[go: up one dir, main page]

JPH0350801A - Thin film resistor for strain gauge - Google Patents

Thin film resistor for strain gauge

Info

Publication number
JPH0350801A
JPH0350801A JP1186944A JP18694489A JPH0350801A JP H0350801 A JPH0350801 A JP H0350801A JP 1186944 A JP1186944 A JP 1186944A JP 18694489 A JP18694489 A JP 18694489A JP H0350801 A JPH0350801 A JP H0350801A
Authority
JP
Japan
Prior art keywords
oxygen
thin film
strain
metals
semiconductors
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1186944A
Other languages
Japanese (ja)
Inventor
Hideya Yamadera
秀哉 山寺
Yasunori Taga
康訓 多賀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Central R&D Labs Inc
Original Assignee
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Central R&D Labs Inc filed Critical Toyota Central R&D Labs Inc
Priority to JP1186944A priority Critical patent/JPH0350801A/en
Publication of JPH0350801A publication Critical patent/JPH0350801A/en
Pending legal-status Critical Current

Links

Landscapes

  • Adjustable Resistors (AREA)
  • Non-Adjustable Resistors (AREA)

Abstract

PURPOSE:To improve sensitivity, a mechanical strength, a strain resistance characteristic and a resistance temperature characteristic by specifying composition rates of Fe, oxygen and metals or semiconductors and a film thickness and by forming a thin film by a physical evaporation method or a chemical evaporation method. CONSTITUTION:The content of Fe is 60 to 98 atom % and the content of oxygen is in the range of 2 to 30 atom % or preferably 15 to 25%. As to metals, Al, titanium, tantalum, zirconium, indium, etc., are used. As for semiconductors, Si, germanium, boron, etc., are used. The contents of the metals and the semiconductors are preferably in the range of 0 to 10atom%. Excellent properties cannot be obtained unless Fe, oxygen and the metals or the semiconductors are not distributed uniformly substantially in the order of microns or less. A film thickness is 0.01mum or above and preferably 10mum or below so as to prevent breakdown of a film due to an internal stress. For forming the thin film, any of an ion plating method, a sputtering method, an evaporation method and a CVD method or a CVD method such as a plasma CVD method may be used.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、歪による電気抵抗変化を利用した歪ゲージ用
の薄膜抵抗体に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a thin film resistor for strain gauges that utilizes changes in electrical resistance due to strain.

〔従来技術と問題点〕[Conventional technology and problems]

従来、歪デージ用薄膜抵抗体は、大きく分けて、金属ま
たは合金の歪抵抗変(ヒを利用したものと、半導体のピ
エゾ抵抗効果を利用したものの二種類が用いられてきた
(センサ技術vo1.5 、 No、 7 、49(1
985))。前者(例えばニッケル(Ni)クロム(C
r)合金)は、抵抗温度係数が小さいため温度による出
力の変動が小さく、かつ歪抵抗特性の直線性に優れてい
る。しかし、歪に対する抵抗変化の割合、すなわちゲー
ジ率が低いという欠点があった。その結果、前者は、ゲ
ージ率が低いために、歪ゲージのS/N比が小さく高感
度の増幅器を必要とし、歪ゲージの小型化が困難であっ
た。一方、後者(例えばシリコン(Si))は、ゲージ
率は高いが、抵抗温度係数が大きく、歪抵抗特性の直線
性が悪いという欠点があった。
Conventionally, thin film resistors for strain dage have been broadly divided into two types: those that utilize a metal or alloy strain resistance variable (H), and those that utilize the piezoresistance effect of a semiconductor (Sensor Technology Vol. 1). 5, No, 7, 49 (1
985)). The former (e.g. nickel (Ni), chromium (C)
r) Alloy) has a small resistance temperature coefficient, so the fluctuation in output due to temperature is small, and the strain resistance characteristics are excellent in linearity. However, there was a drawback that the ratio of resistance change to strain, that is, the gauge factor was low. As a result, since the former has a low gauge factor, the strain gauge has a small S/N ratio and requires a highly sensitive amplifier, making it difficult to miniaturize the strain gauge. On the other hand, the latter (for example, silicon (Si)) has a high gauge factor, but has the drawbacks of a large resistance temperature coefficient and poor linearity of strain resistance characteristics.

その結果、後者は、歪ゲージの出力に直線性を改善する
ための増幅器や温度補償回路を必要とし、制御系が複雑
になるという問題があった。さらに、後者は前者と比べ
て破壊強度が弱く、高圧用の歪ゲージには不適であった
As a result, the latter requires an amplifier and a temperature compensation circuit to improve the linearity of the strain gauge output, resulting in a complicated control system. Furthermore, the latter had a lower breaking strength than the former, making it unsuitable for high-pressure strain gauges.

すなわち、従来は高感度で機械的強度に優れた歪ゲージ
用薄膜抵抗体は存在しなかった。特に高感度で歪抵抗特
性・抵抗温度特性・機械的強度がともに良好な歪ゲージ
用薄膜抵抗体は開発することが困難であるとされていた
That is, conventionally, there has been no thin film resistor for strain gauges that has high sensitivity and excellent mechanical strength. In particular, it has been considered difficult to develop thin film resistors for strain gauges that are highly sensitive and have good strain resistance characteristics, resistance temperature characteristics, and mechanical strength.

〔発明の背景〕[Background of the invention]

このような状況下、本発明者等は上記問題点を解決すべ
く鋭意努力を重ねた。本発明者等はスパッタリングによ
って鉄(Fe)と酸素と金属であるアルミニウム(Aj
2)を混合した薄膜が通常の金属・合金では得られない
ゲージ率(k=5〜7、通常の金属等は1.5〜3)を
持つことを見出した。
Under these circumstances, the inventors of the present invention have made extensive efforts to solve the above problems. The present inventors used sputtering to combine iron (Fe), oxygen, and metal aluminum (Aj
It has been found that a thin film mixed with 2) has a gauge factor (k=5 to 7, normal metals are 1.5 to 3) that cannot be obtained with normal metals and alloys.

したがって、Feと酸素と金属を含んだ薄膜抵抗体を歪
ゲージ材として用いれば、高感度の歪ゲージ材が得られ
ることに到達した。また、発明者はFeへの添加剤であ
る酸素とA1等の金属等がFeの結晶粒を微細化するよ
うに作用して、Feの伝導電子の平均自由行程を制御で
き、その結果、抵抗温度係数を低下することができると
考えた。
Therefore, it has been found that a highly sensitive strain gauge material can be obtained by using a thin film resistor containing Fe, oxygen, and metal as a strain gauge material. In addition, the inventor discovered that oxygen, which is an additive to Fe, and metals such as A1 act to make the crystal grains of Fe finer, making it possible to control the mean free path of conduction electrons in Fe, and as a result, the resistance We thought that the temperature coefficient could be lowered.

〔発明の目的〕 本発明は、高感度で機械的強度に侵れた歪ゲージ用薄膜
抵抗体、さらには歪抵抗特性および抵抗温度特性にも優
れた歪ゲージ用の薄膜抵抗体を提供することを目的とす
る。
[Objective of the Invention] The present invention provides a thin film resistor for strain gauges with high sensitivity and improved mechanical strength, as well as a thin film resistor for strain gauges with excellent strain resistance characteristics and resistance temperature characteristics. With the goal.

〔第1発明の説明〕 本第1発明(特許請求の範囲に記載の発明)は、物理的
蒸着法または化学的蒸着法によって形成されたFe60
〜98原子%、酸素2〜30原子%、金属又は半導体0
〜10原子%が均一に分布した薄膜であって、膜厚が0
.01〜10μmであることを特徴とする歪ゲージ用薄
膜抵抗体に関するものである。
[Description of the first invention] The first invention (the invention described in the claims) is based on Fe60 formed by a physical vapor deposition method or a chemical vapor deposition method.
~98 atomic%, oxygen 2-30 atomic%, metal or semiconductor 0
A thin film with a uniform distribution of ~10 atomic % and a film thickness of 0
.. The present invention relates to a thin film resistor for a strain gauge, characterized in that the thickness is 01 to 10 μm.

本第1発明に係る歪ゲージ用薄膜抵抗体は、従来ある金
属または合金の歪ゲージに比べ5以上という高いゲージ
率を示す。また、Si等の半導体歪ゲージに比べ歪抵抗
の直線性に優れ、抵抗温度係数も±100 p pm/
’C以下と小さい。また、120°C前後の温度に長時
間保持しても抵抗変化率がほとんど変わらず優れた高温
耐久性を示す。
The thin film resistor for strain gauges according to the first invention exhibits a high gauge factor of 5 or more compared to conventional metal or alloy strain gauges. In addition, the linearity of strain resistance is superior to that of semiconductor strain gauges such as Si, and the temperature coefficient of resistance is ±100 ppm/
'C or less. Furthermore, even when kept at a temperature of around 120°C for a long time, the rate of change in resistance hardly changes, showing excellent high-temperature durability.

さらに、従来の金属抵抗体に近い強度が維持されており
、Si等の半導体系抵抗体に比べ著しく高い強度を示す
。このような優れた特性を示す理由ははっきり明らかに
されていないが、抵抗温度係数が小さい理由として、酸
素、および金属がFeの伝導電子の流れを妨げる散乱体
として作用しFeの伝導電子の平均自由行程を制御して
いること、AA等の金属ならびにSi等の半導体を添加
することにより組織が極めて微細であること等によるも
のと考えられる。また、Feと添加元素との混合状態が
均一なため高温強度に憂れているものと推定される。
Furthermore, it maintains a strength close to that of conventional metal resistors, and exhibits significantly higher strength than semiconductor-based resistors such as Si. The reason for such excellent characteristics is not clearly clarified, but the reason for the low temperature coefficient of resistance is that oxygen and metal act as scatterers that impede the flow of conduction electrons in Fe, and the average conduction electrons in Fe are small. This is thought to be due to the fact that the free path is controlled and the structure is extremely fine due to the addition of metals such as AA and semiconductors such as Si. Furthermore, it is presumed that the high temperature strength is poor because the mixing state of Fe and the additive elements is uniform.

したがって、本発明に係る薄膜抵抗体を用いれば、高ゲ
ージ率で高温耐久性に優れた圧力センサ、ロードセル等
への応用も可能である。
Therefore, by using the thin film resistor according to the present invention, it is possible to apply it to pressure sensors, load cells, etc. that have a high gauge factor and excellent high-temperature durability.

〔第2発明の説明〕 以下、本第1発明をより具体化した発明(本第2発明と
する)について詳しく説明する。
[Description of the Second Invention] Hereinafter, an invention that further embodies the first invention (referred to as the second invention) will be described in detail.

薄膜抵抗体を構成するFeの含有量は、60〜98原子
%で、酸素の含有量は2〜30原子%の範囲で用いる。
The content of Fe constituting the thin film resistor is 60 to 98 atomic %, and the content of oxygen is 2 to 30 atomic %.

これらの範囲外では、高ゲージ率を得るのが困難である
。望ましくは15〜25%が良い。また、金属はAl、
チタン(Ti)、クンタル(Ta)、ジルコニウム(Z
r)、インジウム(In)等を、また、半導体はSi、
ゲルマニウム(Ge)、硼素(B)等を用いる。金5瀉
ならびに半導体の含有量は、高ゲージ率を保ち良好な歪
抵抗特性・抵抗温度特性を得るために、0〜10原子%
の範囲が望ましい。Fe、酸素および金属または半導体
は、少なくともμmオーダーz下でほぼ均一に分布して
いないと良好な性質;マ得られない。
Outside these ranges, it is difficult to obtain a high gauge factor. It is preferably 15 to 25%. In addition, the metal is Al,
Titanium (Ti), Kuntal (Ta), Zirconium (Z)
r), indium (In), etc., and semiconductors include Si,
Germanium (Ge), boron (B), etc. are used. The content of gold and semiconductor is 0 to 10 atomic% in order to maintain a high gauge factor and obtain good strain resistance characteristics and resistance temperature characteristics.
A range of is desirable. Good properties cannot be obtained unless Fe, oxygen, and metals or semiconductors are substantially uniformly distributed at least on the order of μm.

膜厚は連続膜を形成でき安定な歪抵抗特性を得るために
、0.018m以上で、かつ、膜の内部応力による破壊
を防ぐために10μm以下が望ましい。
The film thickness is desirably 0.018 m or more in order to form a continuous film and obtain stable strain resistance characteristics, and 10 μm or less in order to prevent destruction due to internal stress of the film.

本第2発明に係る薄膜抵抗体の製造方法は通常の薄膜形
成に用いられるイオンブレーティング法、スパッタリン
グ法、蒸着法やプラズマCVD法等のPVD法あるいは
CVD法のいずれを用いてもよい。ただし、Fe、酸素
と金属または半導体の混合状態を緻密かつ均一にするた
めには、スパッタリング法または蒸着法が望ましい。ま
た、Fe、酸素と金属または半導体の混合状態をm−均
一にするために、薄膜形成後、200〜500°Cで1
〜2時間程度の熱処理を施してもよい。薄膜抵抗体中に
酸素を含ませるためには、スパッタリング等の処理雰囲
気中に酸素が含有されていなければならない。
The method for manufacturing the thin film resistor according to the second aspect of the present invention may use any of the PVD methods or CVD methods, such as the ion blasting method, the sputtering method, the vapor deposition method, and the plasma CVD method, which are commonly used for forming thin films. However, in order to make the mixed state of Fe, oxygen, and metal or semiconductor dense and uniform, sputtering method or vapor deposition method is preferable. In addition, in order to make the mixed state of Fe, oxygen and metal or semiconductor m-uniform, after forming the thin film, it was heated at 200 to 500 °C for 1
Heat treatment may be performed for about 2 hours. In order to include oxygen in the thin film resistor, oxygen must be included in the processing atmosphere for sputtering or the like.

膜の特性が特に優れているのは、酸素量が15〜25a
t%の範囲であるが、15at%以上の酸素を膜中に含
ませるためには不純物として雰囲気中に含まれている酸
素量以上の酸素を雰囲気中に積極的に添加する必要があ
る。
The film has particularly excellent properties when the oxygen content is 15 to 25a.
In order to include 15 at % or more of oxygen in the film, it is necessary to actively add oxygen to the atmosphere as an impurity in an amount greater than the amount of oxygen contained in the atmosphere.

しかし、雰囲気中に酸素が含まれていなくても、ACT
i等の金属またはSi等の半導体を酸化物の形でスパッ
タリング等を行えば30at%までの酸素量であれば薄
膜中に含ませ得る。
However, even if the atmosphere does not contain oxygen, ACT
If a metal such as i or a semiconductor such as Si is sputtered in the form of an oxide, an oxygen amount of up to 30 at % can be included in the thin film.

〔実施例〕〔Example〕

実施例1 第1図に、本実施例によって製作した歪ゲージを示す。 Example 1 FIG. 1 shows a strain gauge manufactured according to this example.

薄膜抵抗体は、二元同時スパッタリング法により形成し
た。まず、コーニング0313ガラス基板1に、トリク
レン煮沸洗浄およびアセトン超音波洗浄を施し、乾燥後
スパッタリング装置内に歪ゲージ用SUS製マスクを介
して配置し、装置内で5X10−6Torrまで真空排
気した。次に、Arガスを上記装置内に5X10−3T
orr導入し、FeターゲットにDC300WSAff
20゜ターゲットにRF 150W (13,56MH
z)の電力を印加し、6分間スパッタリングを行った。
The thin film resistor was formed by a dual simultaneous sputtering method. First, a Corning 0313 glass substrate 1 was subjected to trichlene boiling cleaning and acetone ultrasonic cleaning, and after drying, it was placed in a sputtering device through a strain gauge SUS mask, and the device was evacuated to 5×10 −6 Torr. Next, Ar gas was introduced into the above device at 5X10-3T.
Introduced orr and DC300WSAff on Fe target
RF 150W (13,56MH
A power of z) was applied and sputtering was performed for 6 minutes.

このように製作した抵抗体である歪ゲージ膜2の組成を
EPMA、XPS、厚さを触針式膜厚計によって調査し
たところ歪ゲージ膜の組成はFe−18at%酸素(0
)−4at%AA膜厚は0.20μmであった(表)。
The composition of the strain gauge film 2, which is a resistor manufactured in this way, was investigated by EPMA and XPS, and the thickness was investigated using a stylus-type film thickness meter.
)-4 at% AA film thickness was 0.20 μm (Table).

歪ゲージ膜を形成した基板を大気中に取り出し、電極用
マスクを取り付けた後スパッタリング装置内で前記と同
様の方法で、AuターゲットにDC250Wの電力を印
加し、1分間のスパッタリングを行い、Au電極膜3を
0,1μm形成した。さらに、大気中で300°C,l
hrの熱処理を施した後、Au電極にリード線、1を半
田付けした。このようにして製作した歪ゲージを用いて
特性評価試験を行った。
The substrate on which the strain gauge film was formed was taken out into the atmosphere, an electrode mask was attached, and then a power of 250 W DC was applied to the Au target in the same manner as above in the sputtering equipment, sputtering was performed for 1 minute, and the Au electrode was removed. A film 3 with a thickness of 0.1 μm was formed. Furthermore, 300°C, l in the atmosphere
After heat treatment for hr, lead wire 1 was soldered to the Au electrode. A characteristic evaluation test was conducted using the strain gauge thus manufactured.

歪ゲージとしての特性評価は、歪抵抗特性、抵抗温度特
性、高温放置試験により行った。第3図は、本実施例に
よって製作した歪ゲージの歪と抵抗変化率の関係を示し
たものである。ゲージ率には歪と抵抗変化率の関係を示
す直線の傾きから求めた。抵抗温度特性は、−30°C
から120°Cまで温度を変化させ、抵抗温度係数TC
R(ppm7°C)を測定した。また高温放置試験は、
1200Cで500hr放置した後の抵抗変化率ΔR(
%)を測定した。表に評価結果を示す。
Characteristics as a strain gauge were evaluated by strain resistance characteristics, resistance temperature characteristics, and high temperature storage tests. FIG. 3 shows the relationship between strain and resistance change rate of the strain gauge manufactured according to this example. The gauge factor was determined from the slope of the straight line showing the relationship between strain and resistance change rate. Resistance temperature characteristics are -30°C
By changing the temperature from 120°C to 120°C, the temperature coefficient of resistance TC
R (ppm 7°C) was measured. In addition, the high temperature storage test
Resistance change rate ΔR after being left at 1200C for 500 hours (
%) was measured. The evaluation results are shown in the table.

実施例2〜4 実施例1と同様の方法で、膜の組成を81とした場合な
らひに酸素の組成を変えて歪ゲージ膜を形成した。表に
、歪ゲージ膜の組成・膜厚を示す。
Examples 2 to 4 Strain gauge films were formed in the same manner as in Example 1, except that the composition of the film was 81 and the composition of oxygen was changed. The table shows the composition and thickness of the strain gauge film.

つぎに、実施例1と同様の方法で電極・リード線を取り
付けて、実施例1と同様の評価試験を実施し、表に評価
結果を示す。
Next, electrodes and lead wires were attached in the same manner as in Example 1, and the same evaluation test as in Example 1 was conducted, and the evaluation results are shown in the table.

比較例 実施例1と同様、二元スパッタリング法を用いて、組成
かFe−16at%0−13at%Aj2およびFe−
24at%0−LLat%Siである薄膜抵抗体ならび
に従来使われてきた歪ゲージ材であるN+CrおよびS
iをガラス基板上に歪ゲージ膜として形成した。表に組
成・膜厚を示す。次に、実施例1と同様の方法で電極・
リート線を取り付けて歪ゲージを製作し、実施例1と同
様の評価試験を実施した。表に評価結果を示す。また、
NiCr合金の歪抵抗特性を第3図に示す。
Comparative Example Similar to Example 1, the composition was changed to Fe-16at%0-13at%Aj2 and Fe-
24at%0-LLat%Si thin film resistor and conventionally used strain gauge materials N+Cr and S
i was formed as a strain gauge film on a glass substrate. The table shows the composition and film thickness. Next, in the same manner as in Example 1, the electrode
A strain gauge was manufactured by attaching a Riet wire, and the same evaluation test as in Example 1 was conducted. The evaluation results are shown in the table. Also,
Figure 3 shows the strain resistance characteristics of the NiCr alloy.

評価 表かられかるように、本実施例1〜4に係るFeと酸素
、Feと酸素とAlならひにFeと酸素とSiで構成さ
れる歪ゲージ膜は、比較例のNiCr合金と比べて、3
〜4.2倍のゲージ率を有する。すなわち、本実施例の
歪ゲージは従来の金属抵抗型歪ゲージよりも感度が数倍
も優れていることか明らかである。また、Fe、酸素に
対しAlを13at%ならびに5illat%添加した
比較例5.6は抵抗温度係数が劣っている。これは、本
実施例の歪ゲージでは、Feに酸素とAlまたはFeと
酸素とSiか適当量混合していることにより高いゲージ
率を有し、抵抗温度係数の小さい薄膜が形成された効果
によるものである。
As can be seen from the evaluation table, the strain gauge films composed of Fe and oxygen, Fe, oxygen and Al, and Fe, oxygen and Si according to Examples 1 to 4 are superior to the NiCr alloy of the comparative example. ,3
~4.2 times the gauge factor. That is, it is clear that the strain gauge of this embodiment has several times better sensitivity than the conventional metal resistance type strain gauge. Furthermore, Comparative Example 5.6 in which 13 at % and 5 illat % of Al were added to Fe and oxygen had an inferior temperature coefficient of resistance. This is due to the effect that in the strain gauge of this example, a thin film having a high gauge factor and a small temperature coefficient of resistance is formed by mixing appropriate amounts of Fe with oxygen and Al or Fe with oxygen and Si. It is something.

さらに、表かられかるようにFeと酸素ならびにFeと
酸素とA!、Feと、酸素とSiからなる歪ゲージは、
比較例のSiの歪ゲージと比へ、抵抗温度特性・高温耐
久性が憂れていることが明らかである。これは、Fe中
に酸素とAβまたはSiが適当量混合することにより、
Feの伝導電子の平均自由行程か短くなり、抵抗温度係
数か小さくなったためであると考えられる。また、Fe
と酸素とA1またはSiの混合状態が均一なために、高
温放置しても薄膜は安定であった。また第3図から本実
施例により製作した歪ゲージは直線性を維持したままで
歪感度か著しく改善されていることが明らかである。
Furthermore, as shown in the table, Fe and oxygen and Fe and oxygen and A! , a strain gauge made of Fe, oxygen, and Si is
It is clear that the resistance-temperature characteristics and high-temperature durability are poor compared to the Si strain gauge of the comparative example. This is achieved by mixing appropriate amounts of oxygen and Aβ or Si in Fe.
This is thought to be because the mean free path of conduction electrons in Fe became shorter and the temperature coefficient of resistance became smaller. Also, Fe
The thin film was stable even when left at high temperatures because the mixed state of oxygen, A1, or Si was uniform. Furthermore, from FIG. 3, it is clear that the strain gauge manufactured according to this example has significantly improved strain sensitivity while maintaining linearity.

また、本実施例1および2に係る歪ゲージはSi等の半
導体系の歪ゲージに比し、強度が著しく優れていた。
Furthermore, the strain gauges according to Examples 1 and 2 had significantly superior strength compared to strain gauges made of semiconductors such as Si.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例において用いた歪ゲージの平面
図、第2図は該歪ゲージの断面図、第3図は実施例■と
比較例1の歪−抵抗変化率の関係を求めた図である。
Fig. 1 is a plan view of a strain gauge used in an example of the present invention, Fig. 2 is a cross-sectional view of the strain gage, and Fig. 3 shows the relationship between strain and resistance change rate in Example ① and Comparative Example 1. This is a diagram.

Claims (1)

【特許請求の範囲】[Claims]  物理的蒸着法または化学的蒸着法によって形成された
、鉄60〜98原子%、酸素2〜30原子%、金属又は
半導体0〜10原子%が均一に分布した薄膜であって、
膜厚が0.01〜10μmであることを特徴とする歪ゲ
ージ用薄膜抵抗体。
A thin film formed by a physical vapor deposition method or a chemical vapor deposition method, in which 60 to 98 atom% of iron, 2 to 30 atom% of oxygen, and 0 to 10 atom% of a metal or semiconductor are uniformly distributed,
A thin film resistor for a strain gauge, having a film thickness of 0.01 to 10 μm.
JP1186944A 1989-07-19 1989-07-19 Thin film resistor for strain gauge Pending JPH0350801A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1186944A JPH0350801A (en) 1989-07-19 1989-07-19 Thin film resistor for strain gauge

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1186944A JPH0350801A (en) 1989-07-19 1989-07-19 Thin film resistor for strain gauge

Publications (1)

Publication Number Publication Date
JPH0350801A true JPH0350801A (en) 1991-03-05

Family

ID=16197457

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1186944A Pending JPH0350801A (en) 1989-07-19 1989-07-19 Thin film resistor for strain gauge

Country Status (1)

Country Link
JP (1) JPH0350801A (en)

Similar Documents

Publication Publication Date Title
JP4436064B2 (en) Thermistor material and manufacturing method thereof
JP3642449B2 (en) Cr-N-based strain resistance film, manufacturing method thereof, and strain sensor
JP2018091848A (en) Strain resistance film and strain sensor, and manufacturing method of them
US8191426B2 (en) Low TCR nanocomposite strain gages
US5001454A (en) Thin film resistor for strain gauge
Van Den Broek et al. Metal film precision resistors: Resistive metal films and a new resistor concept
Lukose et al. Thin film resistive materials: past, present and future
JP6908554B2 (en) Strain resistance film and strain sensor, and their manufacturing method
Bridgman The Electric Resistance to 30,000 kg/cm2 of Twenty Nine Metals and Intermetallic Compounds
JPH02152201A (en) Thin film resistor for strain gauge
JP2019074452A (en) Thin film strain sensor material and thin film strain sensor
JPH0350801A (en) Thin film resistor for strain gauge
JPH0276201A (en) Thin film resistor for strain gauge
Bethe et al. Thin-film strain-gage transducers
JP2562610B2 (en) Thin film resistor for strain gauge
Ayerdi et al. Ceramic pressure sensor based on tantalum thin film
JP2024054754A (en) Strain resistant film, physical quantity sensor, and method for manufacturing strain resistant film
JPH0427286B2 (en)
JP2001110602A (en) Thin film resistor forming method and sensor
JPH06213613A (en) Strain resistance material, manufacturing method thereof, and thin film strain sensor
JP4895481B2 (en) Resistance thin film and sputtering target for forming the resistance thin film
JPH0684602A (en) Thin film resistor material
JPS60174844A (en) Amorphous alloy for material of strain gauge
JP4042714B2 (en) Metal resistor material, sputtering target and resistive thin film
JP2911675B2 (en) High temperature corrosion resistant amorphous alloy