JPH0345550B2 - - Google Patents
Info
- Publication number
- JPH0345550B2 JPH0345550B2 JP57127517A JP12751782A JPH0345550B2 JP H0345550 B2 JPH0345550 B2 JP H0345550B2 JP 57127517 A JP57127517 A JP 57127517A JP 12751782 A JP12751782 A JP 12751782A JP H0345550 B2 JPH0345550 B2 JP H0345550B2
- Authority
- JP
- Japan
- Prior art keywords
- semiconductor
- region
- capacitor
- field effect
- effect transistor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D30/00—Field-effect transistors [FET]
- H10D30/60—Insulated-gate field-effect transistors [IGFET]
- H10D30/63—Vertical IGFETs
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10B—ELECTRONIC MEMORY DEVICES
- H10B12/00—Dynamic random access memory [DRAM] devices
- H10B12/30—DRAM devices comprising one-transistor - one-capacitor [1T-1C] memory cells
- H10B12/39—DRAM devices comprising one-transistor - one-capacitor [1T-1C] memory cells the capacitor and the transistor being in a same trench
- H10B12/395—DRAM devices comprising one-transistor - one-capacitor [1T-1C] memory cells the capacitor and the transistor being in a same trench the transistor being vertical
Landscapes
- Semiconductor Memories (AREA)
- Semiconductor Integrated Circuits (AREA)
Description
【発明の詳細な説明】
本発明は半導体記憶装置に係り、特に大容量化
に適したダイナミツク形メモリの構造に関する。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a semiconductor memory device, and particularly to a dynamic memory structure suitable for increasing capacity.
単一コンデンサ単一トランジスタより構成され
るダイナミツク形メモリは、構成部品が少なく、
配線数が少ないため、とくに大容量の半導体メモ
リの方式として採用されている。しかし、従来の
構成では、第1図に示すように、コンデンサ1お
よびトランジスタ2が基板3の表面に平面的に配
置されている。コンデンサに蓄積される電荷は、
読み出し時にビツト線の浮遊容量に分配されるた
め、信号として検知するためにある程度大きな容
量を必要とする。また、α線等による不慮の電荷
発生に対して誤動作しないためにも、ある程度大
きな容量を必要とし、通常256Kビツトのメモリ
においては60fF程度のコンデンサが用いられる。
通常、このコンデンサはスイツチトランジスタに
続くMOSの反転層若しくは拡散層によつて構成
され、60μm2程度の面積を占有していた。したが
つて、このような平面的な構成では、単位セルの
縮小は難しく、これがメモリの大容量化の妨げに
なつていた。 Dynamic memory, which consists of a single capacitor and a single transistor, has fewer components.
Because the number of wires is small, it is especially used as a method for large-capacity semiconductor memory. However, in the conventional configuration, as shown in FIG. 1, a capacitor 1 and a transistor 2 are arranged in a plane on the surface of a substrate 3. The charge accumulated in the capacitor is
Since it is distributed to the stray capacitance of the bit line during reading, a somewhat large capacitance is required to detect it as a signal. In addition, a somewhat large capacitance is required to prevent malfunctions due to unexpected charge generation due to α rays, etc., and a capacitor of about 60 fF is usually used in a 256K-bit memory.
Typically, this capacitor consists of a switch transistor followed by a MOS inversion layer or diffusion layer, and occupies an area of about 60 μm 2 . Therefore, in such a planar configuration, it is difficult to reduce the size of the unit cell, which has been an obstacle to increasing the capacity of the memory.
本発明の目的はダイナミツク形メモリのかかる
制約を消化し、かつ大容量化の可能なデバイスの
構造を提供することであり、従来よりも小面積で
ありながら、従来よりもメモリ保持機能の優れた
メモリセル構造を提供することである。 The purpose of the present invention is to provide a structure for a device that overcomes the limitations of dynamic memory and can increase the capacity. Another object of the present invention is to provide a memory cell structure.
本発明におけるデバイスの特徴は、縦形FET、
すなわち、制御される電流の方向が基板に垂直な
トランジスタをスイツチングに用い、スイツチン
グの制御用電極を狭んで、トランジスタを構成す
る半導体の片端に電荷蓄積用のコンデンサ、他端
に書き込み/読み出しのための信号線を接続した
構造を有する。さらにこの構造を、メモリアクセ
スのためのビツト線及びワード線の交叉点で構成
することを特徴とする。 The features of the device in the present invention are vertical FET,
In other words, a transistor in which the direction of the controlled current is perpendicular to the substrate is used for switching, the control electrode for switching is narrowed, and a capacitor for charge storage is placed at one end of the semiconductor constituting the transistor, and a capacitor for writing/reading is placed at the other end. It has a structure in which two signal lines are connected. A further feature of this structure is that it is composed of crossing points of bit lines and word lines for memory access.
以下、実施例を用いて本発明を説明する。 The present invention will be explained below using examples.
第2図は本発明の一実施例を示す断面図であ
る。半導体基板21はp形Siであり、メモリセル
は紙面に平行に走るビツト線導体23および紙面
に垂直に走るワード線導体24の交又部に形成さ
れる。ワード線導体24にはビツト線との交叉点
において開口部が有り、この開口部に柱状の半導
体25が貫通した構造となつている。この半導体
棹体25は例えばp形で0.1〜10Ω・cmで、両端
(上下)が低比抵抗のn形領域26,27となつ
ており、その一端がビツト線と、また他端がコン
デンサを形成する半導体28とそれぞれ抵抗性接
触で接続されている。半導体棹体25のp形領域
の長さは、ワード線導体24の厚さと略等しく、
また該p形領域はワード線24と薄い絶縁膜29
によつて隔てられており、該p形領域の外周がチ
ヤンネルを構成する絶縁ゲート形電界効果トラン
ジスタとなつている。コンデンサを形成する半導
体28はn形比抵抗で、基板21と薄い絶縁膜2
2で隔てられており、基板との間の静電容量がメ
モリ電荷の蓄積に利用される。 FIG. 2 is a sectional view showing an embodiment of the present invention. The semiconductor substrate 21 is p-type Si, and the memory cell is formed at the intersection of a bit line conductor 23 running parallel to the plane of the paper and a word line conductor 24 running perpendicular to the plane of the paper. The word line conductor 24 has an opening at the intersection with the bit line, and a columnar semiconductor 25 passes through this opening. This semiconductor rod 25 is, for example, p-type with a resistance of 0.1 to 10 Ω·cm, and both ends (top and bottom) are n-type regions 26 and 27 with low resistivity, one end of which is connected to a bit line, and the other end is connected to a capacitor. Each is connected by a resistive contact to the semiconductor 28 to be formed. The length of the p-type region of the semiconductor rod 25 is approximately equal to the thickness of the word line conductor 24;
Further, the p-type region is connected to the word line 24 and the thin insulating film 29.
The outer periphery of the p-type region constitutes an insulated gate field effect transistor forming a channel. The semiconductor 28 forming the capacitor has an n-type resistivity, and is connected to the substrate 21 and the thin insulating film 2.
2, and the capacitance between it and the substrate is used to store memory charge.
メモリ動作は、従来構造のMOSダイナミツク
RAMと同じで、ワード線を駆動することによ
り、半導体棹体の側壁で構成されるFETが開閉
し、ビツト線とコンデンサとの電気的接続/切断
がなされる。 Memory operation is based on conventional MOS dynamics
Similar to RAM, driving the word line opens and closes the FET formed on the side wall of the semiconductor body, electrically connecting/disconnecting the bit line and the capacitor.
第2図に示す実施例は第3図に示す工程にて作
られる。まず、平坦なp形1Ω・cm前後の(100)
シリコン基板を出発材料とする。軽く表面酸化し
た後、チヤンネルストツパのためのほう素をイオ
ン打込みによつて全面に導入し、表面に比抵抗を
若干下げた層301を設ける。次いで、コンデン
サを形成すべき部分を公知のシリコンドライエツ
チにより、急峻に堀り下げ、窪み302を形成す
る。次ぎに酸化膜を一旦除去した後、薄く再酸化
し、コンデンサ用の誘電絶縁膜303を形成し第
3図イの形状のものを作る。 The embodiment shown in FIG. 2 is manufactured by the steps shown in FIG. First, a flat p-type (100) of around 1Ω・cm
A silicon substrate is used as the starting material. After lightly oxidizing the surface, boron for a channel stopper is introduced into the entire surface by ion implantation, and a layer 301 with a slightly lower resistivity is provided on the surface. Next, the portion where the capacitor is to be formed is steeply etched using a known silicon dry etch to form a recess 302. Next, after once removing the oxide film, it is thinly re-oxidized to form a dielectric insulating film 303 for a capacitor, producing the shape shown in FIG. 3A.
次に第3図ロに示すように全面に公知のCVD
法によりn形不純物が高濃度にドープされた多結
晶Si層311を形成する。この状態で公知のビー
ムアニール法により、表面を溶融・再結晶化させ
る。この時、窪み302の一辺が4μm以下程度
であれば、公知のグラホエピタキシヤル現象で、
窪みの形状に従つて、主面に垂直に<100>の優
先方位をもつ単結晶が成長する。さらに望ましく
は、多結晶Si層の形成に先立ち、窪み302以外
の場所で主面に開口部を設け下地Siを露出させた
上で多結晶Si層を形成するとよい。 Next, as shown in Figure 3 B, a known CVD is applied to the entire surface.
A polycrystalline Si layer 311 doped with n-type impurities at a high concentration is formed by a method. In this state, the surface is melted and recrystallized by a known beam annealing method. At this time, if one side of the depression 302 is about 4 μm or less, the known graphoepitaxial phenomenon occurs.
According to the shape of the depression, a single crystal with a preferred orientation of <100> is grown perpendicular to the main surface. More preferably, prior to forming the polycrystalline Si layer, an opening is formed in the main surface at a location other than the depression 302 to expose the underlying Si, and then the polycrystalline Si layer is formed.
ビームアニール後、表面は略平担化するが、さ
らに望ましくは、公知のバイアス・スパツタ法等
にて厚みをそろえて平担化する。次に第3図ハに
示すようにこの上に0.1Ω・cmのp形層321を
エピタキシヤル成長し、表面全面にn形不純物を
イオン打込みおよび拡散によつて導入してn+層
322を形成する。 After the beam annealing, the surface is approximately flattened, and more preferably, the thickness is flattened using a known bias sputtering method or the like. Next, as shown in FIG. 3C, a p-type layer 321 of 0.1 Ω·cm is epitaxially grown on this layer, and an n + layer 322 is formed by introducing n-type impurities into the entire surface by ion implantation and diffusion. Form.
次に第3図ニに示すようにコンデンサー領域上
部をホトレジスト331で覆い、上部のSi層を、
基板に形成してある絶縁膜332まで堀り下げ
る。SiとSiO2とのドライエツチ選択比は約50:
1でこの終点検出は容易である。 Next, as shown in FIG. 3D, the upper part of the capacitor area is covered with photoresist 331, and the upper Si layer is
The trench is dug down to the insulating film 332 formed on the substrate. The dry etch selectivity ratio between Si and SiO 2 is approximately 50:
1, this end point detection is easy.
次に第3図ホに示すようにレジスト331を残
したまま、プラズマCVDもしくはスパツタによ
りSiO2膜341および342を堆積する。その
堆積厚さは、コンデンサを形成するn+領域34
3と、エピタキシヤル成長で形成したp領域34
4との境界に膜の上面が一致するように選ぶ。 Next, as shown in FIG. 3E, SiO 2 films 341 and 342 are deposited by plasma CVD or sputtering while leaving the resist 331. Its deposited thickness is the n + region 34 forming the capacitor
3 and p region 34 formed by epitaxial growth.
4 so that the top surface of the membrane coincides with the boundary with 4.
次にレジスト331を除去し、同時にその上に
乗つている堆積SiO2膜342も除去する。この
状態で500Å以下の熱酸化膜351を形成し、同
時に堆積SiO2膜を焼結し、基板に形成した絶縁
膜と一体化して第3図ヘに示す構造を得る。 Next, the resist 331 is removed, and at the same time the deposited SiO 2 film 342 on it is also removed. In this state, a thermal oxide film 351 of 500 Å or less is formed, and at the same time the deposited SiO 2 film is sintered and integrated with the insulating film formed on the substrate to obtain the structure shown in FIG. 3F.
次いで、全面にAlを蒸着するが、その厚さは
p形エピタキシヤル層361の厚さと同じか若干
厚目とする。さらにAl蒸着層をパターニングし
て第3図トに示すようにワード線363を形成す
る。Al蒸着膜の一部364は、分離された状態
でメモリセル上に残る。 Next, Al is deposited on the entire surface, and its thickness is made to be the same as or slightly thicker than the p-type epitaxial layer 361. Furthermore, the Al deposited layer is patterned to form word lines 363 as shown in FIG. A portion 364 of the Al deposited film remains on the memory cell in a separated state.
次にワード線およびビツト線分離用の絶縁膜3
71を堆積し、公知の平担化スパツタ法によりメ
モリセル上部の突出部を優先的にスパツタ除去し
てメモリセル上部のn+拡散層372を露出せし
め、Alを全面蒸着してビツト線373を形成し、
第3図チに示す構造を得る。同図は第2図に示す
構造と同一である。 Next, an insulating film 3 for separating word lines and bit lines.
71 is deposited, and the protrusion at the top of the memory cell is preferentially removed by sputtering using a well-known leveling sputtering method to expose the n + diffusion layer 372 at the top of the memory cell, and Al is deposited on the entire surface to form the bit line 373. form,
The structure shown in FIG. 3C is obtained. This figure has the same structure as shown in FIG.
第4図は4メモリセル分の平面模式図である
が、本発明のセルはビツト配線B1,B2等と、
ワード配線W1,W2等とのそれぞれ交叉領域に
形成され、この場合の最小加工領域は半導体棹体
貫通部41と、セルのコンデンサ領域42と隣接
するセルのコンデンサ領域43との間隔である。
しかし、FETのチヤネル部および、コンデンサ
が立体的な構成となるため、たとえば最小加工線
幅が1.2μmであつてもチヤネル幅4μmのFETは
得られ、FETの性能指数であるチヤネル幅・長
さ比で2ないし3倍改善される。またコンデンサ
の形成には深さ方向の制限は特にないが、仮に立
方体状に形成すると、約13μm2の単立面積当り、
29μm2のコンデンサ面積が得られる。さらに大き
なコンデンサ面積を必要とする場合には、コンデ
ンサを深く形成するか、形状凹凸をつけて表面積
を拡大することができ、α線等の不測の電荷発生
に対しても十分余裕をもたせた静電容量を得るこ
とができる。 FIG. 4 is a schematic plan view of four memory cells, and the cell of the present invention has bit wiring B1, B2, etc.
They are formed in the respective crossing regions with the word wirings W1, W2, etc., and the minimum processing area in this case is the interval between the semiconductor rod penetrating portion 41, the capacitor region 42 of the cell, and the capacitor region 43 of the adjacent cell.
However, since the channel part of the FET and the capacitor have a three-dimensional structure, for example, even if the minimum processing line width is 1.2 μm, a FET with a channel width of 4 μm can be obtained, and the channel width and length, which are the performance index of the FET, can be obtained. The ratio is improved by 2 to 3 times. Furthermore, there is no particular limit in the depth direction when forming a capacitor, but if it is formed in a cubic shape, per unit area of approximately 13 μm 2 ,
A capacitor area of 29 μm 2 is obtained. If an even larger capacitor area is required, the surface area can be expanded by forming the capacitor deeper or by adding an uneven shape. Capacity can be obtained.
前述の実施例ではスイツチングトランジスタは
半導体棹体の外周側壁をチヤネルとする絶縁ゲー
ト形電界効果トランジスタを用いたが、第2図に
おいて半導体棹体の主部25が高抵抗のn形で、
ワード線電位によつて静電誘導により半導体棹体
の導電率が制御される方式の静電誘導トランジス
タとして用いてもよい。また、第5図に示すごと
く、ワード線51と半導体棹体主部52が直接接
触したシツトキゲート型FETを用いても本発明
のメモリセルは構成される。 In the above-mentioned embodiment, the switching transistor used was an insulated gate field effect transistor in which the outer peripheral side wall of the semiconductor rod was used as a channel, but in FIG.
It may be used as an electrostatic induction transistor of a type in which the conductivity of the semiconductor rod is controlled by electrostatic induction depending on the word line potential. Furthermore, as shown in FIG. 5, the memory cell of the present invention can also be constructed using a Schottky gate type FET in which the word line 51 and the semiconductor body main portion 52 are in direct contact.
以上述べた如く、本発明によるメモリセルは占
有面積が小さくメモリをアクセスするためのワー
ド配線とビツト配線との交叉点に形成できる。実
施例で説明した様に本発明によれば1メガビツト
相当を構成するのに要する面積は14mm2であり、し
かもこれは、従来の256Kビツトダイナミツクメ
モリに用いられていたスイツチングトランジスタ
より改善された相互コングクタンスのトランジス
タを用い、同等のコンデンサ容量を実現した上で
の値である。 As described above, the memory cell according to the present invention occupies a small area and can be formed at the intersection of word wiring and bit wiring for accessing the memory. As explained in the embodiment, according to the present invention, the area required to configure the equivalent of 1 megabit is 14 mm2 , and this is an improvement over the switching transistor used in the conventional 256K bit dynamic memory. This value is based on achieving the same capacitance using a transistor with mutual conglucance.
第1図は従来構造のMOSダイナミツクメモリ
の断面構造図、第2図および第5図は本発明の実
施例を示すメモリの断面図、第4図は本発明の構
成を示す平面図第3図は本発明のメモリの製法の
一例を示す工程図である。
21……基板、23……ビツト線導体、24…
…ワード線導体、25……半導体棹体、22,2
9……絶縁膜。
FIG. 1 is a cross-sectional structural diagram of a MOS dynamic memory having a conventional structure, FIGS. 2 and 5 are cross-sectional diagrams of a memory showing an embodiment of the present invention, and FIG. 4 is a plan view showing the structure of the present invention. The figure is a process diagram showing an example of the method for manufacturing the memory of the present invention. 21...Substrate, 23...Bit line conductor, 24...
...Word line conductor, 25...Semiconductor rod, 22,2
9...Insulating film.
Claims (1)
るための電界効果トランジスタとからなるメモリ
セルと、メモリをアクセスするための互いに交叉
するビツト線およびワード線とを少なくとも備え
た半導体記憶装置において、該半導体記憶装置を
鉛直上方から見て該ビツト線とワード線とが交叉
する領域において該ビツト線とワード線との線幅
で規定される領域内に、該電界効果トランジスタ
のソース領域とチヤネル領域とドレイン領域と、
該ビツト線と該電界効果トランジスタとの接続部
および該容量の電極と該電界効果トランジスタと
の接続部とが設けられていることを特徴とする半
導体記憶装置。 2 上記容量の形成領域は、上記ビツト線とワー
ド線とが交叉する領域において該ビツト線とワー
ド線との線幅で規定される領域にほぼ重なること
を特徴とする特許請求の範囲1項記載の半導体記
憶装置。 3 上記容量は、第1導電型を有する半導体基板
に形成された溝の表面に形成された絶縁膜および
該絶縁膜上に形成された低抵抗半導体をそなえ、
上記電界効果トランジスタは、該溝上部に形成さ
れた第1の半導体領域、該第1の半導体領域の上
下に接してそれぞれ形成された上記第1導電型と
は反対の第2導電型を有する低抵抗の第2および
第3の半導体領域、および上記第1の半導体領域
の側面上に絶縁層を介して形成されたワード線を
そなえることを特徴とする特許請求の範囲第1項
又は第2項に記載の半導体記憶装置。[Claims] 1. At least a memory cell consisting of a capacitor for storing information and a field effect transistor for driving the capacitor, and bit lines and word lines that intersect with each other for accessing the memory. In the semiconductor memory device, the field effect transistor is disposed within a region defined by the line width of the bit line and the word line in a region where the bit line and the word line intersect when the semiconductor memory device is viewed from vertically above. a source region, a channel region, and a drain region;
A semiconductor memory device characterized in that a connection portion between the bit line and the field effect transistor and a connection portion between the electrode of the capacitor and the field effect transistor are provided. 2. Claim 1, wherein the capacitance formation region substantially overlaps with the region defined by the line width of the bit line and word line in the region where the bit line and word line intersect. semiconductor storage device. 3. The capacitor includes an insulating film formed on the surface of a groove formed in a semiconductor substrate having a first conductivity type and a low resistance semiconductor formed on the insulating film,
The field effect transistor includes a first semiconductor region formed in the upper part of the trench, and a low-temperature semiconductor region having a second conductivity type opposite to the first conductivity type formed in contact with the upper and lower sides of the first semiconductor region, respectively. Claim 1 or 2, characterized by comprising second and third semiconductor regions of the resistor, and a word line formed on the side surface of the first semiconductor region with an insulating layer interposed therebetween. The semiconductor storage device described in .
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP57127517A JPS5919366A (en) | 1982-07-23 | 1982-07-23 | semiconductor storage device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP57127517A JPS5919366A (en) | 1982-07-23 | 1982-07-23 | semiconductor storage device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5919366A JPS5919366A (en) | 1984-01-31 |
JPH0345550B2 true JPH0345550B2 (en) | 1991-07-11 |
Family
ID=14961965
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP57127517A Granted JPS5919366A (en) | 1982-07-23 | 1982-07-23 | semiconductor storage device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5919366A (en) |
Families Citing this family (38)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR920010461B1 (en) * | 1983-09-28 | 1992-11-28 | 가부시끼가이샤 히다찌세이사꾸쇼 | Semiconductor Memory and Manufacturing Method |
EP0168528B1 (en) * | 1984-04-25 | 1989-03-08 | Siemens Aktiengesellschaft | One-transistor memory cell for high-density integrated dynamic semiconductor memories, and method for manufacturing the same |
JPS60257560A (en) * | 1984-06-04 | 1985-12-19 | Mitsubishi Electric Corp | Semiconductor memory device |
JPS614271A (en) * | 1984-06-14 | 1986-01-10 | インタ−ナシヨナル ビジネス マシ−ンズ コ−ポレ−シヨン | Memory cell |
DE3572422D1 (en) * | 1984-06-14 | 1989-09-21 | Ibm | Dynamic ram cell |
US4672410A (en) * | 1984-07-12 | 1987-06-09 | Nippon Telegraph & Telephone | Semiconductor memory device with trench surrounding each memory cell |
JPS6123360A (en) * | 1984-07-12 | 1986-01-31 | Nippon Telegr & Teleph Corp <Ntt> | Semiconductor memory and manufacture of the same |
US5208657A (en) * | 1984-08-31 | 1993-05-04 | Texas Instruments Incorporated | DRAM Cell with trench capacitor and vertical channel in substrate |
US4890145A (en) * | 1984-08-31 | 1989-12-26 | Texas Instruments Incorporated | dRAM cell and array |
US4683486A (en) * | 1984-09-24 | 1987-07-28 | Texas Instruments Incorporated | dRAM cell and array |
US4651184A (en) * | 1984-08-31 | 1987-03-17 | Texas Instruments Incorporated | Dram cell and array |
US4824793A (en) * | 1984-09-27 | 1989-04-25 | Texas Instruments Incorporated | Method of making DRAM cell with trench capacitor |
JPS61179571A (en) * | 1984-09-27 | 1986-08-12 | テキサス インスツルメンツ インコ−ポレイテツド | Memory cell and array thereof |
US5225697A (en) * | 1984-09-27 | 1993-07-06 | Texas Instruments, Incorporated | dRAM cell and method |
US4797373A (en) * | 1984-10-31 | 1989-01-10 | Texas Instruments Incorporated | Method of making dRAM cell with trench capacitor |
CN1004734B (en) * | 1984-12-07 | 1989-07-05 | 得克萨斯仪器公司 | Dynamic random access memory unit (dram) and production method |
US4713678A (en) * | 1984-12-07 | 1987-12-15 | Texas Instruments Incorporated | dRAM cell and method |
US4673962A (en) * | 1985-03-21 | 1987-06-16 | Texas Instruments Incorporated | Vertical DRAM cell and method |
US5102817A (en) * | 1985-03-21 | 1992-04-07 | Texas Instruments Incorporated | Vertical DRAM cell and method |
JPH0680805B2 (en) * | 1985-05-29 | 1994-10-12 | 日本電気株式会社 | MIS type semiconductor memory device |
JPS61294854A (en) * | 1985-06-22 | 1986-12-25 | Toshiba Corp | Semiconductor device |
JPH0682799B2 (en) * | 1985-06-25 | 1994-10-19 | 沖電気工業株式会社 | Semiconductor memory device |
JPS6237711A (en) * | 1985-08-12 | 1987-02-18 | Yamada Mie | Flow rate controller |
US4649625A (en) * | 1985-10-21 | 1987-03-17 | International Business Machines Corporation | Dynamic memory device having a single-crystal transistor on a trench capacitor structure and a fabrication method therefor |
US4910567A (en) * | 1986-02-26 | 1990-03-20 | Texas Instruments, Incorporated | Dram cell and method for fabricating |
US4686552A (en) * | 1986-05-20 | 1987-08-11 | Motorola, Inc. | Integrated circuit trench cell |
US4829017A (en) * | 1986-09-25 | 1989-05-09 | Texas Instruments Incorporated | Method for lubricating a high capacity dram cell |
US4801988A (en) * | 1986-10-31 | 1989-01-31 | International Business Machines Corporation | Semiconductor trench capacitor cell with merged isolation and node trench construction |
US4816884A (en) * | 1987-07-20 | 1989-03-28 | International Business Machines Corporation | High density vertical trench transistor and capacitor memory cell structure and fabrication method therefor |
US4833516A (en) * | 1987-08-03 | 1989-05-23 | International Business Machines Corporation | High density memory cell structure having a vertical trench transistor self-aligned with a vertical trench capacitor and fabrication methods therefor |
US5109259A (en) * | 1987-09-22 | 1992-04-28 | Texas Instruments Incorporated | Multiple DRAM cells in a trench |
JP2606857B2 (en) * | 1987-12-10 | 1997-05-07 | 株式会社日立製作所 | Method for manufacturing semiconductor memory device |
JPH07105477B2 (en) * | 1988-05-28 | 1995-11-13 | 富士通株式会社 | Semiconductor device and manufacturing method thereof |
US4980734A (en) * | 1988-05-31 | 1990-12-25 | Texas Instruments Incorporated | Dynamic memory cell using silicon-on-insulator transistor with trench capacitor |
US5103276A (en) * | 1988-06-01 | 1992-04-07 | Texas Instruments Incorporated | High performance composed pillar dram cell |
US5105245A (en) * | 1988-06-28 | 1992-04-14 | Texas Instruments Incorporated | Trench capacitor DRAM cell with diffused bit lines adjacent to a trench |
US4958206A (en) * | 1988-06-28 | 1990-09-18 | Texas Instruments Incorporated | Diffused bit line trench capacitor dram cell |
US4927779A (en) * | 1988-08-10 | 1990-05-22 | International Business Machines Corporation | Complementary metal-oxide-semiconductor transistor and one-capacitor dynamic-random-access memory cell and fabrication process therefor |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS53121480A (en) * | 1977-02-03 | 1978-10-23 | Texas Instruments Inc | Mos memory cell and method of producing same |
JPS57103350A (en) * | 1980-12-18 | 1982-06-26 | Mitsubishi Electric Corp | Manufacture of semiconductor memory |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5636164U (en) * | 1979-08-27 | 1981-04-07 |
-
1982
- 1982-07-23 JP JP57127517A patent/JPS5919366A/en active Granted
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS53121480A (en) * | 1977-02-03 | 1978-10-23 | Texas Instruments Inc | Mos memory cell and method of producing same |
JPS57103350A (en) * | 1980-12-18 | 1982-06-26 | Mitsubishi Electric Corp | Manufacture of semiconductor memory |
Also Published As
Publication number | Publication date |
---|---|
JPS5919366A (en) | 1984-01-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH0345550B2 (en) | ||
JP2655859B2 (en) | Semiconductor storage device | |
JPH0744225B2 (en) | Vertical DRAM memory cell array | |
US20010028078A1 (en) | Vertical gain cell and array for a dynamic random access memory and method for forming the same | |
JPH0682800B2 (en) | Semiconductor memory device | |
US5170234A (en) | High density dynamic RAM with trench capacitor | |
US4977436A (en) | High density DRAM | |
JPS6187358A (en) | Semiconductor storage device and its manufacturing method | |
US4959709A (en) | Semiconductor memory device with capacitor on opposite surface of substrate | |
JPS61174670A (en) | Dram cell and making thereof | |
US4921815A (en) | Method of producing a semiconductor memory device having trench capacitors | |
JP2671899B2 (en) | Semiconductor storage device | |
JPS6155258B2 (en) | ||
JP2524002B2 (en) | Method of manufacturing bipolar dynamic RAM having vertical structure and structure of the dynamic RAM | |
JP3421230B2 (en) | Semiconductor storage device and method of manufacturing the same | |
JPH0750772B2 (en) | Semiconductor device and manufacturing method thereof | |
JPH02198170A (en) | Semiconductor integrated circuit device and manufacture thereof | |
US5001525A (en) | Two square memory cells having highly conductive word lines | |
JPH03278457A (en) | Memory cell array | |
JP2509177B2 (en) | Memory cell | |
JPS6395657A (en) | Semiconductor memory | |
JP2795874B2 (en) | Semiconductor storage device and semiconductor device | |
JPH01119057A (en) | Mis-type semiconductor memory device | |
JPS59110154A (en) | Semiconductor memory cell | |
JPH0783058B2 (en) | DRAM cell, memory cell array thereof, and manufacturing method thereof |