる。
As mentioned above, every time there is ignition, a knock judgment is made on the engine vibration that occurs at that time, and the retard amount θ K and knock frequency Cl written in the table Tab (n, m) corresponding to each operating region are updated. According to
The value of the retardation amount θ K can be gradually focused on the retardation amount corresponding to the bending point A of the characteristic diagram l. Therefore, the more this kind of update control is repeated, the more the retardation amount θ K and the knock frequency Cl will approach the bending point A of the characteristic diagram l, and the more the engine is operated throughout the entire operating range, the more the knock occurs. It becomes possible to operate the engine with the ignition timing near the bending point A of the characteristic diagram 1, at which the maximum engine output can be obtained without the engine turning off.

次に、本発明の効果を説明すると、本発明のエ
ンジンの点火時期制御装置は、エンジンの各運転
領域におけるノツキング振動とノイズ振動の発生
確率と点火時期の遅角量の特性を学習により求め
るとともに、この特性から、該遅角量をノツキン
グの発生するノツキング発生領域とノツキングの
発生しないノツキング非発生領域との境界部に対
応する遅角量、換言すれば、ノツキングを発生さ
せることなく最大エンジン出力を得ることのでき
る遅角量に可及的に近付けるようにしているた
め、一定レベル以上のエンジン振動であればノイ
ズ振動をもノツキング振動として検出し、それに
応じてエンジンの点火時期の遅角量を制御する従
来のエンジンの点火時期制御装置の如く不必要に
遅角量を大きくしてエンジン出力の低下を招くと
いうようなことがなくなり、それだけエンジンの
燃焼特性及び出力特性を向上せしめ得るという効
果がある。
Next, to explain the effects of the present invention, the engine ignition timing control device of the present invention calculates the occurrence probability of knocking vibration and noise vibration in each operating range of the engine and the characteristics of the ignition timing retardation amount by learning. , From this characteristic, the amount of retardation is determined to be the amount of retardation corresponding to the boundary between the knocking region where knocking occurs and the knocking non-occurrence region where knocking does not occur, in other words, the maximum engine output without knocking. Since the retardation amount is as close as possible to the amount of retardation that can be obtained, even noise vibrations are detected as knocking vibrations if the engine vibration is above a certain level, and the amount of retardation of the engine's ignition timing is adjusted accordingly. This eliminates the need for a conventional engine ignition timing control device that unnecessarily increases the amount of retardation and causes a decrease in engine output, and the combustion characteristics and output characteristics of the engine can be improved accordingly. There is.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例にかかるエンジンの点
火時期制御装置のシステム図、第2図及び第3図
は遅角量とノツク及び大きなノイズの発生頻度の
相関関係を示す特性線図、第4図は点火時期の制
御フローチヤート、第5図は基本点火時期マツ
プ、第6図はノツク頻度テーブル、第7図はノツ
ク頻度テーブル内のテーブル、第8図はクランク
角とイグニツシヨンコイルの通電時期の相対関係
を示す線図である。 1……エンジン、5……クランク角センサー、
6……負圧センサー、7……振動センサー、10
……制御回路、11……第1記憶装置、12……
第2記憶装置。
FIG. 1 is a system diagram of an engine ignition timing control device according to an embodiment of the present invention, and FIGS. 2 and 3 are characteristic diagrams showing the correlation between the amount of retardation and the frequency of occurrence of knocks and loud noises. Figure 4 is an ignition timing control flowchart, Figure 5 is a basic ignition timing map, Figure 6 is a knock frequency table, Figure 7 is a table within the knock frequency table, and Figure 8 is a graph of crank angle and ignition coil. FIG. 3 is a diagram showing a relative relationship between energization timings. 1...Engine, 5...Crank angle sensor,
6... Negative pressure sensor, 7... Vibration sensor, 10
...Control circuit, 11...First storage device, 12...
Second storage device.

Claims (1)

【特許請求の範囲】 1 エンジン振動に対応した信号を出力する振動
センサーと、エンジンの運転状態を検出する運転
状態センサーと、エンジン運転状態ごとの基本点
火時期をあらかじめ記憶している第1記憶装置
と、 エンジン運転状態ごとに点火時期遅角量に対す
る所定レベル以上のエンジン振動の発生頻度が記
憶される第2記憶装置と、 エンジンの運転状態に対応して上記第1記憶装
置より求められる基本点火時期と当該運転状態に
おける前回の点火時の遅角量とから実行点火時期
を演算する実行点火時期演算手段と、該実行点火
時期に基づいて点火を実行する点火実行手段と、
この点火実行に伴うエンジン振動の発生を検出す
る振動判定手段と、振動発生時には上記第2記憶
装置に記憶されている当該運転状態における前回
の振動発生頻度を所定値だけ増加補正し、また振
動非発生時には所定値だけ減少補正し且つこれを
上記第2記憶装置に当該運転状態における最新の
振動発生頻度として更新記憶させる振動発生頻度
更新手段と、振動発生時には上記第2記憶装置に
記憶されている当該運転状態における前回の遅角
量を所定値だけ増加補正し、また振動非発生時に
は所定値だけ減少補正し且つこれを当該運転状態
における最新の遅角量として該第2記憶装置に更
新記憶させる遅角量更新手段と、上記第2記憶装
置に更新記憶されている当該運転状態における最
新の振動発生頻度と該最新の更新遅角量よりも所
定量だけ大きい遅角量に対応する振動発生頻度と
を比較する比較手段と、該比較手段による比較の
結果その偏差が零以外の場合にはそのまま上記制
御を続行させ、零である場合には上記更新後の遅
角量を減少側に再補正してこれを上記第2記憶装
置に更新記憶させた後に上記制御を続行させる制
御続行手段とを有する制御回路とを備えたことを
特徴とするエンジンの点火制御装置。
[Claims] 1. A vibration sensor that outputs a signal corresponding to engine vibration, an operating state sensor that detects the operating state of the engine, and a first storage device that stores in advance the basic ignition timing for each engine operating state. a second storage device that stores the frequency of occurrence of engine vibration of a predetermined level or higher with respect to the amount of ignition timing retardation for each engine operating state; and a basic ignition value determined from the first storage device corresponding to the engine operating state. an effective ignition timing calculation means for calculating an effective ignition timing from the timing and a retard amount of the previous ignition in the operating state; an ignition execution means for executing ignition based on the effective ignition timing;
A vibration determination means detects the occurrence of engine vibration due to execution of the ignition, and when vibration occurs, increases the frequency of vibration occurrence in the previous operating state stored in the second storage device by a predetermined value, and vibration occurrence frequency updating means for reducing the frequency by a predetermined value when the vibration occurs, and updating and storing this in the second storage device as the latest vibration occurrence frequency in the operating state; The previous amount of retardation in the operating state is corrected by increasing it by a predetermined value, and when vibration does not occur, it is corrected by decreasing it by a predetermined value, and this is updated and stored in the second storage device as the latest amount of retardation in the operating state. a retardation amount updating means, a vibration occurrence frequency corresponding to the latest vibration occurrence frequency in the operating state updated and stored in the second storage device and a retardation amount that is larger by a predetermined amount than the latest updated retardation amount; and a comparison means for comparing the difference between the two, and if the deviation is other than zero as a result of the comparison by the comparison means, the above control is continued as it is, and if it is zero, the retard amount after the above update is re-corrected to the decreasing side. an ignition control device for an engine, comprising: a control circuit having control continuation means for continuing the control after updating and storing the updated information in the second storage device.
JP57228238A 1982-12-30 1982-12-30 Ignition timing control device for engine Granted JPS59126073A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57228238A JPS59126073A (en) 1982-12-30 1982-12-30 Ignition timing control device for engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57228238A JPS59126073A (en) 1982-12-30 1982-12-30 Ignition timing control device for engine

Publications (2)

Publication Number Publication Date
JPS59126073A JPS59126073A (en) 1984-07-20
JPH0350908B2 true JPH0350908B2 (en) 1991-08-05

Family

ID=16873320

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57228238A Granted JPS59126073A (en) 1982-12-30 1982-12-30 Ignition timing control device for engine

Country Status (1)

Country Link
JP (1) JPS59126073A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5415970A (en) * 1977-07-06 1979-02-06 Kubota Ltd Production of patterned product of molded plastic
JPS57113965A (en) * 1981-01-05 1982-07-15 Nippon Soken Inc Ignition timing controller for internal-combustion engine
JPS57199919A (en) * 1981-06-03 1982-12-08 Matsushita Electric Ind Co Ltd Knocking detector

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5415970A (en) * 1977-07-06 1979-02-06 Kubota Ltd Production of patterned product of molded plastic
JPS57113965A (en) * 1981-01-05 1982-07-15 Nippon Soken Inc Ignition timing controller for internal-combustion engine
JPS57199919A (en) * 1981-06-03 1982-12-08 Matsushita Electric Ind Co Ltd Knocking detector

Also Published As

Publication number Publication date
JPS59126073A (en) 1984-07-20

Similar Documents

Publication Publication Date Title
JP3711320B2 (en) Knock control device for internal combustion engine
JPS58143169A (en) Ignition timing control method
JP3715847B2 (en) Knock control device for internal combustion engine
JP3595217B2 (en) Knock detection device for internal combustion engine
JPH0650099B2 (en) Ignition timing control method for internal combustion engine
JP2834937B2 (en) Internal combustion engine knock control device
JPH0350908B2 (en)
JP2868954B2 (en) Internal combustion engine knock control device
JPS6243056B2 (en)
JPH081150B2 (en) Internal combustion engine knocking detection method
JPS6278480A (en) Ignition timing control of internal combustion engine
JP2832299B2 (en) Ignition timing learning control method
JPH0315019B2 (en)
JPH01104929A (en) Compression ratio controller for internal combustion engine
JP2909311B2 (en) Internal combustion engine knock control device
JP2528168B2 (en) Ignition timing control device for internal combustion engine
JP2007132218A (en) Engine knocking control device
KR200307854Y1 (en) Ignition Device for Improved Fuel Efficiency
JPH0444851Y2 (en)
JP4487453B2 (en) Knocking detection device for internal combustion engine
JP3690017B2 (en) Ignition timing control method
JP3104526B2 (en) Apparatus and method for controlling ignition timing of internal combustion engine
JPH06280728A (en) Knocking detector for engine
JPH0366511B2 (en)
JPH0555711B2 (en)