[go: up one dir, main page]

JPH0347681B2 - - Google Patents

Info

Publication number
JPH0347681B2
JPH0347681B2 JP59242747A JP24274784A JPH0347681B2 JP H0347681 B2 JPH0347681 B2 JP H0347681B2 JP 59242747 A JP59242747 A JP 59242747A JP 24274784 A JP24274784 A JP 24274784A JP H0347681 B2 JPH0347681 B2 JP H0347681B2
Authority
JP
Japan
Prior art keywords
magnetic coating
magnetic
measured
calibration curve
ray
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59242747A
Other languages
Japanese (ja)
Other versions
JPS61120010A (en
Inventor
Kazuo Ogasa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP59242747A priority Critical patent/JPS61120010A/en
Publication of JPS61120010A publication Critical patent/JPS61120010A/en
Publication of JPH0347681B2 publication Critical patent/JPH0347681B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B15/00Measuring arrangements characterised by the use of electromagnetic waves or particle radiation, e.g. by the use of microwaves, X-rays, gamma rays or electrons
    • G01B15/02Measuring arrangements characterised by the use of electromagnetic waves or particle radiation, e.g. by the use of microwaves, X-rays, gamma rays or electrons for measuring thickness

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)
  • Manufacturing Of Magnetic Record Carriers (AREA)
  • Length-Measuring Devices Using Wave Or Particle Radiation (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、情報処理システムの外部記憶装置と
して使用される磁気デイスク装置における磁気デ
イスク媒体の磁性塗膜の膜厚測定方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for measuring the thickness of a magnetic coating film on a magnetic disk medium in a magnetic disk device used as an external storage device of an information processing system.

〔従来の技術〕[Conventional technology]

従来磁気デイスク媒体の膜厚測定方法として
は、レーザビーム測定方法も知られているが、装
置の光路系が複雑で高価となるため、X線法が一
般的である。X線は、鉄成分で反射するため、磁
性塗膜の磁性粉である酸化鉄の含有量によつて反
射量が異なる。したがつて磁性塗膜にX線を照射
して、X線検量線強度を測定することで、磁性塗
膜の膜厚を測定することができる。
Conventionally, a laser beam measurement method is known as a method for measuring the film thickness of magnetic disk media, but since the optical path system of the device is complicated and expensive, the X-ray method is generally used. Since X-rays are reflected by iron components, the amount of reflection varies depending on the content of iron oxide, which is magnetic powder in the magnetic coating. Therefore, the thickness of the magnetic coating can be measured by irradiating the magnetic coating with X-rays and measuring the intensity of the X-ray calibration curve.

ところで磁性塗膜の材質が異なると、磁性粉の
含有量も異なり、同じ膜厚であつても、X線検量
線強度が異なることになる。そこで予め膜厚が既
知の磁気デイスク媒体をX線法で測定して、膜厚
とX線検量線強度との関係を示す基準データを得
ておく。そしてこの基準データを基にして、被測
定磁気デイスク媒体を実測したX線検量線強度か
ら膜厚に換算することで、膜厚値を得る方法を採
つている。磁性塗膜の材質が異なると、同じ基準
データを使用できないので、磁性塗膜の材質ごと
に基準データを用意しておくことは勿論である。
By the way, if the material of the magnetic coating film is different, the content of magnetic powder will also be different, and even if the film thickness is the same, the intensity of the X-ray calibration curve will be different. Therefore, a magnetic disk medium whose film thickness is known in advance is measured by the X-ray method to obtain reference data indicating the relationship between the film thickness and the intensity of the X-ray calibration curve. Based on this reference data, the film thickness value is obtained by converting the X-ray calibration curve intensity actually measured for the magnetic disk medium to be measured into film thickness. Since the same reference data cannot be used if the magnetic coating film is made of different materials, it is of course necessary to prepare reference data for each material of the magnetic coating film.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

ところがX線検量線強度は、磁性塗膜中の鉄成
分のみでなく、磁性塗膜が塗布されている基板の
表面粗さ等の表面条件によつても異なる。そのた
め、磁性塗膜の膜厚と材質が同じであつても、基
板の表面条件が異なると、X線検量線強度も異な
つてくる。したがつて従来は、表面条件の異なる
基板毎に、かつ同じ材質の磁性塗膜毎に、膜厚が
既知の磁気デイスク媒体から基準データを作成し
ていた。
However, the intensity of the X-ray calibration curve varies not only depending on the iron component in the magnetic coating film but also on surface conditions such as surface roughness of the substrate on which the magnetic coating film is applied. Therefore, even if the thickness and material of the magnetic coating film are the same, if the surface conditions of the substrate differ, the intensity of the X-ray calibration curve will also differ. Conventionally, therefore, reference data has been created from magnetic disk media of known film thickness for each substrate with different surface conditions and for each magnetic coating film of the same material.

そのため実測に際しては、基板の表面条件も磁
性塗膜の材質も同じ磁気デイスク媒体のみしか、
測定できないことになる。つまり基板の表面条件
や磁性塗膜の材質ごとに、基準データを作成して
おかなければならず、基準データを作成する負担
が大きい。
Therefore, during actual measurements, only magnetic disk media with the same substrate surface conditions and magnetic coating material were used.
This means that it cannot be measured. In other words, standard data must be created for each substrate surface condition and magnetic coating material, and the burden of creating standard data is heavy.

しかも、再生基板などのような枚数の少ない特
殊な基板など、多品種で少量の基板においては、
せつかく基板の表面条件に関する基準データと磁
性塗膜に関する基準データを得ても、これらの基
準データを適用できる被測定基板数が少ないた
め、効率が極めて悪い。
Moreover, when it comes to high-mix, low-volume boards, such as special boards with a small number of boards such as recycled boards,
Even if standard data regarding the surface conditions of the substrate and standard data regarding the magnetic coating film are obtained, the efficiency is extremely low because the number of substrates to be measured to which these standard data can be applied is small.

磁性塗膜に関する基準データを得ても、表面条
件が同一の基板のみを選別して適用するという作
業も複雑であり、作業性が悪い。したがつて、自
動的に測定しようとする場合は、基板の表面条件
や磁性塗膜材質の種類の多い磁気デイスク媒体に
おいて、いちいち基板の表面条件や材質を判別し
なければならず、非能率である。
Even if standard data regarding magnetic coatings are obtained, the task of selecting and applying only substrates with the same surface conditions is complicated and has poor workability. Therefore, when trying to measure automatically, the surface conditions and materials of the substrates must be determined for each magnetic disk medium, which has many types of substrate surface conditions and magnetic coating materials, which is inefficient. be.

また従来のように、磁性塗膜の膜厚が比較的厚
い磁気デイスク媒体においては、少々の測定誤差
は許容されたが、最近のように膜厚が0.5μm以下
の極めて薄い磁性塗膜になると、測定誤差の許容
値も非常に小さな値となり、ますます正確な測定
が要求される。
Furthermore, as in the past, a small amount of measurement error was allowed for magnetic disk media with relatively thick magnetic coatings, but recently, with extremely thin magnetic coatings of 0.5 μm or less, As a result, the tolerance for measurement errors has become extremely small, and increasingly accurate measurements are required.

本発明の技術的課題は、従来の磁性塗膜の膜厚
測定方法におけるこのような問題を解消し、膜厚
の薄い磁性塗膜であつても、正確に測定すること
ができ、しかも自動測定に適するように、いちい
ち基板の表面条件を判別したりしなくても済むよ
うにすることにある。
The technical problem of the present invention is to solve such problems in the conventional method for measuring the thickness of magnetic coatings, to be able to accurately measure even thin magnetic coatings, and to be able to measure automatically. The purpose is to eliminate the need to judge the surface conditions of the substrate every time, so that it is suitable for

〔問題点を解決するための手段〕[Means for solving problems]

この問題点を解決するために講じた本発明によ
る技術的手段は、磁気デイスク媒体の磁性塗膜を
X線ビームで測定する方法において、磁性塗膜の
膜厚が既知の磁気デイスク媒体における、膜厚と
X線検量線強度との関係を測定し、膜厚とX線検
量線強度との基準データを予め得ておき、被測定
磁気デイスク媒体における磁性塗膜の無い領域の
X線検量線強度と、磁性塗膜の存在する領域のX
線検量線強度を測定し、かつ前記基準データで校
正することにより、磁性塗膜の膜厚の値を得る方
法を採つている。磁性塗膜の無い領域と磁性塗膜
領域で、X線を透過させ、透過式で測定してもよ
く、反射式と透過式測定を同時に行うことで、両
面同時に膜厚測定することもできる。
The technical means of the present invention taken to solve this problem is to measure the magnetic coating film of a magnetic disk medium using an X-ray beam. The relationship between the thickness and the X-ray calibration curve intensity is measured, and the reference data of the film thickness and the X-ray calibration curve intensity is obtained in advance, and the X-ray calibration curve intensity of the area without magnetic coating on the magnetic disk medium to be measured is determined. and X of the area where the magnetic coating exists
A method is adopted in which the value of the film thickness of the magnetic coating film is obtained by measuring the linear calibration curve intensity and calibrating it using the reference data. It is also possible to measure the film thickness on both sides at the same time by transmitting X-rays through the area without the magnetic coating and the area of the magnetic coating, or by performing the reflection and transmission measurements at the same time.

〔作用〕[Effect]

第1図はこの技術的手段の作用を説明する特性
図であり、1は基準データを示し、2,3は実測
データを示す。横軸は膜厚、縦軸はX線検量線強
度である。基準データ1は、破壊式測定などで膜
厚が既知の磁気デイスク媒体をX線法で測定した
ものである。膜厚の異なる少なくとも2個所を測
定すると、図の基準データ1のように、膜厚に比
例してX線検量線強度が増加する、傾斜した特性
を示している。磁性塗膜の材質が異なると、この
基準データ1の傾斜角が異なる。次に実測データ
2は基板Aに関するもの、実測データ3は基板B
に関するものであり、それぞれ基準データ1の磁
性塗膜と材質が同じである。基板A,Bとも、膜
厚が0μmの個所のX線検量線強度A0,B0は、磁
気デイスク媒体の磁性塗膜の無い個所すなわち中
央穴寄りのクランプエリアと呼ばれている部分の
X線検量線強度を示すものである。このように磁
性塗膜が無く、0μmを示す部分のX線検量線強
度が異なるということは、基板AとBは、表面条
件が異なることに起因するものである。
FIG. 1 is a characteristic diagram illustrating the operation of this technical means, in which 1 shows reference data and 2 and 3 show measured data. The horizontal axis is the film thickness, and the vertical axis is the X-ray calibration curve intensity. Reference data 1 is obtained by measuring a magnetic disk medium whose film thickness is known by destructive measurement or the like using an X-ray method. When at least two locations with different film thicknesses are measured, as shown in reference data 1 in the figure, the X-ray calibration curve intensity increases in proportion to the film thickness, showing a sloped characteristic. If the material of the magnetic coating film is different, the inclination angle of this reference data 1 will be different. Next, measured data 2 is related to board A, and measured data 3 is related to board B.
The material is the same as that of the magnetic coating film of reference data 1. For both substrates A and B, the X-ray calibration curve intensities A 0 and B 0 at locations where the film thickness is 0 μm are the This shows the calibration curve intensity. The fact that the X-ray calibration curve intensities of the portions having no magnetic coating film and indicating 0 μm are different in this way is due to the fact that substrates A and B have different surface conditions.

本発明では、第2図のように磁性塗膜の無い領
域4のほかに、磁性塗膜5の部分も測定する。磁
気デイスク媒体の中央側と外周側の少なくとも2
個所測定するのが好ましい。A1が中央側a1の実
測値、A2が外周側a2の実測値である。いま膜厚
が0μmの値におけるX線検量線強度A0の値から、
磁性塗膜が同じ材質の基準データ1と平行な線2
を引き、実測値A1,A2から横軸と平行な線を引
いて、実測データ2の線と交差する点から、縦軸
と平行な線を引き、横軸との交点を求める。する
と、α1が、内周側の実測膜厚、α2が外周側の実測
膜厚となる。
In the present invention, in addition to the area 4 where there is no magnetic coating as shown in FIG. 2, the portion with the magnetic coating 5 is also measured. At least two on the center side and the outer circumferential side of the magnetic disk medium
It is preferable to measure at a certain point. A 1 is the actual measurement value of the center side a 1 , and A 2 is the actual measurement value of the outer peripheral side a 2 . From the value of the X-ray calibration curve intensity A 0 at the film thickness of 0 μm,
Line 2 parallel to reference data 1 with the same magnetic coating material
, draw a line parallel to the horizontal axis from the measured values A 1 and A 2 , draw a line parallel to the vertical axis from the point where it intersects the line of measured data 2, and find the point of intersection with the horizontal axis. Then, α 1 becomes the actually measured film thickness on the inner circumferential side, and α 2 becomes the actually measured film thickness on the outer circumferential side.

基板Bも、基板Aおよび基準データの基板と磁
性塗膜が同じ材質であるため、実測データ3の線
も、B0の点から基準データ1の線と平行に線3
を引くことで、X線検量線強度から実測膜厚を得
ることができる。そして基板BもAと膜厚が同じ
であるなら、磁性塗膜の無い領域におけるX線検
量線強度A0とB0との差の値だけ、磁性塗膜部の
X線検量線強度も小さくなる。その結果、中央寄
りの部分の値B1から求めた実測膜厚β1と基板A
の値α1とは同じ値となり、外周寄りの部分の値
B2から求めめた実測膜厚β2と基板Aの値α2とは
同じ値となる。すなわち、基板の表面条件の如何
に拘わらず、磁性塗膜の膜厚が同じなら、同じ実
測値を示すことがわかる。
Since the magnetic coating film of substrate B is the same as that of substrate A and the substrate of reference data, the line of actual measurement data 3 also runs from point B 0 parallel to the line of reference data 1.
By subtracting, the measured film thickness can be obtained from the X-ray calibration curve intensity. If substrate B has the same film thickness as A, then the X-ray calibration curve intensity in the magnetic coating area will be smaller by the value of the difference between the X-ray calibration curve intensities A 0 and B 0 in the area without the magnetic coating film. Become. As a result, the measured film thickness β 1 obtained from the value B 1 near the center and the substrate A
The value α 1 is the same value, and the value near the outer periphery
The measured film thickness β 2 obtained from B 2 and the value α 2 of the substrate A are the same value. That is, it can be seen that regardless of the surface conditions of the substrate, if the thickness of the magnetic coating film is the same, the actual measured value will be the same.

つまり、1枚の基板内においては、磁性塗膜の
無い領域も有る領域もすべて、基板の厚さおよび
表面条件は一定しているため、基板の表面条件を
いちいち判別したりしなくても、磁性塗膜の無い
領域と磁性塗膜の有る領域を測定し、両方のデー
タを基準データで校正することで、X線検量線強
度から表面条件の要素は除外した膜厚のみの値を
得ることができ、表面条件を考慮しないで膜厚の
みを測定することができる。
In other words, within a single board, the thickness and surface conditions of the board are constant in all areas, both those without and those with magnetic coating, so there is no need to determine the surface conditions of the board one by one. By measuring the area without magnetic coating and the area with magnetic coating and calibrating both data with reference data, it is possible to obtain the value of only the film thickness excluding surface condition elements from the X-ray calibration curve intensity. It is possible to measure only the film thickness without considering surface conditions.

なお説明の都合上、膜厚の測定部分は2個所以
上としているが、膜厚とX線検量線強度が予め分
かつている場合は、1個所でもよい。
For convenience of explanation, the film thickness is measured at two or more locations, but if the film thickness and the X-ray calibration curve intensity are known in advance, it may be at one location.

〔実施例〕〔Example〕

次に本発明による磁性塗膜の膜厚測定方法が実
際上どのように具体化されるかを実施例で説明す
る。第3図は本発明による磁性塗膜の膜厚測定方
法を実施する測定装置を示すブロツク図である。
Aは磁気デイスク媒体であり、中央穴6寄りのク
ランプエリア4には、磁性塗膜が塗布されていな
い。7はX線管であり、X線発生装置8に接続さ
れている。9はX線検出器で、X線管7から磁気
デイスク媒体Aに照射されたX線の反射量すなわ
ちX線検量線強度を検出するものである。該X線
検出器9は検出用電源10で駆動され、出力は波
高分析器11に入力される。そして該波高分析器
11の測定データは、プロセツサ12で処理さ
れ、膜厚値が表示器13に表示されたり、プリン
タ14でプリントアウトされる。15はプロセツ
サ12を操作したりデータ入力するテンキーであ
る。
Next, examples will be used to explain how the method for measuring the thickness of a magnetic coating film according to the present invention is actually implemented. FIG. 3 is a block diagram showing a measuring device for carrying out the method for measuring the thickness of a magnetic coating film according to the present invention.
A is a magnetic disk medium, and the clamp area 4 near the center hole 6 is not coated with a magnetic coating. 7 is an X-ray tube, which is connected to an X-ray generator 8. Reference numeral 9 denotes an X-ray detector which detects the amount of reflection of the X-rays irradiated from the X-ray tube 7 onto the magnetic disk medium A, that is, the intensity of the X-ray calibration curve. The X-ray detector 9 is driven by a detection power source 10, and its output is input to a pulse height analyzer 11. The measurement data from the pulse height analyzer 11 is processed by a processor 12, and the film thickness value is displayed on a display 13 or printed out by a printer 14. Numeral keys 15 are used to operate the processor 12 and input data.

この装置において、まず磁気デイスク媒体Aの
磁性塗膜が塗布されていないクランプエリア4の
X線検量線強度を測定し、プロセツサ12に入力
させる。次いで磁性塗膜領域5の内周側のa1点の
X線検量線強度を測定し、プロセツサ12に入力
する。同様に磁性塗膜領域5の外周側のa2点のX
線検量線強度を測定し、プロセツサ12に入力す
る。そして、予めプロセツサ12に入力されてい
る前記基準データ1とX線検出器9で検出された
前記3つのX線検量線強度とを比較することで、
クランプエリア4の表面条件に関係なく、磁性塗
膜5の内外2個所の膜厚値のみが表示器13やプ
リンタ14で出力される。
In this apparatus, first, the X-ray calibration curve intensity of the clamp area 4 on which the magnetic coating film is not applied on the magnetic disk medium A is measured and inputted to the processor 12. Next, the intensity of the X-ray calibration curve at one point a on the inner peripheral side of the magnetic coating area 5 is measured and input to the processor 12. Similarly, X at 2 points a on the outer circumferential side of magnetic coating area 5
The calibration curve intensity is measured and input to the processor 12. Then, by comparing the reference data 1 inputted in advance to the processor 12 and the three X-ray calibration curve intensities detected by the X-ray detector 9,
Irrespective of the surface conditions of the clamp area 4, only the film thickness values at the two inner and outer locations of the magnetic coating film 5 are outputted by the display 13 and printer 14.

前記のように、磁気デイスク媒体Aと磁性塗膜
の材質が同じ磁気デイスク媒体Bなどは、前記と
同じ手法でクランプエリア4も測定し、プロセツ
サ12において、基準データ1に基づいて校正す
ることで、同一基準データにより膜厚測定でき
る。この場合、前記のように基板の成分や表面粗
さなどが異なつていても差支えない。
As mentioned above, for magnetic disk medium B, etc. whose magnetic coating material is the same as that of magnetic disk medium A, the clamp area 4 is also measured using the same method as described above, and the processor 12 calibrates it based on the reference data 1. , film thickness can be measured using the same reference data. In this case, there is no problem even if the components and surface roughness of the substrates are different as described above.

このように、磁性塗膜の材質が同じ磁気デイス
ク媒体であれば、クランプエリアの表面条件に関
係なく、同じ基準データで校正できるが、磁性塗
膜の材質が異なる磁気デイスク媒体のみ、該磁気
デイスク媒体と同じ材質の磁性塗膜を破壊測定し
たりして別に基準データを作成し、該基準データ
で校正する。
In this way, magnetic disk media with the same magnetic coating material can be calibrated using the same standard data regardless of the surface conditions of the clamp area, but only magnetic disk media with different magnetic coating materials can be calibrated using the same standard data. Separate reference data is created by destructively measuring a magnetic coating made of the same material as the medium, and calibration is performed using the reference data.

なお基板の表面粗さによつて、X線検量線強度
が異なることは従来から知られているが、本発明
に至る過程において、この傾向は、X線発生装置
の発生電圧が小さい程大きく、発生電圧が大きく
なると、表面条件の影響を受け難いことが判明し
た。したがつてX線発生装置の発生電圧が大きい
状態で測定する場合は、磁性塗膜のみの測定も可
能であるが、本発明の方法によれば、発生電圧に
関係なく高精度の測定が可能となる。
It has been known for a long time that the intensity of the X-ray calibration curve varies depending on the surface roughness of the substrate, but in the process leading up to the present invention, this tendency was found to be larger as the voltage generated by the X-ray generator is smaller. It was found that the larger the generated voltage, the less affected by surface conditions. Therefore, when measuring when the voltage generated by the X-ray generator is high, it is possible to measure only the magnetic coating, but according to the method of the present invention, highly accurate measurement is possible regardless of the voltage generated. becomes.

第4図は、磁気デイスク媒体の表裏両面の膜厚
を同時に測定する方法である。従来は、磁気デイ
スク媒体の基板が厚いため、専ら反射量を検出し
て片面ずつ測定している。つまり表面の磁性塗膜
膜厚を測定した後、磁気デイスク媒体を測定装置
から外して裏返した状態で再セツトし、再度測定
する作業を行なつている。したがつて作業能率が
悪く、動作が複雑なため自動化も困難である。
FIG. 4 shows a method for simultaneously measuring the film thickness on both the front and back sides of a magnetic disk medium. Conventionally, since the substrate of a magnetic disk medium is thick, the amount of reflection has been detected and measured one side at a time. That is, after measuring the thickness of the magnetic coating film on the surface, the magnetic disk medium is removed from the measuring device, turned over, reset, and measured again. Therefore, the work efficiency is poor and the operation is complicated, making it difficult to automate.

しかしながら基板厚の薄い小型の磁気デイスク
媒体では、X線を透過させることが可能であり、
X線を透過させると共に、クランプエリアも測定
する本発明の方法を併用することで、裏面の膜厚
も測定することが可能となる。本発明は、この裏
面の膜厚測定を表面側と同時に行うものである。
第4図で、第3図の装置と同一部分には同じ符号
が付されている。この装置では、磁気デイスク媒
体Aの表面側にX線検出器91が、裏面側にX線
検出器92が配設されている。そして両X線検出
器91,92の出力は、波高分析器11を介して
プロセツサ12に入力される。この装置でも、磁
気デイスク媒体のクランプエリア4と磁性塗膜領
域5の両方を測定し、前記のように基準データで
校正することで、表面側の膜厚値が得られる。基
板のX線透過量は、基板の表面粗さの他に基板の
厚さや成分にも依存するが、裏面の膜厚を測定す
る場合も、クランプエリア4を透過測定する。透
過量で測定された磁性塗膜部の厚さから、クラン
プエリアの基板厚と表面側の磁性塗膜膜厚の値を
差し引く処理がプロセツサ12で行なわれるた
め、基板の表面条件は勿論基板厚や成分なども関
係なく、裏面の磁性塗膜の膜厚値のみを得ること
ができる。このように、測定装置にセツトした状
態で、磁気デイスク媒体の表裏両面を同時に測定
することによつて、測定時間が従来の半分に短縮
され、磁気デイスク媒体を裏返さないで済むので
自動測定も容易になる。またクランプエリアの基
板厚を測定し、磁性塗膜部の基板および両面の磁
性塗膜厚の値から差し引く方法を採つているた
め、基板厚等に関係なく測定でき、再生基板など
を使用した特殊な磁気デイスク媒体も、磁性塗膜
の材質に関する基準データのみ用意しておくこと
で、容易に測定できる。
However, small magnetic disk media with thin substrates can allow X-rays to pass through them.
By using the method of the present invention that transmits X-rays and also measures the clamp area, it becomes possible to measure the film thickness on the back surface as well. The present invention measures the film thickness on the back side at the same time as on the front side.
In FIG. 4, parts that are the same as those of the device in FIG. 3 are given the same reference numerals. In this device, an X-ray detector 91 is disposed on the front side of the magnetic disk medium A, and an X-ray detector 92 is disposed on the back side. The outputs of both X-ray detectors 91 and 92 are input to the processor 12 via the pulse height analyzer 11. With this device as well, the film thickness value on the front side can be obtained by measuring both the clamp area 4 and the magnetic coating area 5 of the magnetic disk medium and calibrating with the reference data as described above. Although the amount of X-ray transmission through the substrate depends not only on the surface roughness of the substrate but also on the thickness and components of the substrate, transmission measurement of the clamp area 4 is also performed when measuring the film thickness on the back surface. Since the processor 12 subtracts the substrate thickness in the clamp area and the magnetic coating film thickness on the front side from the thickness of the magnetic coating film measured by the amount of transmission, the substrate surface condition as well as the substrate thickness can be subtracted. It is possible to obtain only the film thickness value of the magnetic coating film on the back side, regardless of the magnetic coating film or its components. In this way, by simultaneously measuring both the front and back sides of the magnetic disk medium while it is set in the measuring device, the measurement time is cut in half compared to conventional methods, and automatic measurement is also possible since there is no need to turn the magnetic disk medium over. becomes easier. In addition, the method of measuring the substrate thickness in the clamp area and subtracting it from the value of the magnetic coating thickness of the substrate and both sides of the magnetic coating area makes it possible to measure regardless of the substrate thickness. Even magnetic disk media can be easily measured by preparing only standard data regarding the material of the magnetic coating.

〔発明の効果〕〔Effect of the invention〕

以上のように本発明によれば、磁性塗膜部に加
えて、クランプエリアのように磁性塗膜の塗布さ
れていない領域のX線検量線強度も測定すること
により、基板の表面粗さや材質に関係なく膜厚の
みの値を得ることができ、基板に関する基準デー
タを一切必要としない。そのため、磁性塗膜の材
質に関する基準データさえ得ておけば、種類の少
ない特殊な基板を使用した磁気デイスク媒体で
も、容易にかつ高精度に測定できる。特に、裏面
の膜厚は透過式に、かつ表面側と同時に測定する
ことも可能となり、自動測定に極めて適してい
る。
As described above, according to the present invention, in addition to the magnetic coating part, by measuring the X-ray calibration curve intensity of the area where the magnetic coating film is not applied, such as the clamp area, the surface roughness of the substrate and the material It is possible to obtain only the film thickness value regardless of the thickness, and no reference data regarding the substrate is required. Therefore, as long as standard data regarding the material of the magnetic coating film is obtained, even magnetic disk media using special substrates of few types can be easily and accurately measured. In particular, the film thickness on the back side can be measured in a transmission manner and simultaneously on the front side, making it extremely suitable for automatic measurement.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明による磁性塗膜の膜厚測定方法
の作用を示す図、第2図は磁気デイスク媒体にお
ける測定個所を示す図、第3図は本発明の方法を
実施する装置のブロツク図、第4図は本発明の方
法で両面同時に測定する装置のブロツク図であ
る。 図において、1は基準データ、2,3は実測デ
ータ、4はクランプエリア、5は磁性塗膜(領
域)、7はX線管、9,91,92はX線検出器
をそれぞれ示す。
Fig. 1 is a diagram showing the operation of the method for measuring the thickness of a magnetic coating film according to the present invention, Fig. 2 is a diagram showing measurement points on a magnetic disk medium, and Fig. 3 is a block diagram of an apparatus implementing the method of the present invention. , FIG. 4 is a block diagram of an apparatus for simultaneously measuring both sides using the method of the present invention. In the figure, 1 is reference data, 2 and 3 are actually measured data, 4 is a clamp area, 5 is a magnetic coating (region), 7 is an X-ray tube, and 9, 91, and 92 are X-ray detectors, respectively.

Claims (1)

【特許請求の範囲】[Claims] 1 磁気デイスク媒体の磁性塗膜をX線ビームで
測定する方法において、磁性塗膜の膜厚が既知の
磁気デイスク媒体における、膜厚とX線検量線強
度との関係を測定し、膜厚とX線検量線強度との
基準データを予め得ておき、被測定磁気デイスク
媒体における磁性塗膜の無い領域のX線検量線強
度と、磁性塗膜の存在する領域のX線検量線強度
を測定し、かつ前記基準データで校正することに
より、磁性塗膜の膜厚の値を得ることを特徴とす
る磁性塗膜の膜厚測定方法。
1 In a method of measuring the magnetic coating film of a magnetic disk medium using an Obtain reference data for the X-ray calibration curve intensity in advance, and measure the X-ray calibration curve intensity in the area where there is no magnetic coating on the magnetic disk medium to be measured and the X-ray calibration curve intensity in the area where the magnetic coating exists. A method for measuring the thickness of a magnetic coating film, characterized in that a value of the thickness of the magnetic coating film is obtained by calibrating with the reference data.
JP59242747A 1984-11-16 1984-11-16 Measuring method of film thickness of magnetic coating film Granted JPS61120010A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59242747A JPS61120010A (en) 1984-11-16 1984-11-16 Measuring method of film thickness of magnetic coating film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59242747A JPS61120010A (en) 1984-11-16 1984-11-16 Measuring method of film thickness of magnetic coating film

Publications (2)

Publication Number Publication Date
JPS61120010A JPS61120010A (en) 1986-06-07
JPH0347681B2 true JPH0347681B2 (en) 1991-07-22

Family

ID=17093657

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59242747A Granted JPS61120010A (en) 1984-11-16 1984-11-16 Measuring method of film thickness of magnetic coating film

Country Status (1)

Country Link
JP (1) JPS61120010A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6423105A (en) * 1987-07-17 1989-01-25 Japan Aviation Electron Film thickness evaluating device
US7362454B2 (en) 2005-01-21 2008-04-22 Hitachi Global Storage Technologies Netherlands B.V. Method and system for measuring overcoat layer thickness on a thin film disk
JP5018132B2 (en) * 2007-02-26 2012-09-05 富士通株式会社 Sample analyzer and sample analysis method
JP7255517B2 (en) * 2019-12-13 2023-04-11 株式会社プロテリアル Nondestructive measurement method, nondestructive measurement system, nondestructive measurement program and recording medium
KR102525296B1 (en) * 2020-09-08 2023-05-09 주식회사 포스코 Apparatus for measuring coating layer thickness of steel sheet

Also Published As

Publication number Publication date
JPS61120010A (en) 1986-06-07

Similar Documents

Publication Publication Date Title
US4865445A (en) Apparatus for detecting faults on the surface of a resist master disc and measuring the thickness of the resist coating layer
US4357540A (en) Semiconductor device array mask inspection method and apparatus
JPH0347681B2 (en)
JP3148000B2 (en) Solder printing inspection method
KR100416497B1 (en) Pattern Inspection System
JP2945537B2 (en) Soldering inspection method and apparatus
JPH10300436A (en) Lead frame inspection device
JPH02276902A (en) height inspection device
JPS61250508A (en) Apparatus for measuring film thickness
JPS63128207A (en) Mounted parts inspection equipment
JPS61162737A (en) How to check the performance of foreign object inspection equipment
JPS60257136A (en) Film thickness measuring device for photoresist
JPS63235805A (en) Film thickness measurement method and device
JPS63261145A (en) X-ray tomography device
JP3159271B2 (en) Foreign matter inspection method and apparatus
JPH03148056A (en) Total-reflection x-ray fluorescence analysis apparatus
JPS62118243A (en) Surface defect inspecting instrument
JPS6360324B2 (en)
JPH01277709A (en) Method for measuring thickness of metallic layer
JPH05149889A (en) Optical sensitivity inspection device sensitivity adjustment method and sensitivity adjustment specimen
JPH04113206A (en) Calibration curve calibration method for measuring equipment
JPH0358042B2 (en)
JPS6383647A (en) Sample surface analysis method
JPH0363574A (en) Inspecting method for revolving speed detecting device
JPH03257305A (en) Inspecting method of mounting of chip parts