JPH0349815B2 - - Google Patents
Info
- Publication number
- JPH0349815B2 JPH0349815B2 JP55108876A JP10887680A JPH0349815B2 JP H0349815 B2 JPH0349815 B2 JP H0349815B2 JP 55108876 A JP55108876 A JP 55108876A JP 10887680 A JP10887680 A JP 10887680A JP H0349815 B2 JPH0349815 B2 JP H0349815B2
- Authority
- JP
- Japan
- Prior art keywords
- polyester
- cylindrical body
- thickness
- openings
- cylinder
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Landscapes
- Rigid Containers With Two Or More Constituent Elements (AREA)
- Containers Having Bodies Formed In One Piece (AREA)
Description
[産業上の利用分野]
本発明はポリエステル缶状容器に関するもので
あり、詳細にはエチレンテレフタレートを主たる
繰返し単位とする熱可塑性ポリエステル筒体の両
端開口部に封板を接合一体化してなる缶状容器に
関するものである。
[従来の技術]
近年石油資源の枯渇問題から、エネルギー多消
費型のアルミニウムを用いた金属缶に代わり、省
エネルギー型のプラスチツク容器が使用されるよ
うになつてきている。これらのプラスチツク容器
は通常射出成形や深絞り成形によつて容器状に形
成されるものであるが、従来のプラスチツク容器
に炭酸ガス等を含む飲料水を充填した場合、その
飲料水から発生する炭酸ガスにより常に内圧のか
かる状態におかれ、容器がクリープ変形を起こし
て商品価値を著しく低下させるだけでなく、蓋と
のシール部から内容物が漏れ出すことさえ生じて
いる。
また従来のプラスチツク容器に高温充填が必要
な内容物を充填する場合には、熱によつて変形を
起こしたり、蓋をシールするにあたつて完全なシ
ールが出来なくなるという問題が発生している。
[発明が解決しようとする課題]
本発明は上記事情に着目してなされたものであ
つて、優れた耐圧強度及びガス遮断性を有して内
容物に対する優れた保護性能をもつと同時に、高
温充填時における変形収縮が極めて少ない熱安定
性に優れたポリエステル缶状容器の提供を目的と
するものである。
[課題を解決するための手段]
上記目的を達成した本発明とは、主たる繰返し
単位がエチレンテレフタレートからなる熱可塑性
ポリエステル筒体の両端開口部に封板を接合一体
化してなる缶状容器であつて、該筒体を少なくと
も一方向に延伸して、筒体の両端開口部を除く部
分の面配向度Δnの値が50×10-3以上で、かつ筒
体の最大厚さを1.05mm以下にすると共に、該筒体
の厚さと前記封板の厚さの比を1以上4以下に形
成し、さらに熱処理によつて沸騰水充填時の容積
収縮率を2%以下にしてなることを要旨とするも
のである。
[作用]
非晶質状態の熱可塑性ポリエステルを延伸して
配向結晶させればクリープ特性が一段と向上する
ことは、ポリエステルの糸やフイルムではよく知
られているところである。
本発明者らは熱可塑性ポリエステルの上記特性
に着目し、この熱可塑性ポリエステルによる缶状
容器を作るという目標を掲げて研究を重ね、該缶
状容器にガス遮断性及び耐熱性を付与することに
よつて本発明を完成させた。
本発明のポリエステル缶状容器は製造方法によ
つて限定されるものではないが、以下の方法が例
示できる。
すなわち押出機でポリエステルのパイプを成形
し、これを延伸に適した温度である90〜120℃に
加熱後、円周方向に若しくは円周方向及び軸方向
に同時又は逐次に、加圧気体を用いて通常2.8倍
以上の延伸を施すことにより延伸パイプを成形
し、ポリエステルのガラス転移温度より20℃以上
高く、かつ融点より20℃以上低い温度の範囲で熱
処理を行なつた後、一定の長さに切断して筒体と
し、該筒体の両端開口部に封板を一体的に接合す
ることによつて、缶状容器の耐圧容器とする。
本発明に用いられる筒体の両端開口部を除く部
分の面配向度Δnの値は50×10-3以上が必要であ
り、Δnが50×10-3未満であると、耐圧強度やガ
ス遮断性が不十分となり、クリープ変形やシール
もれが発生する。
筒体部の厚さは延伸パイプの巻締性から1.05mm
以下が好ましく、他の樹脂との積層筒体とする場
合においてもポリエステル層としては1.05mm以下
であることが好ましい。これによつて封板を用い
てシールしたときのシール強度を一層高めること
が出来る。上記封板の材質は延展性金属、例えば
アルミニウム、ブリキが好ましいが、その他耐熱
性のプラスチツク、金属とプラスチツクとの複合
板などであつてもよい。
また封板で筒体の両端開口部をシールするにあ
たり、筒体部のポリエステルの厚さと封板の厚さ
との比を1以上4以下にすることにより熱可塑性
ポリエステルと封板の材質の相違に基づく問題、
すなわち弾性率の異なるものを一体的に巻締加工
してもそのシール強度を高めることが出来る。さ
らに筒体部成形時に両端シール部に相当する箇所
をたとえば加熱板で熱を加えることにより、筒体
部より配向度を低くし、シール強度を高めること
が出来る。
なお封板によるシール方法は巻締が好ましく、
これ以外に接着や融着する方法も挙げられるが、
シール強度の点から巻締と併用することが推奨さ
れる。
延伸パイプの処理条件としてはポリエステルの
ガラス転移温度より20℃以上高く、融点より20℃
以上低い温度の範囲が好ましく、この範囲で熱処
理することにより耐熱性が向上し、沸水充填によ
る容積収縮率が2%以下の耐熱缶状容器を作るこ
とが出来る。熱処理は延伸パイプの製造工程にお
いて延伸に引続いて行なうのが好ましいが、別工
程で行なうことも出来る。また延伸パイプを切断
後熱処理することも出来る。熱処理時には熱収縮
を防止するため内圧を高くして行なうか、収縮防
止用の内芯を挿入して行なうのが好ましい。
本発明でいうエチレンテレフタレートを主たる
繰返し単位とする熱可塑性ポリエステルとは、通
常酸成分の80モル%以上、好ましくは90モル%以
上がテレフタル酸であり、一方グルコール成分の
80モル%、好ましくは90モル%以上がエチレング
リコールであるポリエステルを意味し、残部の他
の酸成分としてイソフタル酸、ジフエニルエーテ
ル−4,4′−ジカルボン酸、ナフタレン−1,4
−または2,6−ジカルボン酸、アジピン酸、セ
バシン酸、デカン−1,10−ジカルボン酸、ヘキ
サヒドロテレフタル酸、また他のグリコール成分
としてプロピレングリコール−1,4−ブタンジ
オール、ネオペンチルグリコール、ジエチレング
リコール、1,6−ヘキシレングリコール、シク
ロヘキサンジメタノール、2,2−ビス(4−ヒ
ドロキシフエニル)プロパン、2,2−ビス(4
−ヒドロキシエトキシフエニル)プロパンが例示
される。またオキシ酸としてp−オキシ安息香
酸、p−ヒドロエトキシ安息香酸等を用いたポリ
エステルも本発明に含まれる。またポリエチレン
テレフタレートと他の熱可塑性ポリエステルとの
混合によりエチレンテレフタレートが80モル%以
上となるような2種以上のポリエステルのブレン
ドであつてもよい。
また本発明におけるポリエステルは必要に応じ
て着色剤、紫外線吸収剤、帯電防止剤、熱酸化防
化防止剤、抗菌剤、滑剤、無機充填剤などの添加
剤を適宜の割合で含有することができる。
本発明に用いる熱可塑性ポリエステルは0.55以
上の固有粘度を有することが望ましく、好ましく
は0.6以上、更に好ましくは0.7〜1.4の固有粘度を
有する。固有粘度とはフエノール/テトラクロロ
エタン混合溶媒(6/4重量比)に熱可塑性ポリ
エステルを溶解した溶液を30℃において測定した
ときの極限粘度である。ままた本発明はポリエス
テルと他の樹脂たとえばメタキシリレン基含有ポ
リアミド、ポリ塩化ビニリデン、アクリロニトリ
ル−スチレン共重合体のようなガスバリヤー性の
より優れた樹脂との積層筒体からなる缶状容器も
包含するのである。
なおポリエステル缶状容器の特性値の評価法、
測定法は次のとおりである。
(1) 配向度;アツベ屈折率計に偏光板を装着し、
25℃でナトリウムのD線を用いて測定した。
軸、周方向(いずれも平面方向)の屈折率をそ
れぞれNx、Ny、厚み方向の屈折率をNzとし、
Nx+Ny/2−Nz=Δn(複屈折度)を算出して面
配向度とした。
(2) 沸騰水充填処理による容積収縮率;缶状容器
に沸騰水を口切一杯充填して5分間放置する。
5分後熱水を排除し、20℃の水を充填して処理
後の内容積(V)を測定し、処理前の内容積
(V0)と比較することにより容積収縮率Vs(%)
を次式で算出する。
Vs(%)=V0−V/V0×100
[実施例]
実施例 1
東洋紡ポリエステルRT−560(ポリエチレンテ
レフタレート、固有粘度1.0)を、日本製鋼所製
40mmφ押出機にパイプダイス、温度調整器、ブロ
ーと連続してなる装置を使用して内径15.8mm、外
径17.7mmのパイプに成形し、次いでパイプ温度95
℃の条件で加圧空気によりブローし、周方向に3
倍延伸して内径52.4mm、外径53.0mmの延伸パイプ
を成形した。この延伸パイプの面配向度Δnは90
×10-3であつた。
該延伸パイプを140mmの長さに切断し、次いで
両端開口部にハンドプレス機を用いてフランジを
熱成形した。その部分のΔnは40×10-3であつた。
両端開口部に0.25mm厚のアルミニウムの蓋を大阪
製缶製ハンドシーマーを用いて巻締した。これに
加圧空気で圧力(内圧)を加え耐圧力を測定した
結果、7Kg/cm2の圧力でもシールもれが発生せず
耐圧容器としてすぐれた容器であつた。
実施例 2
実施例1と同一の装置を使い、延伸倍率が3倍
で延伸後の厚みが0.25mm、0.45mm、0.60mm、1.05
mm、1.10mm、1.35mmになる延伸パイプ(Δn≒90×
10-3)を成形した。これを140mmの長さに切断し、
0.3mm厚のアルミニウムの蓋を大阪製缶製ハンド
シーマーで巻締し、加圧空気で耐圧試験をした。
結果は第1表に示す。
[Industrial Application Field] The present invention relates to a polyester can-shaped container, and more specifically, a can-shaped container made of a thermoplastic polyester cylinder whose main repeating unit is ethylene terephthalate, with sealing plates integrally bonded to the openings at both ends. It concerns containers. [Prior Art] In recent years, due to the problem of depletion of petroleum resources, energy-saving plastic containers have come to be used instead of energy-intensive metal cans made of aluminum. These plastic containers are usually formed into a container shape by injection molding or deep drawing, but when conventional plastic containers are filled with drinking water containing carbon dioxide gas, etc., the carbon dioxide generated from the drinking water is released. The container is constantly under internal pressure due to the gas, which not only causes creep deformation of the container and significantly lowers its commercial value, but also causes the contents to leak out from the seal with the lid. Furthermore, when filling conventional plastic containers with contents that require high-temperature filling, there are problems such as deformation due to heat and failure to seal the lid completely. . [Problems to be Solved by the Invention] The present invention has been made by focusing on the above-mentioned circumstances, and has excellent pressure resistance and gas barrier properties, and has excellent protection performance against contents, and at the same time, it can withstand high temperatures. The object of the present invention is to provide a polyester can-shaped container that exhibits extremely little deformation shrinkage during filling and has excellent thermal stability. [Means for Solving the Problems] The present invention, which achieves the above object, is a can-shaped container formed by integrally bonding sealing plates to the openings at both ends of a thermoplastic polyester cylinder whose main repeating unit is ethylene terephthalate. The cylindrical body is stretched in at least one direction so that the degree of plane orientation Δn of the portion excluding the openings at both ends of the cylindrical body is 50×10 -3 or more, and the maximum thickness of the cylindrical body is 1.05 mm or less. In addition, the ratio of the thickness of the cylindrical body to the thickness of the sealing plate is 1 or more and 4 or less, and the volume shrinkage rate when filled with boiling water is reduced to 2% or less by heat treatment. That is. [Function] It is well known that the creep properties of polyester threads and films can be further improved by stretching thermoplastic polyester in an amorphous state to cause oriented crystallization. The present inventors focused on the above-mentioned properties of thermoplastic polyester, and conducted repeated research with the goal of creating a can-shaped container using this thermoplastic polyester, and decided to impart gas barrier properties and heat resistance to the can-shaped container. Thus, the present invention was completed. Although the polyester can-shaped container of the present invention is not limited by the manufacturing method, the following methods can be exemplified. That is, a polyester pipe is formed using an extruder, heated to a temperature of 90 to 120°C, which is suitable for stretching, and then pressurized gas is applied in the circumferential direction, or simultaneously or sequentially in the circumferential and axial directions. A stretched pipe is formed by stretching 2.8 times or more, and then heat-treated at a temperature that is at least 20°C higher than the glass transition temperature of polyester and at least 20°C lower than its melting point. A pressure-resistant can-shaped container is obtained by cutting the tube into a cylinder, and integrally joining sealing plates to the openings at both ends of the cylinder. The degree of plane orientation Δn of the portion of the cylindrical body used in the present invention excluding the openings at both ends must be 50×10 -3 or more. If Δn is less than 50×10 -3 , pressure resistance and gas barrier This results in insufficient properties, leading to creep deformation and seal leakage. The thickness of the cylinder part is 1.05mm due to the tightness of the stretched pipe.
The following is preferable, and even when forming a laminated cylinder with other resins, it is preferable that the polyester layer has a thickness of 1.05 mm or less. This makes it possible to further increase the sealing strength when sealing is performed using the sealing plate. The sealing plate is preferably made of a ductile metal such as aluminum or tinplate, but may also be a heat-resistant plastic or a composite plate of metal and plastic. In addition, when sealing the openings at both ends of the cylinder with a sealing plate, by setting the ratio between the thickness of the polyester in the cylinder and the thickness of the sealing plate to 1 or more and 4 or less, the difference between the materials of the thermoplastic polyester and the sealing plate can be avoided. problems based on,
That is, even if materials with different elastic moduli are integrally seamed, the sealing strength can be increased. Furthermore, by applying heat, for example, with a heating plate, to the portions corresponding to the seal portions at both ends during molding of the cylindrical portion, the degree of orientation can be lowered than that of the cylindrical portion, and the sealing strength can be increased. Note that seaming is preferred as the sealing method using a sealing plate.
Other methods include gluing and fusing, but
From the viewpoint of seal strength, it is recommended to use it together with seaming. The processing conditions for stretched pipes are at least 20℃ higher than the glass transition temperature of polyester and 20℃ higher than the melting point.
A lower temperature range is preferable, and heat treatment in this range improves heat resistance and makes it possible to produce a heat-resistant can-shaped container with a volume shrinkage of 2% or less when filled with boiling water. It is preferable that the heat treatment is carried out subsequent to the drawing in the process of manufacturing the drawn pipe, but it can also be carried out in a separate process. It is also possible to heat-treat the stretched pipe after cutting. During heat treatment, it is preferable to increase the internal pressure to prevent thermal shrinkage, or to insert an inner core to prevent shrinkage. The thermoplastic polyester containing ethylene terephthalate as a main repeating unit in the present invention usually has an acid component of 80 mol% or more, preferably 90 mol% or more of terephthalic acid, while a glycol component of
It means a polyester in which 80 mol% or more, preferably 90 mol% or more, is ethylene glycol, with the remainder being other acid components such as isophthalic acid, diphenyl ether-4,4'-dicarboxylic acid, naphthalene-1,4
- or 2,6-dicarboxylic acid, adipic acid, sebacic acid, decane-1,10-dicarboxylic acid, hexahydroterephthalic acid, and as other glycol components propylene glycol-1,4-butanediol, neopentyl glycol, diethylene glycol , 1,6-hexylene glycol, cyclohexanedimethanol, 2,2-bis(4-hydroxyphenyl)propane, 2,2-bis(4
-hydroxyethoxyphenyl)propane is exemplified. The present invention also includes polyesters using p-oxybenzoic acid, p-hydroethoxybenzoic acid, etc. as the oxyacid. Alternatively, it may be a blend of two or more polyesters such that the content of ethylene terephthalate is 80 mol% or more by mixing polyethylene terephthalate with another thermoplastic polyester. Furthermore, the polyester in the present invention may contain additives such as colorants, ultraviolet absorbers, antistatic agents, thermal oxidation inhibitors, antibacterial agents, lubricants, and inorganic fillers in appropriate proportions, if necessary. . The thermoplastic polyester used in the present invention desirably has an intrinsic viscosity of 0.55 or more, preferably 0.6 or more, and more preferably 0.7 to 1.4. Intrinsic viscosity is the intrinsic viscosity when a solution of thermoplastic polyester dissolved in a phenol/tetrachloroethane mixed solvent (6/4 weight ratio) is measured at 30°C. The present invention also includes a can-shaped container made of a laminated cylinder of polyester and other resins such as metaxylylene group-containing polyamides, polyvinylidene chloride, and resins with better gas barrier properties such as acrylonitrile-styrene copolymers. It is. In addition, the evaluation method of the characteristic values of polyester can-shaped containers,
The measurement method is as follows. (1) Degree of orientation; attach a polarizing plate to the Atsube refractometer,
Measured using sodium D line at 25°C.
Let the refractive index in the axial and circumferential directions (both in the plane direction) be Nx and Ny, respectively, and the refractive index in the thickness direction be Nz,
Nx+Ny/2−Nz=Δn (birefringence) was calculated and used as the degree of plane orientation. (2) Volume shrinkage due to boiling water filling process: Fill a can-shaped container with boiling water and leave it for 5 minutes.
After 5 minutes, remove the hot water, fill with 20°C water, measure the internal volume (V) after treatment, and compare it with the internal volume (V 0 ) before treatment to determine the volumetric shrinkage rate V s (% )
is calculated using the following formula. V s (%) = V 0 −V / V 0 ×100 [Example] Example 1 Toyobo polyester RT-560 (polyethylene terephthalate, intrinsic viscosity 1.0) was manufactured by Japan Steel Works.
Using a 40mmφ extruder with a pipe die, temperature regulator, and blower, it is formed into a pipe with an inner diameter of 15.8mm and an outer diameter of 17.7mm, and then the pipe temperature is set to 95mm.
Blow with pressurized air at
It was stretched twice to form a stretched pipe with an inner diameter of 52.4 mm and an outer diameter of 53.0 mm. The plane orientation degree Δn of this stretched pipe is 90
It was ×10 -3 . The stretched pipe was cut into a length of 140 mm, and flanges were then thermoformed on the openings at both ends using a hand press. Δn in that part was 40×10 -3 .
Aluminum lids with a thickness of 0.25 mm were sealed to the openings at both ends using a hand seamer manufactured by Osaka Can. Pressurized air was applied to this container (internal pressure) to measure the pressure resistance. As a result, no seal leakage occurred even at a pressure of 7 kg/cm 2 , and the container was excellent as a pressure-resistant container. Example 2 Using the same equipment as in Example 1, the stretching ratio was 3 times, and the thicknesses after stretching were 0.25 mm, 0.45 mm, 0.60 mm, and 1.05.
mm, 1.10mm, 1.35mm stretched pipe (Δn≒90×
10 -3 ) was molded. Cut this into a length of 140mm,
A 0.3 mm thick aluminum lid was seamed with a hand seamer made by Osaka Can Manufacturing Co., Ltd., and a pressure test was performed using pressurized air.
The results are shown in Table 1.
【表】【table】
【表】
第1表においてNo.2〜4は本発明の実施例であ
り、筒体部の厚みと封板の厚み比が1以上4以下
の範囲内にあるので、高いガス遮断性を示してい
る。一方No.1とNo.6は封板との厚み比が本発明範
囲をはずれた場合の比較例であり、封板の接合位
置でシールもれが発生している。またNo.5は封板
との厚み比は本発明範囲内であるが、筒体部厚み
が本発明範囲をはずれた場合の比較例であり、や
はりシールもれが発生した。
実施例 3
実施例1の工程にさらにヒートセツト装置を取
付け、延伸後170℃で約10秒間ヒートセツトし、
パイプを成形した。これを140mmの長さに切断し
て容器胴部を製造し、その両端開口部にハンドプ
レス機を用いて金型内でフランジ部を熱成形し
た。胴部のΔnは90×10-3であり、フランジ部の
Δnは30×10-3であつた。次いで開口端の一方に
0.25mm厚のアルミニウム製の蓋を巻締した。この
様にして得た容器の沸騰水充填による容積収縮率
を測定した結果1.7%であつた。沸騰水充填後も
優れた透明性を有し耐熱容器としてすぐれた容器
であつた。また両端を密封した容器の耐圧性も7
Kg/cm2以上の優れた耐圧性を示した。
比較例 1
東洋紡ポリエステルRT−560(1V=1.0)を、
日本製鋼所製Vδ/sブロー成形機を使い、内径
52.4mm、外径53.0mm、長さ160mmの筒状成形品を
成形(Δn≒10×10-3)、これを両端切断して140
mmの長さにし、これに0.25mm厚のアルミニウム製
の蓋を巻締し、加圧空気で耐圧試験をした。圧力
4.5Kg/cm2で缶中心部が変形し、5.0Kg/cm2でシー
ル部よりもれだした。また同様に成形した筒の開
口部の一端をアルミニウムで蓋をし、これに沸騰
水を充填した。充填後ただちに変形が起こり筒形
状が相当大きく変形すると共に白化失透を生じ
た。耐圧容器、耐熱容器として適さない容器と判
定された。
[発明の効果]
本発明は以上の様に構成されているので、内容
物に対する優れた保護性能をもつと同時に、高温
充填に対しても熱安定性に優れたポリエステル缶
状容器が提供できることとなつた。[Table] In Table 1, Nos. 2 to 4 are examples of the present invention, and the ratio of the thickness of the cylindrical body to the thickness of the sealing plate is within the range of 1 to 4, so they exhibit high gas barrier properties. ing. On the other hand, No. 1 and No. 6 are comparative examples in which the thickness ratio with the sealing plate is outside the range of the present invention, and seal leakage occurs at the joint position of the sealing plate. No. 5 is a comparative example in which the thickness ratio to the sealing plate was within the range of the present invention, but the thickness of the cylindrical body was outside the range of the present invention, and seal leakage also occurred. Example 3 A heat setting device was added to the process of Example 1, and after stretching, heat setting was performed at 170°C for about 10 seconds.
The pipe was formed. This was cut into a length of 140 mm to produce a container body, and flanges were thermoformed at both end openings in a mold using a hand press machine. Δn of the body was 90×10 −3 and Δn of the flange was 30×10 −3 . Then on one of the open ends
A 0.25 mm thick aluminum lid was sealed. The volumetric shrinkage rate of the container thus obtained when filled with boiling water was measured and found to be 1.7%. The container had excellent transparency even after being filled with boiling water and was an excellent heat-resistant container. Also, the pressure resistance of containers sealed at both ends is 7.
It showed excellent pressure resistance of more than Kg/cm 2 . Comparative example 1 Toyobo polyester RT-560 (1V=1.0),
Using a Vδ/s blow molding machine manufactured by Japan Steel Works, the inner diameter
A cylindrical molded product with a diameter of 52.4 mm, an outer diameter of 53.0 mm, and a length of 160 mm was molded (Δn≒10×10 -3 ), and both ends were cut to form a cylindrical product with a diameter of 140 mm.
mm in length, a 0.25 mm thick aluminum lid was sealed, and a pressure test was performed using pressurized air. pressure
At 4.5Kg/cm 2 the center of the can was deformed, and at 5.0Kg/cm 2 it began to leak from the seal. In addition, one end of the opening of a tube formed in the same manner was covered with aluminum, and the tube was filled with boiling water. Deformation occurred immediately after filling, resulting in considerable deformation of the cylinder shape and whitening and devitrification. The container was determined to be unsuitable as a pressure-resistant container or a heat-resistant container. [Effects of the Invention] Since the present invention is configured as described above, it is possible to provide a polyester can-shaped container that has excellent protection performance for the contents and also has excellent thermal stability even when filled at high temperatures. Summer.
Claims (1)
からなる熱可塑性ポリエステル筒体の両端開口部
に封板を接合一体化してなる缶状容器であつて、
該筒体を少なくとも一方向に延伸して、筒体の両
端開口部を除く部分の面配向度Δnの値が50×
10-3以上で、かつ筒体の最大厚さを1.05mm以下に
すると共に、該筒体の厚さと前記封板の厚さの比
を1以上4以下に形成し、さらに熱処理によつて
沸騰水充填時の容積収縮率を2%以下にしてなる
ことを特徴とするポリエステル缶状容器。 2 筒体の両端開口部(封板との接合部)の配向
度Δnが筒体主要部より低いか、又は未配向であ
ることを特徴とする特許請求の範囲第1項記載の
ポリエステル缶状容器。[Scope of Claims] 1. A can-shaped container formed by integrally bonding sealing plates to the openings at both ends of a thermoplastic polyester cylinder whose main repeating unit is ethylene terephthalate,
The cylindrical body is stretched in at least one direction so that the plane orientation degree Δn of the portion excluding the openings at both ends of the cylindrical body is 50×
10 -3 or more, and the maximum thickness of the cylindrical body is 1.05 mm or less, and the ratio of the thickness of the cylindrical body to the thickness of the sealing plate is 1 or more and 4 or less, and further heat treatment is performed to prevent boiling. A polyester can-shaped container characterized by having a volume shrinkage rate of 2% or less when filled with water. 2. The polyester can shape according to claim 1, wherein the degree of orientation Δn of the openings at both ends of the cylinder (the joints with the sealing plate) is lower than that of the main part of the cylinder, or is not oriented. container.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10887680A JPS5737540A (en) | 1980-08-07 | 1980-08-07 | Polyester can-shaped vessel |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10887680A JPS5737540A (en) | 1980-08-07 | 1980-08-07 | Polyester can-shaped vessel |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5737540A JPS5737540A (en) | 1982-03-01 |
JPH0349815B2 true JPH0349815B2 (en) | 1991-07-30 |
Family
ID=14495823
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP10887680A Granted JPS5737540A (en) | 1980-08-07 | 1980-08-07 | Polyester can-shaped vessel |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5737540A (en) |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5418355B2 (en) * | 1975-01-23 | 1979-07-06 |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5418355U (en) * | 1977-07-05 | 1979-02-06 |
-
1980
- 1980-08-07 JP JP10887680A patent/JPS5737540A/en active Granted
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5418355B2 (en) * | 1975-01-23 | 1979-07-06 |
Also Published As
Publication number | Publication date |
---|---|
JPS5737540A (en) | 1982-03-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5106693A (en) | Transparent gas-barrier multilayer structure | |
WO2014024912A1 (en) | Modified ethylene-(vinyl alcohol) copolymer, method for producing same, and use of same | |
US20100280178A1 (en) | Modified ethylene-vinyl alcohol copolymer and method for the production thereof | |
JPH02501640A (en) | laminated metal sheets | |
JP3918613B2 (en) | Heat resistant polyester container and method for producing the same | |
JPS60173038A (en) | Packaging material | |
TW201837106A (en) | Resin composition and use thereof | |
JPH0369783B2 (en) | ||
US20060029823A1 (en) | Articles incorporating polyester-containing multilayer coextruded structures | |
MXPA06000110A (en) | Base design for pasteurization. | |
US4675219A (en) | Process for drawing plastic laminates | |
JPH0349815B2 (en) | ||
JPS61152550A (en) | Plastic can with metallic cover | |
JPS58153624A (en) | Treating method for opening of cylinder of polyester container | |
JPH037502B2 (en) | ||
JPS63267548A (en) | Gas barrier multilayer structure | |
JPS61232147A (en) | Polyester can-shaped vessel | |
JPS63232137A (en) | Polyester vessel and manufacture thereof | |
JPS5845951A (en) | Strapping made of polyester | |
JPH0217420B2 (en) | ||
JPS62235046A (en) | Polyester vessel | |
JPH0443494B2 (en) | ||
JPS59115240A (en) | Polyester can-shaped vessel having excellent gas permeability resistance | |
JPH0333580B2 (en) | ||
JPS62199425A (en) | Manufacture of heat shrinkage resistant gas-barrier biaxially oriented polyester container |