[go: up one dir, main page]

JPH03502389A - Integrated circuits with means to reduce electrostatic damage - Google Patents

Integrated circuits with means to reduce electrostatic damage

Info

Publication number
JPH03502389A
JPH03502389A JP1502268A JP50226889A JPH03502389A JP H03502389 A JPH03502389 A JP H03502389A JP 1502268 A JP1502268 A JP 1502268A JP 50226889 A JP50226889 A JP 50226889A JP H03502389 A JPH03502389 A JP H03502389A
Authority
JP
Japan
Prior art keywords
layer
dielectric
substrate
integrated circuit
low temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1502268A
Other languages
Japanese (ja)
Inventor
ラファム、ジェローム エフ
Original Assignee
アナログ デバイセス インコーポレーテッド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by アナログ デバイセス インコーポレーテッド filed Critical アナログ デバイセス インコーポレーテッド
Publication of JPH03502389A publication Critical patent/JPH03502389A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/58Structural electrical arrangements for semiconductor devices not otherwise provided for, e.g. in combination with batteries
    • H01L23/60Protection against electrostatic charges or discharges, e.g. Faraday shields
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D89/00Aspects of integrated devices not covered by groups H10D84/00 - H10D88/00
    • H10D89/60Integrated devices comprising arrangements for electrical or thermal protection, e.g. protection circuits against electrostatic discharge [ESD]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Semiconductor Integrated Circuits (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるため要約のデータは記録されません。 (57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 をlさせる  を えた  口 髪匪皇11 1、発明の分野 この発明はトランジスタおよびこれと同種の回路要素を多数担持する基板を含有 する集積回路に関する。[Detailed description of the invention] Mouth that caused Hair Emperor 11 1. Field of invention The invention includes a substrate carrying a large number of transistors and similar circuit elements. related to integrated circuits.

特に、この発明は静電放電の結果による損傷を減少させる手段を有する集積回路 に関する。In particular, the invention provides an integrated circuit having means for reducing damage as a result of electrostatic discharge. Regarding.

2、従来の技術 集積回路が静電放電の結果として重大な損傷または破壊を受けることが良く知ら れている。放電に関係する静電電圧は雷のような多くのソースまたは合成繊維被 覆のような絶縁体間の摩擦などによって発生することがある。静電放電電圧が偶 然に一つの回路端子、従って集積回路の金属の相互接続層の部分と組合うときに 損傷が起る。2. Conventional technology It is well known that integrated circuits can be seriously damaged or destroyed as a result of electrostatic discharge. It is. Electrostatic voltages associated with electrical discharges can occur from many sources such as lightning or synthetic fabric coverings. This may occur due to friction between insulators such as insulation. Electrostatic discharge voltage is even Naturally, when combined with one circuit terminal, and therefore part of the metal interconnect layer of an integrated circuit, Damage occurs.

金属の相互接続部は典型的には半導体の頂面上の酸化皮膜上に形成させたアルミ ニウム層である。静電放電電圧は電流を前記金層から、通常は不導性の酸化物の 皮膜を通って、下側の半導体へ流す。次に、この電流は他の回路端子を通って集 積回路から出る。この電流は特に前記酸化物を恒久的に導電性にすることによっ て該酸化物にしばしば大きな損傷を与えるに充分な強さを有する。その結果とし ての分路がしばしば回路不良をもたらす。Metal interconnects are typically aluminum formed on an oxide layer on top of the semiconductor. layer. Electrostatic discharge voltage transfers current from the gold layer to the normally non-conducting oxide. It flows through the film to the semiconductor underneath. This current is then collected through other circuit terminals. exit from the product circuit. This current is in particular caused by making the oxide permanently conductive. is strong enough to often cause significant damage to the oxide. As a result All shunts often result in circuit failure.

静電放電による損傷を防止する種々の試みがなされた。例えば、MOSトランジ スタおよびMOSコンデンサのような薄い酸化物を必要とする半導体要素は静電 放電電流をバイパスさせて該半導体要素を保護する付加的デバイスによってしば しば保護される。一般に、個別のバイパスデバイスを各要素ごとの所望の保護の ために使用しなければならない。しかしながら、ある特別な場合には、かかる保 護デバイスは1個以上の要素の所望の保護を分担することができる。いずれにし ても、静電放電による損傷を防止するために保護デバイスを設けることは集積回 路の複雑性に加えて、付加的な集積回路領域を必要とし、一般的に云って全く望 ましくない手段である。Various attempts have been made to prevent damage from electrostatic discharge. For example, MOS transistor Semiconductor elements that require thin oxides, such as MOS capacitors and MOS capacitors, Often by an additional device that bypasses the discharge current and protects the semiconductor element. Often protected. Generally, separate bypass devices are used to achieve the desired protection for each element. must be used for. However, in certain special cases such guarantees may A protection device can share the desired protection of one or more elements. In any case However, the provision of protective devices to prevent damage from electrostatic discharge is a In addition to the complexity of the circuit, it requires additional integrated circuit area and is generally not at all desirable. This is a bad method.

多くの集積回路は、MOSトランジスタと異なって、例えばバイポーラ・トラン ジスタのような薄い酸化物を必要としない半導体要素で造られる。それにも拘わ らず、これらの集積回路は特別な処理段階を経る結果として成る場所に薄い酸化 物を有するかまたは選定場所において完全にまたはほぼ完全に除去された通常の 熱酸化物を有することにより静電放電による損傷を受は易い。本発明はかかる集 積回路を使用しながらも従来の手段による特定の保護デバイスを使用する必要性 を排除するものである。Many integrated circuits use bipolar transistors, for example, as opposed to MOS transistors. Made of semiconductor elements that do not require thin oxides such as transistors. Regardless of that Instead, these integrated circuits go through special processing steps that result in a thin oxide in place. normal or completely or nearly completely removed Having a thermal oxide makes it susceptible to damage from electrostatic discharge. The present invention The need to use certain protection devices by conventional means while using product circuits This excludes

発泄B11月 本発明の重要な特性は、基板と金属の相互接続部間の絶縁皮膜の全体の厚さを、 絶縁体を通過する絶縁破壊電圧が基板内に形成される接合部の破壊電圧よりも確 実に大きくなるのに充分な大きさにすることである。このようにすることで、静 電放電が破壊を生じさせるのに充分な強さで発生する時に、この破壊は絶縁皮膜 を通過せずに接合部で発生する。接合部の損傷は自己回復性のものであるから、 集積回路に与える損傷は、破壊が絶縁皮膜に発生したとする場合におけるような 永続的なものではない。Excretion B November An important characteristic of the present invention is that the overall thickness of the dielectric coating between the substrate and metal interconnects is The breakdown voltage passing through the insulator is more reliable than the breakdown voltage at the junction formed within the substrate. The idea is to make it large enough to actually grow. By doing this, you can When an electric discharge occurs with sufficient strength to cause breakdown, this breakdown occurs in the insulation coating. occurs at the junction without passing through. Since damage to the joint is self-healing, Damage to the integrated circuit may be caused by It's not permanent.

本発明の第2の重要な特性は、基板上の厚い絶縁皮膜が少なくとも部分的に接合 部の形成後に付着された低温(LT)誘電材料から成ることである。比較的低温 モの付着によって、すでに形成された接合部にを害な変化を全く発生させない。A second important characteristic of the invention is that the thick insulating coating on the substrate is at least partially bonded. A low temperature (LT) dielectric material is deposited after the formation of the part. relatively low temperature The adhesion of moss does not cause any harmful changes to the joints that have already been formed.

以下に詳述する本発明の一つの好ましい実施例においては、基板の絶縁皮膜が金 属の相互接続部の真下にある2つの隣接層から成る集積回路構造体が与えられる 。第1層の皮膜は従来の集積回路処理中に比較的高い温度で形成された通常の加 熱成長二酸化珪素である。第2層は比較的低い温度で得られた二酸化珪素の付着 層であって、温度が充分に低いために集積回路中にすでに形成された接合部が前 記酸化物の付着中に有害な変化を受けることがない。In one preferred embodiment of the invention, detailed below, the insulating coating of the substrate is made of gold. An integrated circuit structure is provided that consists of two adjacent layers directly below a genus interconnect. . The first layer film is a conventional processing film formed at relatively high temperatures during conventional integrated circuit processing. It is thermally grown silicon dioxide. The second layer is silicon dioxide deposition obtained at a relatively low temperature. layer where the temperature is low enough that the junctions already formed in the integrated circuit are No harmful changes occur during deposition of the oxide.

本発明の他の実施例においては、従来の集積回路処理中に形成される加熱成長酸 化物は、本発明の静電放電損傷の可能性を充分に最小にする厚さの低温絶縁皮膜 が付着する前に、基板の少なくとも選定された領域において部分的または完全に 除去される。In another embodiment of the invention, a thermally grown acid formed during conventional integrated circuit processing is used. The compound is a low temperature insulating coating of a thickness that sufficiently minimizes the potential for electrostatic discharge damage of the present invention. partially or completely in at least selected areas of the substrate before it is deposited. removed.

本発明の他の目的、特性および利点は図面と共に説明する以下の詳述に部分的に 指摘され、またかかる詳述から部分的に明らかにされよう。Other objects, features and advantages of the invention may be found in part in the following detailed description taken in conjunction with the drawings. as will be pointed out and partially clarified from such detailed description.

区国亘固厘51朋 第1図は集積回路チップの垂直断面図であるが、正確な縮尺図面ではな(、ある 特性については絵画的に示し、第2図は第1図の集積回路チップの諸要素を示す 概略図であり、 第3図は本発明の詳細な説明するのに助けとなるグラフである。51 Tomo Figure 1 is a vertical cross-sectional view of an integrated circuit chip, but is not drawn to scale (although some Characteristics are illustrated pictorially, and Figure 2 shows various elements of the integrated circuit chip in Figure 1. A schematic diagram, FIG. 3 is a graph that helps explain the invention in detail.

ましい   の電 な9日 まず、第1図において、通常、シリコンから成りかっp形として例示された基板 loを含む集積回路(IC)が示される。この基板は化学蒸着法(CVD)また はイオン注入のような、通常の技法によってn形不純物を備える。これらの不純 物はp形基板材料との接合部14を形成するn影領域12を作るように基板内に 打込まれる(拡散される)。ダイオード記号16が接合部の電気特性を図解する ために該接合部に図示される。A memorable 9th day First, in FIG. 1, the substrate is typically made of silicon and is illustrated as a p-type substrate. An integrated circuit (IC) is shown that includes lo. This substrate can be manufactured using chemical vapor deposition (CVD) or is provided with n-type impurities by conventional techniques, such as ion implantation. these impurities The material is placed in the substrate so as to create an n-shaded area 12 forming a junction 14 with the p-type substrate material. Injected (spread). Diode symbol 16 illustrates the electrical characteristics of the junction This is illustrated in the joint for this purpose.

典型的なICはもちろん特定のICデバイスの回路の要素を共有するダイオード およびトランジスタを形成する多数の他の接合部(図示せず)を有する。これら の他の接合部は説明を簡潔にするためにここには図示しない。Diodes that share circuit elements with specific IC devices as well as typical ICs and a number of other junctions (not shown) forming the transistor. these Other joints are not shown here for the sake of brevity.

基板IOの全体に亘る種々の接合部を形成する間に、20で示す二酸化珪素のよ うな保護絶縁誘電層が基板の面上に周知のようにして加熱成長する。この層は好 ましくは700℃以上の比較的高温で形成される。かかる成長において、純粋な ガス状の、または水蒸気(H2O)  の一部としての、02 (酸素)が基板 からのシリコン原子と結合して二酸化珪素(S102)  を形成する。この加 熱成長酸化物の部分は、多くのIC接合部の製造時の注入および/または拡散の 処理の一部として、種々の場合で除去する必要があるので、この酸化物層20の 最終厚さは、第1図に示すように、場所ごとに大きく変動する。While forming the various junctions across the substrate IO, a silicon dioxide material such as 20 is used. A protective insulating dielectric layer such as this is thermally grown on the surface of the substrate in a known manner. This layer is good Preferably, it is formed at a relatively high temperature of 700°C or higher. In such growth, pure 02 (oxygen) in gaseous form or as part of water vapor (H2O) is present on the substrate It combines with silicon atoms from to form silicon dioxide (S102). This addition Thermal grown oxide portions are implanted and/or diffused during the fabrication of many IC junctions. This oxide layer 20 may need to be removed in various cases as part of the process. The final thickness varies widely from location to location, as shown in FIG.

従来の技術によれば、通常22で示すような金属被覆層が、基板面の選定された 領域と電気接続するために、加熱成長酸化物20上に直接に被覆される。このよ うに形成されたデバイスについては、金属被覆層22上に発生する静電放電(E SD)電圧に対して過度に敏感なことが経験されている。かかるESD電圧が第 1図において記号で示された電圧源24によって概示されており、一方の端子が 金属被覆層22に接続され、他方の端子が大地に接続されるように示されている 。According to the prior art, a metallization layer, typically shown at 22, is deposited on selected surfaces of the substrate. It is coated directly onto the heated oxide 20 to make electrical connection to the region. This way For devices formed in this way, the electrostatic discharge (E SD) Excessive sensitivity to voltage is experienced. This ESD voltage 1 by a voltage source 24, indicated by the symbol, with one terminal connected to is shown connected to metallization layer 22 with the other terminal connected to ground. .

かかる従来のIC構成におけるESDに対する過度の敏感性が新規なIC構成、 および以下に記載されるようなICの製造方法によって抑制されあるいはかなり 軽減される。この新規な構成においては、酸化物の付加層26が金属被覆22の 直下に、かつこの例示においては、加熱成長層20の上方に堆積される。しかし ながら、この付加層は最初の層20と異って比較的低温(700℃以下)で形成 される。この差異の重要なことは、低温(LT)の酸化物を付加することにより この層の新設がすでに基板に形成されている接合部に悪影響を与えないことであ る。Excessive susceptibility to ESD in such conventional IC configurations has led to novel IC configurations, and suppressed or significantly reduced by IC manufacturing methods such as those described below. Reduced. In this novel configuration, an additional layer of oxide 26 is added to the metallization 22. It is deposited directly below and, in this example, above the thermally grown layer 20 . but However, unlike the first layer 20, this additional layer is formed at a relatively low temperature (below 700°C). be done. The significance of this difference is that by adding low temperature (LT) oxides, Ensure that the addition of this layer does not adversely affect the joints already formed on the board. Ru.

付加層2Gは酸化物(20,26)の合計厚さが充分な厚さになるような厚さに 作られることにより、基板と金属被覆層22との間の誘電材料の絶縁破壊電圧( VD8KD)を、ICの接合部破壊電圧(VJ9KD)、この例示では、接合部 14の破壊電圧よりも大きくさせる。第2図はESD源24が、事実上最小破壊 電圧誘電体領域(すなわち、誘電体がコンデンサ30のように非常に薄い場合) と最小破壊電圧接合部(例示として、ダイオード16)との並列組合せ部に接続 される仕方を図示する。ESDが破壊を発生させるのに充分なレベルに到達する 時、本発明における破壊は接合部(例えばダイオード1G)に発生し、コンデン サ30の誘電体(20,2G)には発生しない。The additional layer 2G has a thickness such that the total thickness of the oxides (20, 26) is sufficient. The breakdown voltage of the dielectric material between the substrate and the metallization layer 22 is VD8KD) is the IC junction breakdown voltage (VJ9KD), in this example, the junction breakdown voltage (VJ9KD) 14. Figure 2 shows that the ESD source 24 is virtually minimally destructive. Voltage dielectric region (i.e. when the dielectric is very thin like capacitor 30) and a minimum breakdown voltage junction (for example, diode 16) in parallel combination. Illustrating how it is done. ESD reaches sufficient levels to cause destruction In this case, the breakdown in the present invention occurs at the junction (for example, diode 1G) and the capacitor This does not occur in the dielectric material (20, 2G) of the sensor 30.

このことは電流−電圧(I−V)の座標を示す第3図を参照してグラフで説明す ることができ、実線の曲線36は組合せ皮膜20.2Gによって示されるような 誘電材料層に対応し、点線の曲線38はダイオード16のような接合部に対応す る。This can be illustrated graphically with reference to Figure 3, which shows the current-voltage (I-V) coordinates. and solid curve 36 as shown by combination coating 20.2G. Corresponding to the dielectric material layer, the dotted curve 38 corresponds to a junction such as the diode 16. Ru.

実線の曲線36によって示されるように、誘電体中の電流は、絶縁破壊電圧V  D B K Dに到達するまで電圧増加と共に徐々に増大する(大きさは第3図 では過大に示されている)。この点で、電流は急激に増大し、電圧は非常に低い レベルに減少する(破壊後の誘電材料によって示される短絡に近いものを表す) 。As shown by the solid curve 36, the current in the dielectric increases with the breakdown voltage V It gradually increases as the voltage increases until reaching D B K is overrepresented). At this point, the current increases rapidly and the voltage is very low (represents something close to a short circuit exhibited by the dielectric material after breakdown) .

付加酸化物皮膜を与えることによって(すなわち、前述した低温酸化物の付着層 (2B)を使用することによって)、絶縁破壊電圧V D B K Dの大きさ は加熱成長層(20)だけによる破壊電圧と比較して増大する。実際の絶縁破壊 電圧が次の関係式によって(やや控え目に)与えられる。By providing an addition oxide film (i.e., the low temperature oxide adhesion layer described above) (2B)), the magnitude of the dielectric breakdown voltage V D B K D increases compared to the breakdown voltage due to only the thermally grown layer (20). Actual dielectric breakdown The voltage is given (somewhat conservatively) by the following relation:

■D8゜= (0,0B  ネ゛ルト/オンク°ストローム)(オンク°ストロ ームの厚さ)従って、10,000オングストロームの厚さは約600ボルトの ESDに対して保護する。まれな例外として、すべてのIC接合部は600ボル ト以下の電圧で破壊する。■D8゜= (0,0B Nert/Onk° Strom) (Onk° Strom) Therefore, a thickness of 10,000 angstroms is approximately 600 volts thick. Protect against ESD. As a rare exception, all IC junctions are rated at 600 volts. Destroys at voltage below .

最終的な誘電体皮膜(20,2G)はその破壊電圧Vnexnが第3図のグラフ の第1象限における垂直な点線で示される接合部破壊電圧V J II K D よりも大きくなるのに充分な厚さに作られることが好ましい。かくして、正のE SD電圧が作用すると、破壊が先ず、接合部(例えば接合部14)に生じ、引続 き誘電材料中に破壊が生じるのを阻止する。かかる接合部の破壊は自己回復性の ものであるから(すなわち、この破壊は短時間後に作動状態に復帰する)、静電 放電のためにICの損傷は永続しない。負のESD電圧が作用すると、ダイオー ド16は順方向に電圧がかかって酸化物の絶縁破壊電圧よりも遥かに小さい電圧 で電流を通し、従って酸化物を同じようにして保護する。The breakdown voltage Vnexn of the final dielectric film (20,2G) is shown in the graph in Figure 3. Junction breakdown voltage V J II K D shown by the vertical dotted line in the first quadrant of Preferably, it is made thick enough to be larger than the Thus, positive E When the SD voltage is applied, breakdown occurs first at the junction (e.g. junction 14) and then This prevents breakdowns from occurring in the dielectric material. Failure of such joints is self-healing. (i.e., this breakdown returns to working condition after a short time) Damage to the IC is not permanent due to the discharge. When a negative ESD voltage is applied, the diode A voltage is applied to the node 16 in the forward direction, and the voltage is much lower than the dielectric breakdown voltage of the oxide. conducts current and thus protects the oxide in the same way.

低温度酸化物皮膜は、種々の方法で金属被覆形成前に付着させることができる。The low temperature oxide coating can be applied in a variety of ways prior to forming the metallization.

典型的には化学蒸着法(CVD)が使用される。例えば、シランガス(S I  HJ)  を酸素とともにウェハ上に流して二酸化珪素を形成する。Typically chemical vapor deposition (CVD) is used. For example, silane gas (SI) HJ) is flowed over the wafer with oxygen to form silicon dioxide.

スパッタリングもまた使用することができる。他の材料源およびオキシダント、 例えばテトラエチルオルトシリケートおよび亜酸化窒素、を使用することができ る。各場合に、低温5i02皮膜用のシリコンが外部から供給され、すなわち、 シリコンは基板が加熱成長(高温)酸化物と共にあるので基板からは得られない 。付加層は、すでに形成されたIC中の接合部が付加的処理のために悪影響を受 けないように700℃以下の温度で付着される。Sputtering can also be used. other material sources and oxidants, For example, tetraethylorthosilicate and nitrous oxide can be used. Ru. In each case, the silicon for the low temperature 5i02 coating is supplied externally, i.e. Silicon cannot be obtained from the substrate because it is grown together with thermally grown (high temperature) oxides. . Additional layers prevent junctions in already formed ICs from being adversely affected due to additional processing. It is deposited at temperatures below 700°C to avoid damage.

前述した特に好ましい実施例において、基板は多層の酸化物皮膜を備え、一つの 層は基板に隣接する高温(HT)層であり、他の層は金属被覆層のすぐ下側にあ る低温(LT)層である。しかしながら、本発明の概念は全体に亘る絶縁破壊電 圧が接合部破壊電圧よりも大きくなるのに充分な厚さで基板上に低高誘電絶縁体 を付着させることにあると理解されたい。ある場合には、低温(LT)絶縁皮膜 の付着前に高温酸化物を少なくとも成る場所で部分的または完全に除去してもよ く、その時のLT皮膜は必要な絶縁破壊電圧を得るのに充分な厚さにしなければ ならない。In the particularly preferred embodiments described above, the substrate comprises multiple oxide coatings and one The layer is a high temperature (HT) layer adjacent to the substrate, and the other layers are immediately below the metallization layer. It is a low temperature (LT) layer. However, the concept of the present invention reduces the overall breakdown voltage. A low and high dielectric insulator on the substrate with sufficient thickness that the voltage is greater than the junction breakdown voltage. It should be understood that the purpose is to attach the In some cases, low temperature (LT) insulation coatings The high temperature oxide may be partially or completely removed in at least some locations prior to deposition of the In this case, the LT film must be thick enough to obtain the required dielectric breakdown voltage. No.

従って、本発明の特に好ましい実施例を詳述したが、以上は本発明の例示を記載 したものであって、当業者は本発明の範囲から逸脱せずに特定の応用に必要な多 くの修正が可能であるから、必ずしも限定的に解釈されてはならない。Thus, while particularly preferred embodiments of the invention have been described in detail, the foregoing description has been illustrative of the invention. However, without departing from the scope of the invention, one skilled in the art will be able to It should not necessarily be construed in a restrictive manner, as many modifications are possible.

FIG、  2 国際調査報告FIG. 2 international search report

Claims (8)

【特許請求の範囲】[Claims] 1.少なくとも一つの接合部を形成する不純物を有する選定領域を持つ半導体基 板を含有し、金属の相互接続部が前記基板上に付設されて少なくとも一つの前記 領域に接続され、該金属相互接続部と前記基板の面との間に誘電性絶縁体が存在 する形式の集積回路にして、静電放電による前記集積回路の損傷を減少させるた めに、前記誘電体絶縁体は、その絶縁破壊電圧が前記接合部の破壊電圧よりも大 きくなるのに充分な厚さの少なくとも一層の低温誘電体を含有する改良集積回路 。1. Semiconductor substrate with selected regions having impurities forming at least one junction a plate, with metal interconnects affixed to the at least one substrate; a dielectric insulator between the metal interconnect and a surface of the substrate; In order to reduce damage to said integrated circuit due to electrostatic discharge, In order to an improved integrated circuit containing at least one layer of low temperature dielectric material of sufficient thickness to . 2.前記誘電性絶縁体が2層、すなわち一方が加熱成長層、他方が低温付着層、 から成る請求の範囲1に記載の集積回路。2. the dielectric insulator is in two layers, one a hot-grown layer and the other a cold-deposited layer; 2. An integrated circuit as claimed in claim 1, comprising: 3.前記基板がシリコンから成り、前記誘電体が二酸化珪素である請求の範囲1 に記載の集積回路。3. Claim 1, wherein the substrate is made of silicon and the dielectric is silicon dioxide. The integrated circuit described in . 4.静電放電による損傷に抗する集積回路を製造する方法にして、 半導体基板に不純物を供給して少なくとも一つの接合部を形成し、 前記基板上に集積回路形成処理の一部として高温誘電体を成長させ、 前記基板上に、該基板が前記接合部の破壊電圧よりも大きい、誘電体破壊電圧を 有する誘電体材料を備えるのに充分な厚さの低温誘電体層を付着させ、該低温誘 電体層上に金属の相互接続部の層を形成させて前記接合部および前記ICの他の 領域と電気接続させる工程を含有する集積回路製造方法。4. A method of manufacturing an integrated circuit that resists damage from electrostatic discharge, supplying impurities to the semiconductor substrate to form at least one junction; growing a high temperature dielectric on the substrate as part of an integrated circuit formation process; The substrate has a dielectric breakdown voltage greater than the breakdown voltage of the junction. depositing a low temperature dielectric layer of sufficient thickness to provide a dielectric material having a A layer of metal interconnects is formed on the electrical layer to connect the junctions and other parts of the IC. A method of manufacturing an integrated circuit comprising the step of making an electrical connection with a region. 5.前記基板上の前記誘電材料が2層、すなわち一方が高温誘電体層、他方が該 高温誘電体層上に形成された低温誘電体層、を有し、該2層が前記接合部の破壊 電圧よりも大きい誘電体破壊電圧を発生させるのに充分な合計厚さを有する請求 の範囲4に記載の方法。5. The dielectric material on the substrate has two layers, one a high temperature dielectric layer and the other a high temperature dielectric layer. a low temperature dielectric layer formed on a high temperature dielectric layer, wherein the two layers Claims having a total thickness sufficient to produce a dielectric breakdown voltage greater than the voltage The method according to scope 4. 6.前記第1の層が700℃以上の温度で加熱成長し、前記第2の層が700℃ 以下の温度で付着される請求の範囲5に記載の方法。6. The first layer is grown by heating at a temperature of 700°C or higher, and the second layer is grown at a temperature of 700°C or higher. 6. The method of claim 5, wherein the method is deposited at a temperature of: 7.前記低温誘電体が化学蒸着法によって付着される請求の範囲4に記載の方法 。7. 5. The method of claim 4, wherein the low temperature dielectric is deposited by chemical vapor deposition. . 8.前記低温誘電体がスパッタリングによって付着される請求の範囲4に記載の 方法。8. 5. The method of claim 4, wherein the low temperature dielectric is deposited by sputtering. Method.
JP1502268A 1988-02-02 1989-01-23 Integrated circuits with means to reduce electrostatic damage Pending JPH03502389A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US15155588A 1988-02-02 1988-02-02
US151,555 1988-02-02

Publications (1)

Publication Number Publication Date
JPH03502389A true JPH03502389A (en) 1991-05-30

Family

ID=22539291

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1502268A Pending JPH03502389A (en) 1988-02-02 1989-01-23 Integrated circuits with means to reduce electrostatic damage

Country Status (4)

Country Link
EP (1) EP0397780A4 (en)
JP (1) JPH03502389A (en)
CA (1) CA1303753C (en)
WO (1) WO1989007334A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5633663B1 (en) * 2013-01-23 2014-12-03 株式会社村田製作所 Composite electronic component of thin film capacitor and Zener diode and method for manufacturing the same

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2268328B (en) * 1992-06-30 1995-09-06 Texas Instruments Ltd A capacitor with electrostatic discharge protection
GB9907910D0 (en) * 1999-04-07 1999-06-02 Koninkl Philips Electronics Nv Thin film capacitor element
CN100583437C (en) 2005-03-02 2010-01-20 Nxp股份有限公司 Electronic devices and their use

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5587444A (en) * 1978-12-26 1980-07-02 Fujitsu Ltd Method of forming insulating film on semiconductor surface
NL8100347A (en) * 1981-01-26 1982-08-16 Philips Nv SEMICONDUCTOR DEVICE WITH A PROTECTION DEVICE.
BR8606541A (en) * 1985-04-08 1987-08-04 Sgs Semiconductor Corp PERFECTED INPUT PROTECTION NETWORK TO REDUCE THE EFFECT OF DAMAGE FROM AN ELECTROSTATIC DISCHARGE AT LEAST ONE ELECTRIC DOOR INPUT OF A MOS SEMICONDUCTOR CHIP
US4763184A (en) * 1985-04-30 1988-08-09 Waferscale Integration, Inc. Input circuit for protecting against damage caused by electrostatic discharge
US4806999A (en) * 1985-09-30 1989-02-21 American Telephone And Telegraph Company, At&T Bell Laboratories Area efficient input protection
US4736271A (en) * 1987-06-23 1988-04-05 Signetics Corporation Protection device utilizing one or more subsurface diodes and associated method of manufacture

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5633663B1 (en) * 2013-01-23 2014-12-03 株式会社村田製作所 Composite electronic component of thin film capacitor and Zener diode and method for manufacturing the same

Also Published As

Publication number Publication date
EP0397780A1 (en) 1990-11-22
EP0397780A4 (en) 1991-09-18
WO1989007334A1 (en) 1989-08-10
CA1303753C (en) 1992-06-16

Similar Documents

Publication Publication Date Title
JPH118U (en) ESD protection device for SOI circuit
US3434020A (en) Ohmic contacts consisting of a first level of molybdenum-gold mixture of gold and vanadium and a second level of molybdenum-gold
US5248892A (en) Semiconductor device provided with a protection circuit
JPS63308324A (en) Method of forming thin film assembly and semiconductor device
US9093272B2 (en) Methods of forming electronic elements with ESD protection
US6670705B1 (en) Protective layer for a semiconductor device
JP2002507062A (en) Overvoltage protection device for integrated circuits
US6121669A (en) Integrated RC filters
US5656534A (en) Method for forming an ESD protection device for antifuses with top polysilicon electrode
US5691557A (en) Semiconductor circuit having input protective circuit
US6515345B2 (en) Transient voltage suppressor with diode overlaying another diode for conserving space
JPH03502389A (en) Integrated circuits with means to reduce electrostatic damage
US7638412B2 (en) Method and system for reducing charge damage in silicon-on-insulator technology
US5141898A (en) Integrated circuit with means for reducing ESD damage
US3343048A (en) Four layer semiconductor switching devices having a shorted emitter and method of making the same
US3350222A (en) Hermetic seal for planar transistors and method
US5196723A (en) Integrated circuit screen arrangement and a method for its manufacture
JPS61502087A (en) Monolithically integrated planar semiconductor device and its manufacturing method
GB2295049A (en) Overvoltage protection for integrated circuits
JPH04312967A (en) Semiconductor device
JPS6020548A (en) Input protection devices in integrated circuits
JPH0738054A (en) Semiconductor device
JP3372109B2 (en) Semiconductor device
US20100230786A1 (en) Production of integrated circuits comprising semiconductor incompatible materials
JPS58202573A (en) Semiconductor integrated circuit device