[go: up one dir, main page]

JPH0347531A - Fluid dispersing apparatus and treatment apparatus using the same - Google Patents

Fluid dispersing apparatus and treatment apparatus using the same

Info

Publication number
JPH0347531A
JPH0347531A JP17963689A JP17963689A JPH0347531A JP H0347531 A JPH0347531 A JP H0347531A JP 17963689 A JP17963689 A JP 17963689A JP 17963689 A JP17963689 A JP 17963689A JP H0347531 A JPH0347531 A JP H0347531A
Authority
JP
Japan
Prior art keywords
fluid
injector
gas
porous body
reaction gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17963689A
Other languages
Japanese (ja)
Inventor
Noboru Fuse
布施 昇
Toshiaki Miyahisa
宮壽 俊明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Electron Sagami Ltd
Original Assignee
Tokyo Electron Sagami Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electron Sagami Ltd filed Critical Tokyo Electron Sagami Ltd
Priority to JP17963689A priority Critical patent/JPH0347531A/en
Publication of JPH0347531A publication Critical patent/JPH0347531A/en
Pending legal-status Critical Current

Links

Landscapes

  • Physical Or Chemical Processes And Apparatus (AREA)

Abstract

PURPOSE:To make the concentration distribution of a fluid almost uniform and disperse the fluid by installing a porous body midway in a fluid supplying route and passing the fluid through the cross section of the porous body. CONSTITUTION:A porous body 14 is put midway in a fluid supplying route 16 and a fluid is passed through the cross section 14 of the porous body so that the concentration distribution of the fluid is made almost uniform and disperse the fluid. For example, an injector 16 is prepared by unitedly sintering a porous highly pure alumina part 14 and a convertional highly pure alumina part 15. When a reaction gas at high pressure is supplied to the injector 16, the gas is sprayed outside through infinitely thin capillary tubes and thus the internal pressure of each pore of an injector can be set to be extremely close to that at the tip part and the sprayed amount of the reaction gas can be made uniform independently of the location. Moreover, the mechanical strength of the injector is higher as compared with that of injector made of quartz and the injector has excellent temperature characteristics.

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) 本発明は、流体拡散装置及び反応ガスにより被処理体を
処理する処理装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Industrial Field of Application) The present invention relates to a fluid diffusion device and a processing apparatus for processing an object to be processed using a reactive gas.

(従来の技術) 半導体工業では、半導体基板に不純物原子を直接的にま
たは間接的に均一に添加することが重要な技術である。
(Prior Art) In the semiconductor industry, it is an important technique to uniformly add impurity atoms to a semiconductor substrate, either directly or indirectly.

また、半導体基板上に例えば二酸化珪素等の珪素化合物
、もしくは多結晶、単結晶層を形成すると共に、その珪
素または珪素化合物に不純物原子を均一に添加すること
、及びその再現性が重要な技術である。半導体素子がよ
り高度化され、例えば、半導体集積回路素子でその集積
度が高くなればなるほど、半導体結晶へ添加する不純物
原子の量、半導体基板上への各種気相成長層及びその気
+U成長層への不純物原子の数量を精密に制御すること
が必要となる。
In addition, it is a technology in which, for example, a silicon compound such as silicon dioxide, or a polycrystalline or single crystal layer is formed on a semiconductor substrate, and impurity atoms are uniformly added to the silicon or silicon compound, and its reproducibility is important. be. As semiconductor devices become more sophisticated, for example, the higher the degree of integration in semiconductor integrated circuit devices, the more the amount of impurity atoms added to the semiconductor crystal, the various vapor phase growth layers on the semiconductor substrate, and the vapor + U growth layer. It is necessary to precisely control the number of impurity atoms added to the material.

例えば、二酸化珪素層の形成の場合、従来は横型熱処理
炉を使用していたが、反応気体の反応領域(珪素基板の
入っている領域)への濃度分布をより均一にする工夫が
、横型の構造的理由により非常に困難であった。そこで
、この難点を克服するため、近年では系全体を縦構造に
して対処している。
For example, in the case of forming a silicon dioxide layer, a horizontal heat treatment furnace was conventionally used, but a method to make the concentration distribution of the reaction gas more uniform in the reaction region (the region containing the silicon substrate) This was extremely difficult due to structural reasons. In order to overcome this difficulty, in recent years the entire system has been made into a vertical structure.

第8図は従来の縦型炉を示すものであり、系全体は加熱
炉1で覆われ、その内部に石英の二重管としてのアウタ
ーチューブ2.インナーチューブ3が設けられている。
FIG. 8 shows a conventional vertical furnace, in which the entire system is covered with a heating furnace 1, inside which is an outer tube 2. An inner tube 3 is provided.

インナーチューブ3の均熱領域には石英ボート4が配設
可能となっていて、このボート4には多数枚の珪素基板
5が搭載されている。反応容器の流速を規制するキャリ
アガスとしての不活性ガスを前記インナーチューブ3に
導入するために、不活性ガス導入管6a、6bが設けら
れ、インナーチューブ3の上端より不活性ガスを導入可
能としている。一方、反応ガスの導入管は、通常導入す
べき反応ガスの種類に対応して設けられ、二酸化珪素層
の気相成長では珪素化合物のインジェクター7と、酸素
ガスインジェクター8(第8図においてインジェクター
8はインジェクター7の後方に存在する)を、インナー
チュ、−ブ3の縦軸方向に沿って延設している。このイ
ンジェクター7.8は、第9図(A)、(B)に示すよ
うに、その縦軸方向にて所定間隔毎に多数の孔9を穿設
し、この番孔9が前記石英ボート4に搭載された複数枚
の珪素基板5に対向する位置に設定されるように、前記
インジェクター7゜8がインナーチューブ3内に配置さ
れることになる。反応容器の排気系としては、前記イン
ナーチューブ3の下端側に接続した排気口10を設ける
と共に、前記インジェクター7.8と対向する前記イン
ナーチューブ3の壁面に、多数の孔またはスリット11
を配設し、このスリット11を介してアウターチューブ
2側に放出されたガスを、排気口12を介して排気可能
としている。
A quartz boat 4 can be placed in the soaking area of the inner tube 3, and a large number of silicon substrates 5 are mounted on this boat 4. In order to introduce an inert gas as a carrier gas that regulates the flow rate of the reaction vessel into the inner tube 3, inert gas introduction pipes 6a and 6b are provided so that the inert gas can be introduced from the upper end of the inner tube 3. There is. On the other hand, reaction gas introduction pipes are usually provided corresponding to the type of reaction gas to be introduced, and in the case of vapor phase growth of a silicon dioxide layer, a silicon compound injector 7 and an oxygen gas injector 8 (injector 8 in FIG. 8) are used. is located behind the injector 7) and extends along the longitudinal axis of the inner tube 3. As shown in FIGS. 9(A) and 9(B), this injector 7.8 has a large number of holes 9 bored at predetermined intervals along its longitudinal axis, and these holes 9 are connected to the quartz boat 4. The injector 7.8 is disposed within the inner tube 3 so as to be set at a position facing the plurality of silicon substrates 5 mounted on the inner tube 3. As an exhaust system for the reaction vessel, an exhaust port 10 connected to the lower end side of the inner tube 3 is provided, and a large number of holes or slits 11 are provided on the wall surface of the inner tube 3 facing the injector 7.8.
is arranged so that the gas released to the outer tube 2 side through the slit 11 can be exhausted through the exhaust port 12.

通常、二酸化珪素層の気相成長では、常圧で実施されて
いるが、より膜厚の均一性を向上するために、反応ガス
のMean Free Pathを大きくする目的で、
前記排気口10.12は真空系に直結しである。さらに
、系全体はボート4を中心に円柱座標対称であるが、反
応ガスの流れが珪素基板5表面に平行であるため、より
均一性を確保する理由から回転軸13によりボート4全
体を任意の回転速度で気相成長中回転できるようにして
いる。
Usually, the vapor phase growth of a silicon dioxide layer is carried out at normal pressure, but in order to further improve the uniformity of the film thickness, in order to increase the mean free path of the reaction gas,
The exhaust ports 10.12 are directly connected to the vacuum system. Furthermore, although the entire system is symmetrical in cylindrical coordinates with the boat 4 as the center, since the flow of the reaction gas is parallel to the surface of the silicon substrate 5, the entire boat 4 can be freely rotated by the rotating shaft 13 in order to ensure more uniformity. The rotational speed allows rotation during vapor phase growth.

(発明が解決しようとする課題) 近年の半導体素子では、例えばダイナミックRAMを例
に挙げると、LM、4M、16Mとその技術革新の速度
はより加速され、設計基準値もサブミクロンの領域に突
入しただけでなく、単結晶珪素も含めた多層気相成長層
を採用し、やがては素子の実装技術の壁に突きあたり、
三次元構造へと技術革新が進展することは容品に考えら
れている。
(Problem to be solved by the invention) In recent years, the speed of technological innovation in semiconductor devices such as dynamic RAM, LM, 4M, and 16M is accelerating, and design standard values are entering the submicron range. Not only that, but we also adopted multi-layered vapor phase growth layers that included single-crystal silicon, and eventually hit a wall in device mounting technology.
It is believed that technological innovation will progress towards three-dimensional structures.

そこで考えられることは、気相成長層の精密制御であり
、珪素のみならず各気相成長層への不純物原子数量の精
密制御、及び各気相成長層の化学的、物理的特性の制御
である。このためには、反応領域での反応ガス濃度分布
をより均一にする必要がある。そして、上述した装置に
おいては、第9図(A)、(B)に示すインジェクター
7.8において、複数個の孔9をN、、N2.・・・N
、、とすれば、1番目の孔からN番目の孔を通過してそ
れぞれ噴出される珪素化合物ガスの噴出流速V1゜v2
.・・・V、がすべて等しいことが望ましい。このため
には、1番目の孔近傍の圧力P1から、N番目の孔近傍
の圧力Pnは、その粘性が非常に小さい簡単なモデルを
想定すれば、これらが全て等しい必要がある。
What can be considered here is precise control of the vapor phase growth layer, precise control of the number of impurity atoms not only in silicon but also in each vapor phase growth layer, and control of the chemical and physical properties of each vapor phase growth layer. be. For this purpose, it is necessary to make the reaction gas concentration distribution in the reaction region more uniform. In the above-mentioned apparatus, in the injector 7.8 shown in FIGS. 9(A) and 9(B), a plurality of holes 9 are formed N, N2, . ...N
, , the ejection flow velocity V1゜v2 of the silicon compound gas ejected from the first hole to the Nth hole, respectively.
.. ... It is desirable that all V are equal. For this purpose, the pressure P1 near the first hole to the pressure Pn near the Nth hole must all be equal, assuming a simple model in which the viscosity is very small.

しかしながら、長さ1mもの細管で、しかもかなりの高
温下での反応ガスの温度変化等をも考慮すると、上記の
条件を満足することは不可能に近い。
However, it is almost impossible to satisfy the above conditions in a thin tube as long as 1 m and considering the temperature change of the reaction gas at a considerably high temperature.

さらに、インジェクター7.8の孔9の大きさ。Furthermore, the size of the hole 9 of the injector 7.8.

密度等は、反応ガスの種類等に応じて経験則で設計して
いるのが一般的であり、導入すべき反応ガスの種類が変
わる毎にインジェクターを交換しなければならないとい
う煩わしさもある。
Density etc. are generally designed based on empirical rules depending on the type of reaction gas, etc., and there is also the hassle of having to replace the injector every time the type of reaction gas to be introduced changes.

さらに、上記のようなインジェクター7.8の細管に、
多数の孔9を穿設した場合には、特に熱処理炉の場合高
温度使用するために変形を生じ、経験則で設計した設定
値より異なったものとなってしまい、プロセスの再現性
が悪いという問題も生じていた。
Furthermore, in the thin tube of the injector 7.8 as described above,
When a large number of holes 9 are drilled, especially in the case of a heat treatment furnace, deformation occurs due to high temperature use, and the set values differ from those designed based on empirical rules, resulting in poor process reproducibility. There were also problems.

そこで、本発明の目的とするところは、流体の濃度分布
をほぼ均一にして流体を拡散させ、しかも機械的強度が
強く、熱変形の少ない流体拡散装置を提供することにあ
り、さらには、この流体拡散装置を反応ガスの拡散供給
部として使用することで、気相成長等の精密制御が可能
な処理装置を提供することにある。
SUMMARY OF THE INVENTION Therefore, an object of the present invention is to provide a fluid diffusion device that diffuses a fluid by making the concentration distribution of the fluid substantially uniform, has strong mechanical strength, and has little thermal deformation. An object of the present invention is to provide a processing apparatus that can precisely control vapor phase growth and the like by using a fluid diffusion device as a diffusion supply section for a reaction gas.

[発明の構成] (課題を解決するための手段) 第1の発明は、流体の供給経路途中に多孔質体を配設し
、上記流体を上記多孔質拡散板に通過させることで、流
体濃度分布をほぼ均一にし、上記流体を拡散させること
を特徴とするものである。
[Structure of the Invention] (Means for Solving the Problems) The first invention provides a porous body in the middle of a fluid supply path, and allows the fluid to pass through the porous diffusion plate, thereby reducing the fluid concentration. It is characterized by making the distribution substantially uniform and diffusing the fluid.

第2の発明は、被処理体を配設した処理容器内に、上記
処理容器内に延設されたインジェクターを介して反応ガ
スを供給し、上記被処理体を処理する処理装置において
、 上記インジェクターを、一端が密閉された中空筒状の多
孔質体で構成したことを特徴とするものである。
A second invention provides a processing apparatus for processing the object to be processed by supplying a reaction gas into the processing container in which the object to be processed is arranged through an injector extending into the processing container, the injector It is characterized in that it is constructed of a hollow cylindrical porous body with one end sealed.

第3の発明は、被処理体を配設した処理容器内に、この
処理容器の一端より反応ガスを供給し、上記被処理体を
処理する処理装置において、上記反応ガスが上記被処理
体に到達する前の上流側に、多孔質拡散板を配設したこ
とを特徴とするものである。
A third aspect of the present invention is a processing apparatus for processing the object by supplying a reactive gas from one end of the processing container into the processing container in which the object to be processed is disposed, wherein the reaction gas is supplied to the object to be processed. The feature is that a porous diffusion plate is disposed on the upstream side before reaching the target.

(作 用) 本発明における多孔質体とは、人為的に加工。(for production) The porous body in the present invention refers to a porous body that is artificially processed.

形成された孔を有するものではなく、それ自体の性質、
製造工程により元々多数の孔をその内部構造としてラン
ダムに有しているものを言う。この種の多孔質体では、
番孔の形状、大きさはそれぞれ異なる場合もあるが、こ
れを単位面積毎に比較した場合には、孔の数量が多いこ
と及び配置のランダム性により各単位面積あたりの開孔
率はほぼ均等なものと考られる。従って、この多孔質体
■折面に流体を通過させることで、流体濃度分布をほぼ
均一にして流体を拡散することが可能となる。
its own nature, not something with formed pores;
This refers to a material that originally has a large number of holes in its internal structure randomly due to the manufacturing process. In this kind of porous material,
The shape and size of the holes may differ, but when comparing them for each unit area, the open area ratio per unit area is almost equal due to the large number of holes and the randomness of the arrangement. It is considered to be a thing. Therefore, by passing the fluid through the folded surface of this porous material, it becomes possible to make the fluid concentration distribution substantially uniform and to diffuse the fluid.

また、多孔質体は、そのもの自体の特性により多くの微
細孔を有するものであるので、従来のように孔を人為的
に形成したものと比較すればその機械的強度が強く、ま
た材質を選択すれば熱的変形をも十分に押えることが可
能である。
In addition, porous materials have a large number of micropores due to their own characteristics, so compared to conventional materials with artificially formed pores, their mechanical strength is stronger, and the selection of materials is also important. This makes it possible to sufficiently suppress thermal deformation.

そして、このような流体拡散装置凡処理装置における反
応ガス供給拡散手段として用いることにより、反応領域
内にて反応ガスの濃度分布を均一にすることが可能とな
り、気相成長等の精密制御が可能となる。
By using such a fluid diffusion device as a reaction gas supply and diffusion means in general processing equipment, it becomes possible to make the concentration distribution of the reaction gas uniform within the reaction region, allowing precise control of vapor phase growth, etc. becomes.

(実施例) 以下、本発明の実施例について図面を参照して説明する
(Example) Hereinafter, an example of the present invention will be described with reference to the drawings.

まず、流体拡散装置の実施例について、第1図(A)、
(B)を参照して説明する。第1図(A)は多孔質高純
アルミナ部14と通常の高純アルミナ部15とを一体に
焼結して、インジェクター16を形成したものである。
First, regarding an example of a fluid diffusion device, FIG. 1(A),
This will be explained with reference to (B). In FIG. 1(A), an injector 16 is formed by integrally sintering a porous high-purity alumina part 14 and a normal high-purity alumina part 15.

このインジェクター16に高圧の反応気体を供給するこ
とにより非常に小さい無限に近い毛細管を通って外部に
噴出されるため、インジェクターの番孔の内部圧力は、
先端部をも含め非常に近い圧力に設定でき、反応気体の
噴出量は場所に依存せず均一にできるばかりか、機械的
強度も石英と比較して大きく、温度特性も優れている。
By supplying high-pressure reaction gas to this injector 16, it is ejected to the outside through a very small, nearly infinite capillary, so the internal pressure of the injector hole is
It can be set to very close pressures, including at the tip, and the amount of reaction gas ejected can be made uniform regardless of location. It also has greater mechanical strength and superior temperature characteristics compared to quartz.

第1図(B)は、流体供給路17途中に、多孔質セラミ
ック板20を配設したものであり、この場合も同様な作
用により、均一拡散を実現できる。
In FIG. 1(B), a porous ceramic plate 20 is disposed in the middle of the fluid supply path 17, and in this case as well, uniform diffusion can be achieved by the same effect.

尚、多孔質体の形状はどのようなものでもよく、大きな
球面でもよいばかりか、局1的に多孔質セラミックスを
焼結することも可能で、どのような反応気体または不純
物添加気体の広い範囲、反対に局部的に供給するのに非
常に最適である。
Note that the shape of the porous body may be any shape, and not only can it be a large spherical shape, but it is also possible to locally sinter porous ceramics, and it is possible to use any reaction gas or impurity-added gas in a wide range. , on the contrary, it is very suitable for local supply.

次に、処理装置に適用した実施例について説明する。Next, an example applied to a processing device will be described.

第2図は燐の予備拡散炉の説明図である。この拡散炉は
、加熱炉18で系全体を覆い、内部に反応容器である石
英容器19を設置し、容器上部には多孔質セラミック平
板20を具備した。この多孔質セラミック平板20は粒
度分布5〜10μmの高純度石英粉体を厚さ5關に平板
焼結したもので、石英容器19とは一体に石英加工しで
ある。
FIG. 2 is an explanatory diagram of a phosphorus pre-diffusion furnace. This diffusion furnace was equipped with a heating furnace 18 covering the entire system, a quartz container 19 serving as a reaction container, and a porous ceramic flat plate 20 above the container. This porous ceramic flat plate 20 is made by sintering high purity quartz powder with a particle size distribution of 5 to 10 μm into a flat plate with a thickness of 5 mm, and is integrally processed with the quartz container 19.

この石英容器19の中心部には回転軸21の上に石英ボ
ート22を置き、複数枚の珪素基板23を搭載した。気
体導入口24.24’から窒素、酸素、オキシ塩化燐を
加圧容器25に導入し、多孔質セラミック平板20を通
して等速流体として反応容器19に進入する。
In the center of this quartz container 19, a quartz boat 22 was placed on a rotating shaft 21, and a plurality of silicon substrates 23 were mounted. Nitrogen, oxygen, and phosphorous oxychloride are introduced into the pressurized vessel 25 through the gas inlets 24, 24' and enter the reaction vessel 19 as a constant velocity fluid through the porous ceramic plate 20.

まず加熱炉18を温度700℃に設定し、反応容器19
内を窒素ガスで置換し、石英ボート22に100枚の珪
素基板23を搭載した後、容器内に挿入する。続いて温
度900℃に再設定し、設定温度に達した時、酸素ガス
を0.511t/+inで5分間流す。次に、更にpo
c!、を120 mg/ln追加し、20分間予備拡散
を実施する。拡散完了後、酸素ガス及びPOCI、の反
応容器への導入を停止し、5℃/*inの速度で加熱炉
を冷却し、温度が500℃になったらボートを反応容器
より取り出し不活性気体の予備容器の中で100℃以下
になるまで自然冷却を行い、その後ボートより珪素基板
を取り出し、燐原子の予備拡散が完了する。同一条件で
の拡散を10回繰返した結果を第3図に示した。X軸は
ボート上最上部珪素基板をNo、 1とし、10枚毎の
測定値を示し、最下部珪素基板すなわち100枚目のも
のをNo、 100とした。y軸は層抵抗値である。抵
抗値の図中の表示方法としては0印が一珪素基板内の平
均値で0印上、下に棒状で示した層抵抗値の拡がりは一
珪素基板内の最大、最小値である。
First, the heating furnace 18 is set to a temperature of 700°C, and the reaction vessel 19
After replacing the interior with nitrogen gas and mounting 100 silicon substrates 23 on the quartz boat 22, the boat is inserted into the container. Subsequently, the temperature is reset to 900° C., and when the set temperature is reached, oxygen gas is flowed at 0.511 t/+in for 5 minutes. Next, further po
c! , at 120 mg/ln, and perform pre-diffusion for 20 minutes. After completion of diffusion, the introduction of oxygen gas and POCI into the reaction vessel is stopped, and the heating furnace is cooled at a rate of 5°C/*in. When the temperature reaches 500°C, the boat is removed from the reaction vessel and the inert gas is removed. Natural cooling is performed in the preliminary container until the temperature reaches 100° C. or lower, and then the silicon substrate is taken out from the boat, and the preliminary diffusion of phosphorus atoms is completed. Figure 3 shows the results of repeating the diffusion 10 times under the same conditions. On the X axis, the topmost silicon substrate on the boat was designated as No. 1, and the measurement values for every 10th substrate were shown, and the bottom silicon substrate, that is, the 100th sheet was designated as No. 100. The y-axis is layer resistance. As for how to display resistance values in the diagram, the 0 mark is the average value within one silicon substrate, and the spread of layer resistance values shown by bars above and below the 0 mark is the maximum and minimum values within one silicon substrate.

また、同図上部は各珪素基板の層抵抗値の平均値を1で
正規化したもので、図中上下の拡がりは一珪素基板内の
層抵抗値の分布を%で表示しである。
Further, the upper part of the figure shows the average value of the layer resistance values of each silicon substrate normalized by 1, and the vertical spread in the figure shows the distribution of layer resistance values within one silicon substrate in %.

第4図は個々の拡散の再現性を示すもので、各珪素基板
の平均値のロット内100枚の平均値を示した。もう一
つの拡散パラメータであるP−n接合深さは絶対値が0
.1am近傍のためJPJ定精度の等の理由で省略する
FIG. 4 shows the reproducibility of individual diffusion, and shows the average value of each silicon substrate for 100 sheets in the lot. Another diffusion parameter, the P-n junction depth, has an absolute value of 0.
.. Since it is close to 1 am, it is omitted for reasons such as JPJ constant accuracy.

本結果から見ると従来の縦型加熱装置との比較で一珪素
基板内の層抵抗分布は±4%と顕著な向上はないが、ロ
フト内の層抵抗値分布±2%、再現性±2%と顕著な改
善を果している。
From this result, compared to the conventional vertical heating device, the layer resistance distribution within a single silicon substrate is ±4%, which is not a significant improvement, but the layer resistance distribution within the loft is ±2%, and the reproducibility is ±2. %, a remarkable improvement.

第5図は、二酸化珪素層の減圧気相成長の炉の説明図で
ある。第8図に示す従来例と相違する点は下記のとおり
である。まず多孔質高純度アルミナ管を用いた複数個の
気体導入口26を設ける。
FIG. 5 is an explanatory diagram of a furnace for low-pressure vapor phase growth of a silicon dioxide layer. The differences from the conventional example shown in FIG. 8 are as follows. First, a plurality of gas inlets 26 using porous high-purity alumina tubes are provided.

気相成長層により使用する気体の数により対応して設置
するものであるが、本二酸化珪素層は5iH2C12を
用いて行い、不純物原子を二酸化珪素層に同時に添加す
ると、例えば燐の添加を考えると気体導入口26は5i
H2Cr2及びpoc Bの2本を必要とする。
The silicon dioxide layer is formed using 5iH2C12, and if the impurity atoms are simultaneously added to the silicon dioxide layer, for example, when considering the addition of phosphorus, The gas inlet 26 is 5i
Two pieces of H2Cr2 and poc B are required.

反応容器27は多孔質セラミック平板の気体導入口28
と複数個の孔またはスリットを有した排気口29を具備
している。
The reaction vessel 27 has a gas inlet 28 made of a porous ceramic flat plate.
and an exhaust port 29 having a plurality of holes or slits.

まず、無添加二酸化珪素層を形成する場合、まず多孔質
セラミック平板の気体導入口28より不活性気体により
反応容器27内を置換し、石英ボート30に搭乗した複
数枚の珪素基板31を反応容器27に挿入する。反応容
器27の温度は予め500℃に設定する。石英ボート3
0を反応容器27中央に設置後、気体排気口29.29
’を介し真空系に連結し、反応容器27内の真空度を0
.003Torrまで排気する。この時、反応容器27
に導入する気体は気体導入口28.28’から窒素気体
311t/mlnを流し、容器27内を(1,4Tor
rにする。続いて反応容器27の温度を毎分10℃の割
合で600℃まで上昇させ、酸素気体1.51it/w
inを気体導入口28より、5iH2C12気体0.0
811t/m1nを導入口26より導入し、気相成長を
30分間実施する。珪素基板31上には約300人の気
相成長層ができる。
First, when forming an additive-free silicon dioxide layer, first, the inside of the reaction vessel 27 is replaced with an inert gas through the gas inlet 28 of the porous ceramic flat plate, and a plurality of silicon substrates 31 mounted on a quartz boat 30 are placed in the reaction vessel. Insert into 27. The temperature of the reaction vessel 27 is set in advance to 500°C. quartz boat 3
0 at the center of the reaction vessel 27, open the gas exhaust port 29.29
' is connected to the vacuum system through
.. Exhaust to 0.003 Torr. At this time, reaction vessel 27
311 t/ml of nitrogen gas is introduced from the gas inlet 28, 28', and the inside of the container 27 is heated to
Make it r. Subsequently, the temperature of the reaction vessel 27 was raised to 600°C at a rate of 10°C per minute, and 1.51 it/w of oxygen gas was added.
In from the gas inlet 28, 5iH2C12 gas 0.0
811 t/m1n was introduced from the inlet 26, and vapor phase growth was performed for 30 minutes. Approximately 300 vapor phase growth layers are formed on the silicon substrate 31.

一方、この二酸化珪素層に燐原子を均一に添加する場合
は、上記気相成長プロセス中、3iH2Cf、気体と同
時に別の気体導入口28よりpoc!、気体120 m
g/winの割合で反応容器27に導入することにより
、気相成長された二酸化珪素層に均一に燐原子が添加で
きる。
On the other hand, when adding phosphorus atoms uniformly to this silicon dioxide layer, poc! , gas 120 m
By introducing phosphorus atoms into the reaction vessel 27 at a ratio of g/win, phosphorus atoms can be uniformly added to the silicon dioxide layer grown in a vapor phase.

この結果として、第6図に気相成長層の厚さの測定値及
びその分布値を示した。二酸化珪素中の燐原子濃度の測
定は簡便な方法で精度のよいものがないため、上記プロ
セスで得られた燐原子の添加された二酸化珪素層からの
固相拡散により、その拡散層の層抵抗を図ることにより
間接評価を実施した。その結果は第7図で示した。
As a result, measured values of the thickness of the vapor-phase grown layer and its distribution values are shown in FIG. Since there is no simple and accurate method for measuring the concentration of phosphorus atoms in silicon dioxide, the layer resistance of the diffusion layer is An indirect evaluation was conducted by The results are shown in Figure 7.

この結果から見て、従来の気体導入口より諸基体を導入
し気相成長させた場合と比較し、珪素基板内の値は顕著
な向上は見られないが、ロット内の厚さ分布及びプロセ
スの再現性には顕著な改善が見られる。また燐濃度の添
加量の均−性及び再現性に関しても間接法ではあるが著
しい改善を認める。
From this result, compared to the case of introducing various substrates through the conventional gas inlet and performing vapor phase growth, there is no significant improvement in the value within the silicon substrate, but the thickness distribution within the lot and the process There is a significant improvement in reproducibility. Furthermore, although it is an indirect method, significant improvements have been observed in the uniformity and reproducibility of the amount of phosphorus added.

尚、硼素、燐、ガラスの気相成長に関しては、例えばB
Cl3の如き硼素化合物気体の導入口を追加し、上記実
施例と全く同一の装置で実施でき、精度の高い気相成長
層を得ることができる。
Regarding the vapor phase growth of boron, phosphorus, and glass, for example, B
By adding an inlet for a boron compound gas such as Cl3, the process can be carried out using exactly the same apparatus as in the above embodiment, and a highly precise vapor phase growth layer can be obtained.

尚、半導体工業で広く応用されている多結晶珪素層、単
結晶珪素層、TEOS、HTO酸化膜層の形成及びその
不純物原子の添加並びに窒化珪素層等の気相成長に関し
ては、使用する気体に対応した気体導入口を追加するこ
とにより、精密制御された気相成長層を容易に得られる
Furthermore, regarding the formation of polycrystalline silicon layers, single crystal silicon layers, TEOS, and HTO oxide film layers, which are widely applied in the semiconductor industry, the addition of impurity atoms thereto, and the vapor phase growth of silicon nitride layers, etc., depending on the gas used. By adding a corresponding gas inlet, a precisely controlled vapor phase growth layer can be easily obtained.

[発明の効果コ 以上説明したように、本発明の流体拡散装置によれば、
供給すべき流体を多孔質体断面を通過させることにより
、流体濃度分布をほぼ均一にして拡散供給することがで
きる。しかも、従来の孔を穿設したものと比較すれば、
その機械的強度が著しく高く、かつ、材質の選択により
熱変形の少ないものを提供できる。
[Effects of the Invention] As explained above, according to the fluid diffusion device of the present invention,
By passing the fluid to be supplied through the cross section of the porous body, the fluid concentration distribution can be made almost uniform and the fluid can be diffused and supplied. Moreover, compared to the conventional hole-drilled one,
The mechanical strength is extremely high, and by selecting the material, it is possible to provide a material with little thermal deformation.

そして、この流体拡散装置を反応ガスの拡散供給部とし
て使用した本発明の処理装置によれば、反応ガスの濃度
分布をほぼ均一にして拡散供給できるので、気相成長等
の精密制御が可能となる。
According to the processing apparatus of the present invention that uses this fluid diffusion device as a diffusion supply section of the reaction gas, the concentration distribution of the reaction gas can be made almost uniform and the concentration distribution can be diffused and supplied, making it possible to precisely control vapor phase growth, etc. Become.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(A)、(B)は、本発明の流体拡散装置をイン
ジェクター、拡散板に適用した実施例を示す概略説明図
、 第2図は、本発明の処理装置を燐の予備拡散炉に適用し
た概略断面図、 第3図は、第2図の予備拡散炉により処理された珪素基
板の、層抵抗値及び−珪素基板内の層抵抗値の分布率を
示す特性図、 第4図は、第2図の予備拡散炉での再現性を示す特性図
、 第5図は、本発明の処理装置を二酸化珪素層の減圧気相
成長炉に適用した実施例を示す断面図、第6図は、第5
図の減圧気相成長炉で得られた気相成長層の厚さの測定
値及びその分布値を示す特性図、 第7図は、第5図に示す減圧気相成長炉で得られる拡散
層の層抵抗値を示す特性図、 第8図は、従来の縦型熱処理炉の概略断面図、第9図(
A)、(B)は、第8図の熱処理炉に用いられる従来の
インジェクターを説明するための概略説明図である。 14・・・多孔質高純アルミナ部、 16・・・インジェクター 20・・・多孔質セラミック板、 26・・・多孔質高純度アルミナ管、 28・・・多孔質セラミック平板。
Figures 1 (A) and (B) are schematic explanatory diagrams showing an embodiment in which the fluid diffusion device of the present invention is applied to an injector and a diffusion plate. 3 is a characteristic diagram showing the layer resistance value and the distribution rate of the layer resistance value within the silicon substrate of the silicon substrate processed by the pre-diffusion furnace of FIG. 2, and FIG. is a characteristic diagram showing the reproducibility in the preliminary diffusion furnace shown in FIG. 2, FIG. The figure shows the fifth
Figure 7 is a characteristic diagram showing the measured values and distribution values of the thickness of the vapor-phase growth layer obtained in the reduced-pressure vapor-phase growth reactor shown in Fig. 5. Figure 8 is a schematic cross-sectional view of a conventional vertical heat treatment furnace, and Figure 9 (
A) and (B) are schematic explanatory diagrams for explaining a conventional injector used in the heat treatment furnace of FIG. 8. 14... Porous high purity alumina part, 16... Injector 20... Porous ceramic plate, 26... Porous high purity alumina tube, 28... Porous ceramic flat plate.

Claims (3)

【特許請求の範囲】[Claims] (1)流体の供給経路途中に多孔質体を配設し、上記流
体を上記多孔質体断面に通過させることで、流体濃度分
布をほぼ均一にし、上記流体を拡散させることを特徴と
する流体拡散装置。
(1) A fluid characterized in that a porous body is disposed in the middle of the fluid supply path, and the fluid is passed through the cross section of the porous body, thereby making the fluid concentration distribution almost uniform and diffusing the fluid. Diffusion device.
(2)被処理体を配設した処理容器内に、上記処理容器
内に延設されたインジェクターを介して反応ガスを供給
し、上記被処理体を処理する処理装置において、 上記インジェクターを、一端が密閉された中空筒状の多
孔質体で構成したことを特徴とする処理装置。
(2) In a processing apparatus that processes the object to be processed by supplying a reaction gas into the processing container in which the object to be processed is arranged via an injector extending into the processing container, the injector is connected to one end of the processing device. 1. A processing device comprising a hollow cylindrical porous body that is sealed.
(3)被処理体を配設した処理容器内に、この処理容器
の一端より反応ガスを供給し、上記被処理体を処理する
処理装置において、 上記処理容器内にて上記反応ガスが上記被処理体に到達
する前の上流側に、多孔質拡散板を配設したことを特徴
とする処理装置。
(3) In a processing apparatus that processes the object by supplying a reaction gas from one end of the processing container into the processing container in which the object to be processed is disposed, the reaction gas is supplied to the object in the processing container. A processing device characterized in that a porous diffusion plate is disposed on an upstream side before reaching a processing body.
JP17963689A 1989-07-11 1989-07-11 Fluid dispersing apparatus and treatment apparatus using the same Pending JPH0347531A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17963689A JPH0347531A (en) 1989-07-11 1989-07-11 Fluid dispersing apparatus and treatment apparatus using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17963689A JPH0347531A (en) 1989-07-11 1989-07-11 Fluid dispersing apparatus and treatment apparatus using the same

Publications (1)

Publication Number Publication Date
JPH0347531A true JPH0347531A (en) 1991-02-28

Family

ID=16069231

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17963689A Pending JPH0347531A (en) 1989-07-11 1989-07-11 Fluid dispersing apparatus and treatment apparatus using the same

Country Status (1)

Country Link
JP (1) JPH0347531A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05166737A (en) * 1991-12-19 1993-07-02 Nec Yamaguchi Ltd Vertical depressurized vapor growth apparatus
US5899583A (en) * 1998-02-09 1999-05-04 Eastman Kodak Company Viewfinder lens assembly
EP1610363A4 (en) * 2003-04-01 2008-05-14 Tokyo Electron Ltd Method of heat treatment and heat treatment apparatus
JP2011009752A (en) * 2010-07-02 2011-01-13 Hitachi Kokusai Electric Inc Substrate processing apparatus, method of manufacturing semiconductor device, and semiconductor device
JP2012004409A (en) * 2010-06-18 2012-01-05 Tokyo Electron Ltd Processing equipment and film formation method
KR20200083245A (en) * 2018-12-28 2020-07-08 도쿄엘렉트론가부시키가이샤 Gas introduction structure, treatment apparatus, and treatment method

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05166737A (en) * 1991-12-19 1993-07-02 Nec Yamaguchi Ltd Vertical depressurized vapor growth apparatus
US5899583A (en) * 1998-02-09 1999-05-04 Eastman Kodak Company Viewfinder lens assembly
EP1610363A4 (en) * 2003-04-01 2008-05-14 Tokyo Electron Ltd Method of heat treatment and heat treatment apparatus
US7537448B2 (en) 2003-04-01 2009-05-26 Tokyo Electron Limited Thermal processing method and thermal processing unit
JP2012004409A (en) * 2010-06-18 2012-01-05 Tokyo Electron Ltd Processing equipment and film formation method
JP2011009752A (en) * 2010-07-02 2011-01-13 Hitachi Kokusai Electric Inc Substrate processing apparatus, method of manufacturing semiconductor device, and semiconductor device
KR20200083245A (en) * 2018-12-28 2020-07-08 도쿄엘렉트론가부시키가이샤 Gas introduction structure, treatment apparatus, and treatment method

Similar Documents

Publication Publication Date Title
US6413884B1 (en) Method of producing thin films using current of process gas and inert gas colliding with each other
US4992301A (en) Chemical vapor deposition apparatus for obtaining high quality epitaxial layer with uniform film thickness
KR950001839B1 (en) Vertical CVD System
US7651733B2 (en) Method for forming a vapor phase growth film
EP1386981B1 (en) A thin film-forming apparatus
JP2002371361A (en) Vapor phase growth apparatus and vapor phase growth method
JPH0347531A (en) Fluid dispersing apparatus and treatment apparatus using the same
JP2641351B2 (en) Variable distribution gas flow reaction chamber
WO2021196341A1 (en) Substrate table for growing single crystal diamonds by using microwave plasma technology and growing method
US4487787A (en) Method of growing silicate glass layers employing chemical vapor deposition process
US3753809A (en) Method for obtaining optimum phosphorous concentration in semiconductor wafers
CN116497436B (en) Silicon carbide preparation method and prepared silicon carbide crystal
US4348981A (en) Vertical type vapor-phase growth apparatus
USRE36328E (en) Semiconductor manufacturing apparatus including temperature control mechanism
CN102969220A (en) Technical processing method through furnace tube
CN115110064A (en) Gas input equipment and gas input method
TWI260679B (en) Inner tube for furnace and furnace apparatus using the same
US8302884B1 (en) Apparatus and method of effective fluid injection and vaporization for chemical vapor deposition application
JPH0316120A (en) Chemical vapor growth device and gas head thereof
US5792701A (en) Conical baffle for semiconductor furnaces
TW202407127A (en) Feeding block and substrate processing apparatus including the same
JPH05335247A (en) Semiconductor manufacturing device
JPS6020510A (en) Diffusing method of impurity
JP2024057592A (en) Gas introduction pipe assembly for improving mixing of gas in base material processing apparatus
JPS622524A (en) Vapor-phase growth device