[go: up one dir, main page]

JPH0346644B2 - - Google Patents

Info

Publication number
JPH0346644B2
JPH0346644B2 JP60143100A JP14310085A JPH0346644B2 JP H0346644 B2 JPH0346644 B2 JP H0346644B2 JP 60143100 A JP60143100 A JP 60143100A JP 14310085 A JP14310085 A JP 14310085A JP H0346644 B2 JPH0346644 B2 JP H0346644B2
Authority
JP
Japan
Prior art keywords
valve
intake
engine
cam
lift
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60143100A
Other languages
Japanese (ja)
Other versions
JPS623113A (en
Inventor
Yasuo Matsumoto
Seinosuke Hara
Hiromichi Bito
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP14310085A priority Critical patent/JPS623113A/en
Priority to US06/877,523 priority patent/US4759321A/en
Priority to DE3621080A priority patent/DE3621080C3/en
Publication of JPS623113A publication Critical patent/JPS623113A/en
Publication of JPH0346644B2 publication Critical patent/JPH0346644B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Valve Device For Special Equipments (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は多気筒内燃機関、例えば車両に搭載さ
れる多気筒内燃機関に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a multi-cylinder internal combustion engine, for example a multi-cylinder internal combustion engine mounted on a vehicle.

(従来の技術) 従来、機関の高出力、低燃費を達成するための
多気筒内燃機関としては、例えば第17図〜第2
1図に示すものが知られている(特開昭58−
25537号公報)。
(Prior Art) Conventionally, multi-cylinder internal combustion engines for achieving high engine output and low fuel consumption have been developed, for example, as shown in FIGS.
The one shown in Figure 1 is known (Japanese Patent Application Laid-open No. 1983-
Publication No. 25537).

これらの図に示すように、この内燃機関は、4
気筒の各気筒について主吸気弁1と副吸気弁2と
の吸気2弁、及び、排気弁3を有している。ここ
に、主吸気弁1が開閉する主吸気ポート4は吸気
流により燃焼室5内にスワールを形成するよう
に、また、副吸気弁2が開閉する副吸気ポート6
は多量の吸気を燃焼室5に送給可能に主吸気ポー
ト4の流路面積よりも大きな流路面積を有してい
る。これらの吸・排気弁はいずれもロツカアーム
7を介して駆動カム8により機関回転に同期して
駆動されるが、これらのロツカアーム7には、第
19図及び第20図に示すように、それぞれの作
動を停止可能な作動停止機構が設けられている。
この作動停止機構は、そのロツカアーム7の背面
に設けた油圧シリンダ8Aと、そのピストンロツ
ド9に連結したフオーク状のストツパ10と、を
有しており、一端が駆動カム8に当接するロツカ
アーム7の他端に往復動自在に保持されて吸・排
気弁のステムエンド11に当接するプランジヤ1
2を、シリンダ8A非作動時ストツパ10に係止
させてロツカアーム7の揺動を該プランジヤ12
を介して吸・排気弁に伝達するとともに、図外の
切換弁によりシリンダ室13に潤滑油を供給して
ピストンロツド9を突出させることによりストツ
パ10によるプランジヤ12の係止を解除して、
プランジヤ12をロツカアーム7の揺動に対して
非拘束とする結果、該揺動を吸・排気弁に伝達し
ないようにしている。すなわち、シリンダ8Aの
作動により吸・排気弁の作動を停止するのであ
る。
As shown in these figures, this internal combustion engine has 4
Each cylinder has two intake valves, a main intake valve 1 and a sub-intake valve 2, and an exhaust valve 3. Here, the main intake port 4, which is opened and closed by the main intake valve 1, is arranged so that a swirl is formed in the combustion chamber 5 by the intake air flow, and the auxiliary intake port 6, which is opened and closed by the sub-intake valve 2, is
has a flow passage area larger than that of the main intake port 4 so that a large amount of intake air can be delivered to the combustion chamber 5. These intake and exhaust valves are all driven by a drive cam 8 via a rocker arm 7 in synchronization with the engine rotation, but each rocker arm 7 has a A deactivation mechanism capable of deactivating the device is provided.
This operation stop mechanism has a hydraulic cylinder 8A provided on the back surface of the rocker arm 7, and a fork-shaped stopper 10 connected to the piston rod 9. A plunger 1 is held at the end so as to be able to reciprocate and abuts against the stem end 11 of the intake/exhaust valve.
2 is locked to the stopper 10 when the cylinder 8A is not in operation, and the rocker arm 7 is prevented from swinging by the plunger 12.
At the same time, lubricating oil is supplied to the cylinder chamber 13 by a switching valve (not shown) to cause the piston rod 9 to protrude, thereby releasing the locking of the plunger 12 by the stopper 10.
Since the plunger 12 is not constrained by the rocking motion of the rocker arm 7, the rocking motion is not transmitted to the intake/exhaust valves. That is, the operation of the intake and exhaust valves is stopped by the operation of the cylinder 8A.

また、この作動停止機構は機関の運転状態に応
じて制御手段14により駆動され、、低速低負荷
時はすべての吸・排気弁1,2,3の作動が停止
され、低速高負荷時は副吸気弁2の作動のみが停
止されるよう制御される。
Further, this operation stop mechanism is driven by the control means 14 according to the operating state of the engine, and at low speed and low load, the operation of all intake and exhaust valves 1, 2, and 3 is stopped, and at low speed and high load, the operation of all intake and exhaust valves 1, 2, and 3 is stopped. Control is performed so that only the operation of the intake valve 2 is stopped.

(発明が解決しようとする問題点) しかしながら、このような従来の多気筒内燃機
関にあつては、吸・排気弁の弁開閉時期及び弁リ
フト量を可変とするものではなく、その作動を完
全に停止する構成であつたため、例えば第21図
に示すように、低速域と高速域との間の中速域
(図中斜線)、すなわち過度運転域では機関の出力
トルクを充分に高めることができないという問題
点があつた。また、主・副2つの吸気弁は、その
一方を低速向けの作動タイミング、リフトに、他
方を高速向きのそれに、構成していたため、高速
時の吸気充填効率を充分に高めることができない
という問題点も有していた。さらに、特定運転条
件では一方の吸気弁の作動を停止する構成のた
め、二系統の燃料供給装置を必要とし、特に気筒
毎に燃料供給を行うものでは該装置が複雑化する
という問題点を有していた。
(Problems to be Solved by the Invention) However, in such conventional multi-cylinder internal combustion engines, the valve opening/closing timing and valve lift amount of the intake and exhaust valves are not variable, but the operation is completely controlled. For example, as shown in Figure 21, the engine's output torque cannot be sufficiently increased in the medium speed range (shaded in the figure) between the low speed range and the high speed range, that is, in the excessive operation range. There was a problem that I couldn't do it. In addition, because the two main and sub intake valves were configured with one for low-speed operation timing and lift, and the other for high-speed operation, there was a problem in that the intake air filling efficiency at high speeds could not be sufficiently increased. It also had points. Furthermore, since the configuration stops the operation of one intake valve under specific operating conditions, a two-system fuel supply system is required, which poses the problem of complicating the system, especially in systems that supply fuel to each cylinder. Was.

(問題点を解決するための手段) 本発明は上記問題点を解決するため、1気筒に
ついて2つの吸気弁を備えた多気筒内燃機関にお
いて、これらの2つの吸気弁のそれぞれの弁開閉
時期及びリフト量を機関の運転条件に応じて段階
的に可変とする可変動弁機構を備え、これらの2
つの吸気弁のリフト中心角に位相差を設け、か
つ、機関の低速時に2つの吸気弁の閉弁時期を一
致させるとともに機関の高速時に2つの吸気弁の
開弁時期を一致させるように構成する。
(Means for Solving the Problems) In order to solve the above-mentioned problems, the present invention provides a multi-cylinder internal combustion engine having two intake valves per cylinder. Equipped with a variable valve mechanism that changes the lift amount in stages according to engine operating conditions, these two
A phase difference is provided between the lift center angles of the two intake valves, and the closing timings of the two intake valves are made to match when the engine is running at low speeds, and the opening timings of the two intake valves are made to match when the engine is running at high speeds. .

(作用) 本発明に係る多気筒内燃機関では、機関の運転
条件に応じて2つの吸気弁のそれぞれの弁開閉時
期及び弁リフト量を可変動作弁機構により可変と
するが、この場合、これらの2つの吸気弁のリフ
ト中心角に位相差を設けて、機関の低速時に2つ
の吸気弁の閉弁時期を一致させるとともに機関の
高速時に2つの吸気弁の開弁時期を一致させる。
このため、機関の低速時には、一方の吸気弁の閉
弁遅れによる吸気弁の上下流の絞り損失がなくな
り、燃焼状態が安定してポンピング損失が低減さ
れる。また、機関の高速時には、バルブオーバー
ラツプの過大に伴う機関安定性の悪化およびノツ
キングの発生が防止されるとともに、バルブオー
バーラツプの過小に伴う吸入初期行程での吸気量
減少が防止され、機関の出力が全回転域で安定し
て滑らかに向上する。
(Function) In the multi-cylinder internal combustion engine according to the present invention, the valve opening/closing timing and valve lift amount of each of the two intake valves are made variable by the variable operation valve mechanism according to the operating conditions of the engine. A phase difference is provided between the lift center angles of the two intake valves to match the closing timings of the two intake valves when the engine is running at low speed and to match the opening timings of the two intake valves when the engine is running at high speed.
Therefore, when the engine is running at low speed, there is no throttling loss upstream or downstream of the intake valve due to a delay in closing one intake valve, the combustion state is stabilized, and pumping loss is reduced. In addition, when the engine is running at high speed, deterioration of engine stability and knocking due to excessive valve overlap are prevented, and a reduction in intake air volume during the initial intake stroke due to insufficient valve overlap is prevented. Engine output increases stably and smoothly over the entire rotation range.

(実施例) 以下、本発明の実施例を図面に基づいて説明す
る。
(Example) Hereinafter, an example of the present invention will be described based on the drawings.

第1図〜第16図は本発明の一実施例を示して
いる。
1 to 16 show an embodiment of the present invention.

まず、構成を説明する。 First, the configuration will be explained.

第2図において、21は直列4気筒内燃機関に
おけるカム軸であり、機関出力軸に同期して駆動
回転される。また、22は排気弁のロツカアーム
であり、ロツカシヤフト23に回転自在に支持さ
れている。ここに、第3図に示すように、各気筒
の燃焼室24には、主、副2つの吸気ポート2
5,26と、一つの排気ポート27が開口してい
る。28は点火プラグである。これらの主吸気ポ
ート25及び副吸気ポート26はいずれも直線状
に延設し、多量の混合気を吸入可能としている。
また、主吸気ポート25は上記点火プラグ28か
ら離れて開口し、点火プラグ28に向かつて開口
する副吸気ポート26よりもその径(流路面積
も)が小さく形成されている。
In FIG. 2, 21 is a camshaft in an in-line four-cylinder internal combustion engine, which is driven and rotated in synchronization with the engine output shaft. Further, 22 is a rocker arm of the exhaust valve, which is rotatably supported by a rocker shaft 23. As shown in FIG. 3, the combustion chamber 24 of each cylinder has two main and sub intake ports 2.
5, 26 and one exhaust port 27 are open. 28 is a spark plug. Both the main intake port 25 and the auxiliary intake port 26 extend linearly, making it possible to inhale a large amount of air-fuel mixture.
Further, the main intake port 25 opens away from the spark plug 28 and has a smaller diameter (also flow path area) than the sub intake port 26 that opens toward the spark plug 28.

これらの主、副両吸気ポート25,26及び排
気ポート27をそれぞれ開閉する主、副両吸気弁
29,30及び排気弁31は、それぞれロツカア
ーム32,33,22をして駆動カム34により
駆動される。第1図に示すように、主吸気弁29
のロツカアーム32には可変動弁機構が装着され
ており、また、副吸気弁30にも図示していない
が同様の可変動作弁機構が装着され、両吸気弁2
9,30はその弁開閉時期及び弁リフト量が可変
とされる。詳しくは、本実施例の機関は、低速時
に両吸気弁29,30の閉弁時期が一致するよう
に制御され、高速時に両吸気弁29,30の開弁
時期が一致するように制御される。なお、排気弁
31は固定式の動弁機構を介して一定の弁開閉時
期及び弁リフト量で開閉駆動される。
The main and auxiliary intake valves 29, 30 and the exhaust valve 31, which open and close the main and auxiliary intake ports 25, 26 and the exhaust port 27, respectively, are driven by a drive cam 34 through rocker arms 32, 33, 22, respectively. Ru. As shown in FIG.
A variable valve mechanism is attached to the rocker arm 32, and a similar variable operation valve mechanism is attached to the sub-intake valve 30, although not shown.
9 and 30, the valve opening/closing timing and valve lift amount are variable. Specifically, the engine of this embodiment is controlled so that the closing timings of both intake valves 29 and 30 coincide at low speeds, and so that the opening timings of both intake valves 29 and 30 coincide at high speeds. . Note that the exhaust valve 31 is driven to open and close at a constant valve opening/closing timing and valve lift amount via a fixed valve operating mechanism.

可変動作弁機構35は、一端が駆動カム34に
他端が主吸気弁29のステムエンドにそれぞれ当
接するロツカアーム32を有しており、このロツ
カアーム32の長手方向に沿つて湾曲形成した背
面32Aはレバー36の長手方向に沿つて平坦に
形成した下面36Aに支点接触(線接触)してい
る。すなわち、ロツカアーム32はレバー36に
揺動自在に支持されている。また、レバー36の
一端部上面にはリフト制御カム37が当接すると
ともに、その他端部の凹陥部36B内にはブラケ
ツト38に支持された油圧ピボツト39が摺動自
在に嵌合されている。すなわち、レバー36は油
圧ピボツト39を中心として揺動自在に設けられ
ている。なお、ブラケツト38はシリンダヘツド
40に固定されている。また、レバー36の凹溝
41内にはロツカアーム32の中央部に挿通した
支持軸42(第6図参照)が嵌装されており、こ
の支持軸42と凹溝41底壁との間にはスプリン
グ43が縮設されている。なお、このスプリング
43のバネ定数はバルブスプリング44のそれよ
りもかなり小さく設定してある。38Aはブラケ
ツト38に形成した油路であり、上記油圧ピボツ
ト39に圧油を供給してバルブクリアランスを一
定値に保持させている。
The variable operation valve mechanism 35 has a rocker arm 32, one end of which contacts the drive cam 34 and the other end of which contacts the stem end of the main intake valve 29. The lever 36 is in fulcrum contact (line contact) with a lower surface 36A formed flat along the longitudinal direction of the lever 36. That is, the rocker arm 32 is swingably supported by the lever 36. A lift control cam 37 is in contact with the upper surface of one end of the lever 36, and a hydraulic pivot 39 supported by a bracket 38 is slidably fitted into the recess 36B at the other end. That is, the lever 36 is provided so as to be swingable about the hydraulic pivot 39. Note that the bracket 38 is fixed to the cylinder head 40. Further, a support shaft 42 (see FIG. 6) inserted through the center of the rocker arm 32 is fitted into the groove 41 of the lever 36, and there is a space between the support shaft 42 and the bottom wall of the groove 41. A spring 43 is compressed. Note that the spring constant of this spring 43 is set to be considerably smaller than that of the valve spring 44. 38A is an oil passage formed in the bracket 38, which supplies pressure oil to the hydraulic pivot 39 to maintain the valve clearance at a constant value.

また、第4図及び第5図に示すように、上記リ
フト制御カム37はカム制御軸45に遊嵌されて
おり、カム制御軸45に固着したホルダ46とリ
フト制御カム37の円筒部37Aとの間に縮設し
たコイルスプリング47を介してこれらは連結さ
れている。さらに、第5図に示すように、カム制
御軸45にはストツパピン48が突設され、この
ストツパピン48はリフト制御カム37の円筒部
37Aの切欠きと当接可能とされ、コイルスプリ
ング47に過大な力が作用しないようにしてい
る。なお、第4図中、49はカム制御軸45を回
転自在に支持するキヤツプである。
Further, as shown in FIGS. 4 and 5, the lift control cam 37 is loosely fitted to the cam control shaft 45, and the holder 46 fixed to the cam control shaft 45 and the cylindrical portion 37A of the lift control cam 37 are connected to each other. These are connected via a coil spring 47 contracted between them. Furthermore, as shown in FIG. 5, a stopper pin 48 is provided protrudingly from the cam control shaft 45, and this stopper pin 48 is able to come into contact with a notch in the cylindrical portion 37A of the lift control cam 37. This prevents any force from acting on it. In addition, in FIG. 4, 49 is a cap that rotatably supports the cam control shaft 45.

第7図及び第8図はそれぞれ主吸気弁29及び
副吸気弁30のリフト制御カム37,50のカム
プロフイールを示している。同図に示すように、
リフト制御カム37は、主吸気弁29の弁リフト
量及び弁開閉時期を異ならせる5個のカム面37
a,37b,37c,37d,37eを有してお
り、リフト制御カム50は副吸気弁30の弁リフ
ト量及び弁開閉時期を異ならせる5個のカム面5
0a,50b,50c,50d,50eを有して
いる。カム面37aは主吸気弁29の弁リフト量
1mmに、カム面37bは同じく4.5mmに、カム面
37c〜37eは同じく8mmに、それぞれ対応して
いる。また、カム面50aは副吸気弁30の弁リ
フト量0.5mmに、カム面50bは同じく3mmに、
カム面50cは同じく8mmに、カム面50dは同
じく9.4mmに、カム面50eは同じく10.8mmに、
それぞれ対応している。さらに、これらのリフト
制御カム37,50はその弁リフト中心角(最大
リフト時をクランク角で示したもの)を互いに異
ならせるようそれぞれのカム面のプロフイールを
形成している。なお、各カム面は、低速時に両吸
気弁29,30の閉弁時期が一致するように、ま
た高速時に両吸気弁29,30の開弁時期が一致
するように上記寸法に形成されていることは言う
までもない。また、第2図に示すように、これら
のリフト制御カム37,50を支持するカム制御
軸45の一端には減速機構51を介してステツピ
ングモータ52が連結されている。なお、このス
テツピングモータ52は図外の制御手段(例えば
車載のマイクロコンピユータ)により駆動される
もので、この制御手段は、回転数センサ、水温セ
ンサ等から入力された各種の検出信号に基づいて
機関の運転条件を判別し、この運転条件に応じて
上記モータ52を駆動するものである。
7 and 8 show the cam profiles of the lift control cams 37 and 50 of the main intake valve 29 and the sub-intake valve 30, respectively. As shown in the figure,
The lift control cam 37 has five cam surfaces 37 that vary the valve lift amount and valve opening/closing timing of the main intake valve 29.
a, 37b, 37c, 37d, and 37e, and the lift control cam 50 has five cam surfaces 5 that vary the valve lift amount and valve opening/closing timing of the sub-intake valve 30.
It has 0a, 50b, 50c, 50d, and 50e. The cam surface 37a corresponds to a valve lift amount of 1 mm of the main intake valve 29, the cam surface 37b corresponds to 4.5 mm, and the cam surfaces 37c to 37e correspond to 8 mm. In addition, the cam surface 50a has a valve lift amount of 0.5 mm of the sub-intake valve 30, and the cam surface 50b has a valve lift amount of 3 mm.
The cam surface 50c is also 8 mm, the cam surface 50d is 9.4 mm, and the cam surface 50e is 10.8 mm.
Each corresponds to the other. Furthermore, these lift control cams 37 and 50 have respective cam surfaces formed with profiles so that their valve lift center angles (maximum lift indicated by crank angle) are different from each other. Each cam surface is formed to the above dimensions so that the closing timings of both intake valves 29 and 30 coincide at low speeds, and so that the opening timings of both intake valves 29 and 30 coincide at high speeds. Needless to say. Further, as shown in FIG. 2, a stepping motor 52 is connected to one end of a cam control shaft 45 that supports these lift control cams 37 and 50 via a speed reduction mechanism 51. Note that this stepping motor 52 is driven by a control means (for example, an on-vehicle microcomputer) not shown, and this control means operates based on various detection signals input from a rotation speed sensor, a water temperature sensor, etc. The operating condition of the engine is determined and the motor 52 is driven according to the operating condition.

次に、本実施例の作用について説明する。 Next, the operation of this embodiment will be explained.

まず、機関のアイドリング時及び始動時にはス
テツピングモータ52によりカム制御軸45を駆
動回転して各リフト制御カム37及び50をカム
面37a,50aがそれぞれ主・副両吸気弁2
9,30の各レバー36に当接するように回動す
る。この結果、各レバー36はその一端部(第1
図中駆動カム34側の端部)がロツカアーム32
から離れた上方にあり、ロツカアーム32の揺動
支点(支点接触点)は主吸気弁29(副吸気弁3
0も同様)側に移行する。従つて、主吸気弁29
及び副吸気弁30は、第10図に示すように(実
線Xが主吸気弁29のリフト特性を、破線Yが副
吸気弁30のそれを、実線Zが排気弁31のそれ
を、それぞれ示す)、それぞれ最小の弁リフト量
で、主吸気弁29のリフト中心角が進み側に(上
死点側に)、副吸気弁30のリフト中心角が遅れ
側に(下死点側に)移行する。このため、両吸気
弁29,30の閉弁時期が下死点前で一致し、
吸・排気弁間のバルブオーバラツプはなくなり、
燃焼室24内の残留ガスが減少し、燃焼状態が安
定化(アイドリングが安定化)する。また特に、
両吸気弁29,30の閉弁時期が下死点前で一致
するので、第16図に示すように、閉弁後に筒内
で混合気が膨張して再度圧縮されたときの混合気
圧の差が小さくなり、また、両吸気弁29,30
の有効面積が小さくなることなく両吸気弁29,
30の上下流の絞り損失がなくなり、機関のポン
ピング損失も大幅に低減される。
First, when the engine is idling and starting, the stepping motor 52 drives and rotates the cam control shaft 45 to control each lift control cam 37 and 50 so that the cam surfaces 37a and 50a are connected to the main and sub intake valves 2, respectively.
It rotates so as to come into contact with each lever 36 of 9 and 30. As a result, each lever 36 has one end (first
The end on the drive cam 34 side in the figure) is the rocker arm 32.
The swinging fulcrum (fulcrum contact point) of the rocker arm 32 is located above and away from the main intake valve 29 (sub-intake valve 3).
0 also moves to the ) side. Therefore, the main intake valve 29
and the auxiliary intake valve 30, as shown in FIG. ), the lift center angle of the main intake valve 29 shifts to the leading side (toward the top dead center) and the lift center angle of the auxiliary intake valve 30 shifts to the lag side (towards the bottom dead center) at the minimum valve lift amount. do. Therefore, the closing timings of both intake valves 29 and 30 coincide before bottom dead center,
Valve overlap between intake and exhaust valves is eliminated,
The residual gas in the combustion chamber 24 is reduced, and the combustion state is stabilized (idling is stabilized). Also, especially
Since the closing timings of both intake valves 29 and 30 coincide before the bottom dead center, as shown in Fig. 16, the difference in the mixture pressure when the mixture expands in the cylinder after the valves are closed and is compressed again. becomes smaller, and both intake valves 29, 30
Both intake valves 29,
30 upstream and downstream throttling losses are eliminated, and engine pumping losses are also significantly reduced.

なお、主吸気弁29の開弁時期を副吸気弁30
の開弁時期よりも早くしているので、特に吸入に
伴うポンピング損失も低減される。
It should be noted that the opening timing of the main intake valve 29 is determined by the auxiliary intake valve 30.
Since the timing is earlier than the valve opening timing of the valve, pumping loss especially associated with suction is also reduced.

次に、機関の低速低負荷運転時は、カム制御軸
45を回転してリフト制御カム37,50のカム
面37b,50bでレバー36の一端部を押し下
げる。この結果、ロツカアーム32の支点接触点
が駆動カム34側に移行し、主吸気弁29及び副
吸気弁30は、第11図に示すように、小さな弁
リフト量で異なるリフト中心角で駆動される。従
つて、吸気弁29,30の閉弁時期はアイドリン
グ時よりも下死点側に移行するものの、アイドリ
ング時と同様に機関のポンプ損失が低減されて燃
費低減効果が得られる。
Next, when the engine is operating at low speed and low load, the cam control shaft 45 is rotated to push down one end of the lever 36 with the cam surfaces 37b, 50b of the lift control cams 37, 50. As a result, the fulcrum contact point of the rocker arm 32 moves to the drive cam 34 side, and the main intake valve 29 and the auxiliary intake valve 30 are driven at different lift center angles with a small valve lift amount, as shown in FIG. . Therefore, although the closing timing of the intake valves 29 and 30 is shifted toward the bottom dead center side compared to when the engine is idling, the pumping loss of the engine is reduced in the same way as when idling, and the effect of reducing fuel consumption can be obtained.

次に、機関の低速全開時は、リフト制御カム3
7,50のカム面37c,50cでレバー36の
一端部をさらに押し下げる。この結果、ロツカア
ーム32の支点接触点はさらに第1図中左方に移
行し、主・副両吸気弁29,30のリフト特性
は、第12図に示すように、弁リフト量が増加す
る。従つて、その閉弁時期も下死点近傍となり、
吸入空気量が増加して出力トルクが向上すること
となる。
Next, when the engine is fully open at low speed, the lift control cam 3
One end of the lever 36 is further pushed down using the cam surfaces 37c and 50c of 7 and 50. As a result, the fulcrum contact point of the rocker arm 32 further shifts to the left in FIG. 1, and the lift characteristics of both the main and auxiliary intake valves 29, 30 increase in valve lift amount, as shown in FIG. 12. Therefore, the valve closing timing is also near the bottom dead center,
The amount of intake air increases and the output torque improves.

また、機関速度がさらに上昇すると、カム面3
7d,50dでレバー36をさらに押し下げるこ
ととなり、主吸気弁29のリフト量、開閉時期は
変化しないが、副吸気弁30はその弁リフト量が
増し、閉弁時期は下死点よりさらに遅れ、このと
き、バルブオーバーラツプがさほど大きくならな
いように、両吸気弁29,30の開弁時期が上死
点前で略一致するようになつてくる。第13図は
この場合のリフト特性を示している。この結果、
バルブオーバーラツプの過大に伴うエンジン安定
性の悪化およびノツキングの発生が防止されると
ともに、バルブオーバーラツプの過小に伴う吸入
初期行程での吸気量減少が防止され、吸入空気量
が増加して出力トルクが向上する。なお、主吸気
弁29の弁リフト量及び開閉時期を変化させない
理由は、オーバラツプ量が過大となつて新気の吹
き抜けを防止するためである。
Also, as the engine speed increases further, the cam surface 3
At 7d and 50d, the lever 36 is further pushed down, and the lift amount and opening/closing timing of the main intake valve 29 do not change, but the valve lift amount of the auxiliary intake valve 30 increases, and the valve closing timing is further delayed from bottom dead center. At this time, the opening timings of both intake valves 29 and 30 come to substantially coincide before top dead center so that the valve overlap does not become so large. FIG. 13 shows the lift characteristics in this case. As a result,
This prevents the deterioration of engine stability and knocking caused by excessive valve overlap, and also prevents the intake air amount from decreasing in the initial intake stroke due to too little valve overlap, increasing the intake air amount. Output torque is improved. The reason why the valve lift amount and opening/closing timing of the main intake valve 29 are not changed is to prevent fresh air from blowing through due to an excessive overlap amount.

さらに、機関回転速度が高められると、カム面
37e,50eでレバー36をさらに押し下げる
ことになり、副吸気弁30の弁リフト量が増し、
バルブオーバーラツプが大きくならないようにそ
の開弁時期が主吸気弁29のそれと同一となる。
第14図はこの場合のリフト特性を示している。
この結果、吸入空気量がさらに増加して出力トル
クがさらに向上する。
Furthermore, when the engine speed increases, the lever 36 is further pushed down by the cam surfaces 37e and 50e, and the valve lift amount of the sub-intake valve 30 increases.
Its opening timing is the same as that of the main intake valve 29 so that the valve overlap does not become large.
FIG. 14 shows the lift characteristics in this case.
As a result, the amount of intake air is further increased and the output torque is further improved.

以上の主・副両吸気弁29,30のリフトの特
性変化を示したのが第9図である。図中、曲線
X1,X2,X3は主吸気弁29のリフト特性を、同
じく曲線Y1,Y2,Y3,Y4,Y5が副吸気弁30の
それを、さらに、曲線Zは排気弁31のそれを示
している。なお、図中W1は主吸気弁のリフト中
心角を、W2は副吸気弁のそれを示している。
FIG. 9 shows changes in the lift characteristics of both the main and auxiliary intake valves 29, 30 as described above. In the figure, the curve
X 1 , X 2 , X 3 represent the lift characteristics of the main intake valve 29, curves Y 1 , Y 2 , Y 3 , Y 4 , Y 5 represent those of the auxiliary intake valve 30, and curve Z represents the lift characteristics of the exhaust valve. 31 is shown. In the figure, W1 indicates the lift center angle of the main intake valve, and W2 indicates that of the sub-intake valve.

また、第15図は、機関回転速度(横軸)と機
関負荷(アクセル開度、縦軸)との関係における
リフト制御カム37,50のカム面の変化を示し
ている。すなわち、図中点Pで示すアイドル時は
カム面37a,50aに、図中領域Qの低速低負
荷時はカム面37b,50bに、領域Rの低速全
開時はカム37c,50cに、領域Sの中速時は
カム面37d,50dに、領域Tの高速時はカム
面37e,50eに、それぞれ対応している。な
お、図中実線及び破線は各領域の切換条件を示す
が、実線で示す回転速度及び負荷の増加時よりも
破線で示すその減少時の切換条件値を低下させ
て、ヒステリシスを設け、機構のハンチングを防
止している。
Further, FIG. 15 shows changes in the cam surfaces of the lift control cams 37 and 50 in relation to the engine rotational speed (horizontal axis) and the engine load (accelerator opening, vertical axis). In other words, when idling as indicated by point P in the figure, the cam surfaces 37a and 50a, when the area Q in the figure is low speed and low load, the cam surfaces 37b and 50b, when the area R is low speed and fully open, the cam surfaces 37c and 50c, and the area S. When the speed is medium, the cam surfaces 37d and 50d correspond to the cam surfaces 37d and 50d, and when the speed is high in the region T, the cam surfaces 37e and 50e correspond to the cam surfaces 37e and 50e, respectively. Note that the solid lines and broken lines in the figure indicate the switching conditions for each region, and the switching condition value when the rotation speed and load decrease, shown by the broken line, is lower than when the rotation speed and load increase, shown by the solid line, to provide hysteresis and improve the mechanism. Prevents hunting.

なお、上記実施例にあつてはリフト制御カムに
より5段階の制御を行つたが、これに限られない
ことはもちろんである。また、上記5段階の制御
に加えて機関空燃比を適宜変化させることもでき
る。
In the above embodiment, the lift control cam performs five-stage control, but it is needless to say that the present invention is not limited to this. Furthermore, in addition to the five-stage control described above, the engine air-fuel ratio can also be changed as appropriate.

(効果) 以上説明してきたように、本発明によれば、低
速時のスワール強化およびポンピング損失の低減
が可能となるので、燃費を低減することができ、
かつ、高速時に出力を全回転域で滑らかに向上さ
せることができ、この結果機関の全運転域におい
て機関性能を十分に高めることができる。また、
燃料供給装置が単一となるので、装置の複雑化を
防止することができる。
(Effects) As explained above, according to the present invention, it is possible to strengthen the swirl at low speeds and reduce pumping loss, so fuel consumption can be reduced.
In addition, the output can be smoothly increased over the entire rotation range at high speeds, and as a result, the engine performance can be sufficiently improved over the entire operating range of the engine. Also,
Since there is only one fuel supply device, it is possible to prevent the device from becoming complicated.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係る多気筒内燃機関の一実施
例を示すその断面図、第2図は同じくその平面
図、第3図はその吸排気ポートのレイアウトを示
す模式図、第4図はそのリフト制御カムの取付部
を示す分解斜視図、第5図は同じくリフト制御カ
ムの取付部を示す斜視図、第6図はその支持軸を
示す斜視図、第7図はその主吸気弁用のリフト制
御カムのカムプロフイールを示す正面図、第8図
はその副吸気弁用のリフト制御カムのカムプロフ
イールを示す正面図、第9図は主・副両吸気弁の
排気弁のリフト特性の関係を示すグラフ、第10
図〜第14図はリフト制御カムの各カム面に対応
したリフト特性をそれぞれ示すグラフ、第15図
はエンジン回転数とアクセル開度と各カム面との
対応関係を与えるグラフ、第16図は本実施例に
おけるアイドル時のP−V線図である。第17図
〜第21図は従来の多気筒内燃機関を示すもの
で、第17図はその平面図、第18図はその正面
断面図、第19図はその作動停止機構を示す一部
破断正面図、第20図はその第19図の−
矢視断面図、第21図はその機関回転数と出力
トルクとの関係を示すグラフである。 29……主吸気弁、30……副吸気弁、35…
…可変動弁機構。
FIG. 1 is a cross-sectional view showing an embodiment of a multi-cylinder internal combustion engine according to the present invention, FIG. 2 is a plan view thereof, FIG. 3 is a schematic diagram showing the layout of its intake and exhaust ports, and FIG. An exploded perspective view showing the mounting part of the lift control cam, FIG. 5 is a perspective view showing the mounting part of the lift control cam, FIG. 6 is a perspective view showing its support shaft, and FIG. 7 is a perspective view showing the main intake valve. Figure 8 is a front view showing the cam profile of the lift control cam for the sub-intake valve, Figure 9 is a front view showing the cam profile of the lift control cam for the sub-intake valve, and Fig. 9 shows the lift characteristics of the exhaust valve for both the main and sub-intake valves. Graph showing relationships, No. 10
Figures 1 to 14 are graphs showing the lift characteristics corresponding to each cam surface of the lift control cam, Figure 15 is a graph showing the correspondence between engine speed, accelerator opening, and each cam surface, and Figure 16 is a graph showing the correspondence between engine speed, accelerator opening, and each cam surface. FIG. 3 is a PV diagram during idling in this embodiment. 17 to 21 show a conventional multi-cylinder internal combustion engine. FIG. 17 is a plan view thereof, FIG. 18 is a front sectional view thereof, and FIG. 19 is a partially cutaway front view showing its operation stop mechanism. Figure 20 is the figure 19 -
The cross-sectional view taken in the direction of arrows, FIG. 21, is a graph showing the relationship between the engine speed and the output torque. 29...Main intake valve, 30...Sub-intake valve, 35...
...Variable valve mechanism.

Claims (1)

【特許請求の範囲】[Claims] 1 1気筒について2つの吸気弁を備えた多気筒
内燃機関において、これらの2つの吸気弁のそれ
ぞれの弁開閉時期及び弁リフト量を機関の運転条
件に応じて段階的に可変とする可変動弁機構を備
え、これらの2つの吸気弁のリフト中心角に位相
差を設け、かつ、機関の低速時に2つの吸気弁の
閉弁時期を一致させるとともに機関の高速時に2
つの吸気弁の開弁時期を一致させるようにしたこ
とを特徴とする多気筒内燃機関。
1. In a multi-cylinder internal combustion engine equipped with two intake valves for each cylinder, a variable valve that varies the valve opening/closing timing and valve lift amount of each of these two intake valves in stages according to engine operating conditions. It is equipped with a mechanism that provides a phase difference between the lift center angles of these two intake valves, matches the closing timing of the two intake valves when the engine is running at low speed, and adjusts the closing timing of the two intake valves to match when the engine is running at high speed.
A multi-cylinder internal combustion engine characterized in that the opening timings of two intake valves are made to coincide with each other.
JP14310085A 1985-06-24 1985-06-28 Multi-cylinder internal-combustion engine Granted JPS623113A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP14310085A JPS623113A (en) 1985-06-28 1985-06-28 Multi-cylinder internal-combustion engine
US06/877,523 US4759321A (en) 1985-06-24 1986-06-23 Valve timing arrangement for internal combustion engine having multiple inlet valves per cylinder
DE3621080A DE3621080C3 (en) 1985-06-24 1986-06-24 Valve timing device for internal combustion engines with multiple intake valves per cylinder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14310085A JPS623113A (en) 1985-06-28 1985-06-28 Multi-cylinder internal-combustion engine

Related Child Applications (2)

Application Number Title Priority Date Filing Date
JP12399192A Division JPH05133212A (en) 1992-05-18 1992-05-18 Multiple cylinder internal combustion engine
JP5293754A Division JP2588362B2 (en) 1993-11-25 1993-11-25 Multi-cylinder internal combustion engine

Publications (2)

Publication Number Publication Date
JPS623113A JPS623113A (en) 1987-01-09
JPH0346644B2 true JPH0346644B2 (en) 1991-07-16

Family

ID=15330906

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14310085A Granted JPS623113A (en) 1985-06-24 1985-06-28 Multi-cylinder internal-combustion engine

Country Status (1)

Country Link
JP (1) JPS623113A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2632046B2 (en) * 1989-08-08 1997-07-16 トヨタ自動車株式会社 Method for producing silicon nitride sintered body
US6902987B1 (en) 2000-02-16 2005-06-07 Ziptronix, Inc. Method for low temperature bonding and bonded structure

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6027713A (en) * 1983-07-25 1985-02-12 Mazda Motor Corp Controller of valve timing of engine

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6027713A (en) * 1983-07-25 1985-02-12 Mazda Motor Corp Controller of valve timing of engine

Also Published As

Publication number Publication date
JPS623113A (en) 1987-01-09

Similar Documents

Publication Publication Date Title
US5224460A (en) Method of operating an automotive type internal combustion engine
CA1274132A (en) Valve operating mechanism for internal combustion engine
US6615775B2 (en) Variable valve operating system of internal combustion engine enabling variation of valve-lift characteristic and phase
US5183013A (en) Two-cycle diesel engine
JPS60113007A (en) Control device of intake and exhaust valve in internal- combustion engine
US5209201A (en) Internal combustion engine
US8695544B2 (en) High expansion ratio internal combustion engine
US5247913A (en) Variable valve for internal combustion engine
Lenz et al. Variable valve timing—A possibility to control engine load without throttle
JPH0893515A (en) Valve gear characteristics and air-fuel ratio change-over control method in internal combustion engine
JPS60150459A (en) Engine with fuel injection device
JPH0623527B2 (en) Multi-cylinder internal combustion engine
JPH0346644B2 (en)
JP2588362B2 (en) Multi-cylinder internal combustion engine
JPH05133212A (en) Multiple cylinder internal combustion engine
JPH0585723B2 (en)
JP2656181B2 (en) Dual fuel engine
JP4311813B2 (en) Intake system controller for spark ignition internal combustion engine
JP2733097B2 (en) Intake and exhaust devices for internal combustion engines
JPS61294109A (en) Multicylinder internal combustion engine
JPS5910357Y2 (en) Intake air amount control device
JPH08170512A (en) Engine with valve opening / closing mechanism
JPS6223510A (en) Multi-cylinder internal combustion engine
JPH08260925A (en) Intake system of engine
JPH059610B2 (en)

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term