[go: up one dir, main page]

JPH0346371Y2 - - Google Patents

Info

Publication number
JPH0346371Y2
JPH0346371Y2 JP19878886U JP19878886U JPH0346371Y2 JP H0346371 Y2 JPH0346371 Y2 JP H0346371Y2 JP 19878886 U JP19878886 U JP 19878886U JP 19878886 U JP19878886 U JP 19878886U JP H0346371 Y2 JPH0346371 Y2 JP H0346371Y2
Authority
JP
Japan
Prior art keywords
cathode
platinum
diaphragm
electrode
sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP19878886U
Other languages
Japanese (ja)
Other versions
JPS63105070U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP19878886U priority Critical patent/JPH0346371Y2/ja
Publication of JPS63105070U publication Critical patent/JPS63105070U/ja
Application granted granted Critical
Publication of JPH0346371Y2 publication Critical patent/JPH0346371Y2/ja
Expired legal-status Critical Current

Links

Landscapes

  • Electrodes For Compound Or Non-Metal Manufacture (AREA)
  • Electroplating Methods And Accessories (AREA)

Description

【考案の詳細な説明】 〔産業上の利用分野〕 本考案は、溶存酸素測定用センサである隔膜酸
素電極に関するもので、本案にかかる溶存酸素測
定用センサは原子力発電所のボイラ用水の溶存酸
素測定に特に大きな利用価値を持つものである。
[Detailed description of the invention] [Field of industrial application] The present invention relates to a diaphragm oxygen electrode, which is a sensor for measuring dissolved oxygen. It has a particularly great value in measurement.

〔従来の技術〕[Conventional technology]

溶存酸素(DO)の測定に用いられる隔膜酸素
電極(以下DOセンサと略記)は、カソード、ア
ーノード、隔膜、電解液及び電解槽から構成され
ている。
A diaphragm oxygen electrode (hereinafter abbreviated as DO sensor) used to measure dissolved oxygen (DO) is composed of a cathode, an anode, a diaphragm, an electrolyte, and an electrolytic cell.

そして、カソードの材料には白金、ポーラログ
ラフ式センサのアノードには銀(ガルバ=電池式
では鉛)、隔膜にはポリフツ化エチレン、電解液
には塩化カリウム水溶液、電解槽にはプラスチツ
クや金属等が用いられている。
The cathode is made of platinum, the anode of the polarographic sensor is made of silver (lead for the galvanic sensor), the diaphragm is made of polyfluorinated ethylene, the electrolyte is made of potassium chloride, and the electrolytic cell is made of plastic or metal. It is used.

このDOセンサは、河川水、産業用水、廃水、
バイオリアクター等のDOの測定等に広く利用さ
れているものであるが、特に、ボイラー水の管理
においては、DOが腐食の原因となることから、
ヒドラヂン等の脱酸素剤を加えてDOを予め除去
し、その除去効果を確認する必要があることから
ppbオーダー(通常の用途ではppmオーダー)の
極微量のDO測定管理が重視されている。
This DO sensor is suitable for river water, industrial water, waste water,
It is widely used for measuring DO in bioreactors, etc., but it is especially used in boiler water management, as DO causes corrosion.
Because it is necessary to remove DO in advance by adding an oxygen scavenger such as hydrazine and confirm its removal effect.
Emphasis is placed on the measurement and management of ultra-trace amounts of DO on the ppb order (ppm order in normal applications).

なお、プラントの安全性確保の見地から、とく
に厳しいDOの監視が要求されているのは、原子
力発電ボイラー用水である。原子力発電所ではボ
イラー用水は前記脱酸素剤を加え、さらに水素ガ
スを添加溶解してボイラーの防食につとめている
が、好適な計測方法がなく、繁雑な手分析法に頼
つてDOの測定を行つているのが現状である。
From the standpoint of ensuring plant safety, particularly strict DO monitoring is required for nuclear power boiler water. At nuclear power plants, the above-mentioned oxygen scavenger is added to the boiler water, and hydrogen gas is added and dissolved in order to protect the boiler from corrosion. However, there is no suitable measurement method, and the DO measurement relies on complicated manual analysis methods. This is the current situation.

〔考案が解決しようとする問題点〕[Problem that the invention attempts to solve]

DOセンサを用いた上記用水のDO測定を連続
自動的に行えると、省力的に完全なDOのモニタ
ーリンができるわけであるが、従来のDOセンサ
では次の理由により使用できない。
If the DO measurement of the above-mentioned water water could be carried out continuously and automatically using a DO sensor, it would be possible to perform complete DO monitoring with less labor, but conventional DO sensors cannot be used for the following reasons.

すなわち、白金カソードは、水素ガスの存在下
では、第1図の曲線aのように酸素量の指示(酸
素還元電流)のマイナス方向に計器の指示が大き
くずれ、DO測定が全くできないことが本考案者
の実験研究により明らかとなつた。
In other words, with a platinum cathode, in the presence of hydrogen gas, the indication of the oxygen amount (oxygen reduction current) will deviate greatly in the negative direction, as shown by curve a in Figure 1, and DO measurement will not be possible at all. This was revealed through the inventor's experimental research.

これは、白金は水素に対する触媒能が強いこと
から、水素の酸化反応の併発によるものと考えら
れる。
This is thought to be due to the simultaneous occurrence of the oxidation reaction of hydrogen, since platinum has a strong catalytic ability for hydrogen.

〔考案の目的〕[Purpose of invention]

本考案の目的は、溶存水素の存在下においても
DOを正確に測定できるDOセンサを提供し、原
子力発電プラントの安全をはかることにある。
The purpose of this invention is to solve the problem even in the presence of dissolved hydrogen.
Our objective is to provide a DO sensor that can accurately measure DO to ensure the safety of nuclear power plants.

〔問題点を解決するための手段〕[Means for solving problems]

本考案は上記の問題点を解決するためになされ
たもので、ガラス管の端部に白金カソード電極を
溶封した隔膜酸素電極において、前記白金カソー
ド電極の表面に微細な凹凸を有する金のメツキ層
を形成するようにしたものである。
The present invention was devised to solve the above-mentioned problems, and includes a diaphragm oxygen electrode in which a platinum cathode electrode is melt-sealed to the end of a glass tube. It is designed to form layers.

〔作 用〕[Effect]

本考案に係るDOセンサは、金のメツキ層を付
してあるため、白金カソード電極は水素の影響を
全く受けないので、DOの正確な測定ができる。
Since the DO sensor according to the present invention is coated with a gold plating layer, the platinum cathode electrode is not affected by hydrogen at all, so DO can be measured accurately.

第1図において曲線bは本考案に係るものを使
用した場合の計器指示を示すもので水素ガスを導
入しても計器指示は変化しない。
In FIG. 1, curve b shows the meter reading when the device according to the present invention is used, and the meter reading does not change even if hydrogen gas is introduced.

なお、従来カソード材料として金を用いたDO
センサもあるが、ガラスとのなじみが悪いため、
ガラスに溶封して用いることが実際上不可能であ
る。
Note that conventional DO using gold as the cathode material
There are sensors, but they don't fit well with the glass, so
It is practically impossible to use it by melt-sealing it in glass.

その解決策として、米国特許第4096047号(ハ
ーレ法)のように、サフアイヤの絶縁体にスプリ
ングでカソードを圧着配置する極めて複雑な提案
もある程である。
As a solution to this problem, there is an extremely complicated proposal, such as US Pat. No. 4,096,047 (Harley method), in which the cathode is crimped onto the sapphire insulator using a spring.

また、エポキシ樹脂等の有機絶縁材中に金を使
用したカソード封入をしたものもあるが使用する
につれて電解液が徐々に絶縁体と金との〓間に浸
み込んで残余電流の増大を招くため、極く低濃度
のDO測定には永く使用できない。
There are also products that use gold as a cathode sealed in organic insulating materials such as epoxy resins, but as they are used, the electrolyte gradually seeps into the space between the insulator and the gold, causing an increase in residual current. Therefore, it cannot be used for measuring extremely low concentrations of DO for a long time.

〔実施例〕〔Example〕

第2図は本考案の実施例を示すもので1はガラ
ス管、2はガラス管の端部に設けた凹部1aに溶
封した白金から成るカソード、3はリード線であ
る。
FIG. 2 shows an embodiment of the present invention, in which 1 is a glass tube, 2 is a cathode made of platinum that is melt-sealed in a recess 1a provided at the end of the glass tube, and 3 is a lead wire.

白金からなるカソード2は表面に微細な凹凸2
aが施されていて、その上面に金のメツキ層4が
施されている。
The cathode 2 made of platinum has minute irregularities 2 on its surface.
A is applied, and a gold plating layer 4 is applied to the upper surface.

なお、DOセンサにおいては、カソードの表面
と隔膜5の密着が応答及び安定性を確保する上で
必要であるが、密着のための張力が強すぎると、
電解液6が隔膜5とカソード2の〓間から押し出
され電解反応が阻害されて電流が減少するなどし
てDOの正確な測定が不能となる。
In addition, in the DO sensor, close contact between the surface of the cathode and the diaphragm 5 is necessary to ensure response and stability, but if the tension for close contact is too strong,
The electrolytic solution 6 is forced out from between the diaphragm 5 and the cathode 2, inhibiting the electrolytic reaction and reducing the current, making accurate measurement of DO impossible.

〔考案の効果〕[Effect of idea]

本考案ではカソード電極としてガラスい最も完
全に封入される金属の白金を用いたので、上記の
金を用いる場合の絶縁技術上の問題が生じない。
In the present invention, platinum, a metal that is most completely encapsulated in glass, is used as the cathode electrode, so the above-mentioned problems in insulation technology when using gold do not occur.

また、本考案では、カソード表面が微細な多数
の凹凸面を有するため、隔膜を強く張つてもその
凹部に電解液が存在するため極めて安定で迅速な
応答性が確保される。
Furthermore, in the present invention, since the cathode surface has a large number of fine uneven surfaces, even if the diaphragm is strongly stretched, the electrolyte remains in the recesses, ensuring extremely stable and rapid response.

そのため、水素ガスの溶存する脱酸素水中の微
量のDOの自動連続測定ができる。
Therefore, it is possible to automatically and continuously measure trace amounts of DO in deoxygenated water containing dissolved hydrogen gas.

更に、反応面積が大きくなるため、酸素還元反
応が増大し、感度50%増加がするという相乗効果
もある。またハーレ法に比し、構造が簡単で経剤
的である。
Furthermore, since the reaction area becomes larger, the oxygen reduction reaction increases, resulting in a synergistic effect of increasing sensitivity by 50%. Also, compared to the Hare method, it has a simpler structure and is administered orally.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来のDO電極と本考案のDO電極の
対水素性の比較図、第2図は本考案実施例の一部
裁断側面図である。 1…ガラス管、2…白金カソード電極、3…リ
ード線、4…金メツキ層。
FIG. 1 is a comparison diagram of the hydrogen resistance of a conventional DO electrode and the DO electrode of the present invention, and FIG. 2 is a partially cutaway side view of an embodiment of the present invention. 1...Glass tube, 2...Platinum cathode electrode, 3...Lead wire, 4...Gold plating layer.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] ガラス管の端部に白金カソード電極を溶封した
隔膜酸素電極において、前記白金カソード電極の
表面に微細な凹凸を有する金のメツキ層を形成し
たことを特徴とする隔膜酸素電極。
A diaphragm oxygen electrode comprising a platinum cathode electrode melt-sealed to the end of a glass tube, characterized in that a gold plating layer having fine irregularities is formed on the surface of the platinum cathode electrode.
JP19878886U 1986-12-26 1986-12-26 Expired JPH0346371Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19878886U JPH0346371Y2 (en) 1986-12-26 1986-12-26

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19878886U JPH0346371Y2 (en) 1986-12-26 1986-12-26

Publications (2)

Publication Number Publication Date
JPS63105070U JPS63105070U (en) 1988-07-07
JPH0346371Y2 true JPH0346371Y2 (en) 1991-09-30

Family

ID=31159802

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19878886U Expired JPH0346371Y2 (en) 1986-12-26 1986-12-26

Country Status (1)

Country Link
JP (1) JPH0346371Y2 (en)

Also Published As

Publication number Publication date
JPS63105070U (en) 1988-07-07

Similar Documents

Publication Publication Date Title
US3380905A (en) Electrolytic sensor with anodic depolarization
CA1039810A (en) Dissolved oxygen probe
CN104155355A (en) Oxygen sensor
US20050034985A1 (en) Atmospheric corrosion sensor
US4302315A (en) Gas sensing unit
CN108061745A (en) A kind of method for surveying feed solution system oxidation-reduction potential using current-vs-time and open circuit potential combined techniques
JPH0346371Y2 (en)
US3003932A (en) Apparatus for the galvanic analysis of hydrogen
Christensen et al. Reductive potentiometric stripping analysis
US20070227908A1 (en) Electrochemical cell sensor
EP0096417B1 (en) Apparatus for measuring dissolved hydrogen concentration
CA1198345A (en) Sensor for determining the oxygen content in a gas
Litong et al. Determination of dissolved oxygen by catalytic reduction on Nafion—methyl viologen chemically modified electrode
US3528778A (en) Method for the determination of acid concentrations
Szepesváry et al. Potentiometric determination of acids and bases with a silicone rubber-based graphite electrode as indicating electrode
GB899089A (en) A method of and apparatus for continuous polarographic measurement
US3711394A (en) Continuous oxygen monitoring of liquid metals
JPH0239740B2 (en)
US5632882A (en) Electrolytes for inhibiting silver deposition on oxygen sensor cathodes and methods of use of same
US3681228A (en) Electrochemical concentration cell for gas analysis
SU834491A1 (en) Ion-selective electrode for mercury ion concentration determination
Yosypchuk et al. Combined Voltammetric‐Potentiometric Sensor with Silver Solid Amalgam Link for Electroanalytical Measurements
US20230295810A1 (en) Cathodic protection polypropylene graphite reference electrode
JPS6236554A (en) Electrochemical type acid gas detector
JPH0529024A (en) Hydrogen ion detecting element and lead acid battery provided with the same