[go: up one dir, main page]

JPH0345083A - Picture encoder - Google Patents

Picture encoder

Info

Publication number
JPH0345083A
JPH0345083A JP1178951A JP17895189A JPH0345083A JP H0345083 A JPH0345083 A JP H0345083A JP 1178951 A JP1178951 A JP 1178951A JP 17895189 A JP17895189 A JP 17895189A JP H0345083 A JPH0345083 A JP H0345083A
Authority
JP
Japan
Prior art keywords
scanning
section
processing
assignment table
bit assignment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1178951A
Other languages
Japanese (ja)
Other versions
JP2710831B2 (en
Inventor
Yoshimichi Kanda
好道 神田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP17895189A priority Critical patent/JP2710831B2/en
Publication of JPH0345083A publication Critical patent/JPH0345083A/en
Application granted granted Critical
Publication of JP2710831B2 publication Critical patent/JP2710831B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Color Television Systems (AREA)
  • Compression Or Coding Systems Of Tv Signals (AREA)

Abstract

PURPOSE:To attain encoding with one reciprocating scanning by providing a decentralizing processing means applying decentralizing processing based on the scanning of an original at a forward motion and coding processing means applying encoding based on the original scanning at return. CONSTITUTION:A switch 5 selects a decentralizing processing section 6 at a forward path of a scanning optical system 30 to execute the decentralizing processing, the decentralizing processing section 6 generates a bit assignment table based on the result of decentralizing processing and the result is stored in a bit assignment table storage section 8. A switch 9 is thrown to the position of a transmission line 10 and the content of a bit assignment table of the bit assignment table storage section 8 is sent to a transmission line 10 as header information. On the other hand, the switches 5, 9 select a quantization section 7 in the return path of the scanning optical system 30, a data is read and a 2-dimension DCT conversion section 3 applies 2-dimension DCT conversion to apply NXN coefficient from an NXN buffer 4 and a bit assignment table read from the bit assignment table storage section 8 to the quantization section 7, in which the quantizing processing is executed. Thus, encoding is attained by reciprocating the original scanning once.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は原稿を走査して得られた画像データを圧縮処理
するための画像符号化装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an image encoding device for compressing image data obtained by scanning a document.

〔従来の技術〕[Conventional technology]

デジタル化された階調画像データを圧縮する場合、コサ
イン(COS)変換を用いた符号化方式が有効であるこ
とが知られている。この変換符号化方式では、画像をN
XN画素の複数のブロックに分割し、そのブロック毎に
2次元離散コサイン変換(以下、2次元DCT変換とい
う)を施して変換係数を求め、その各成分毎に量子化を
行っている。この際、各成分量子化レベル数は、各成分
毎の分散などを用いて決定される。
It is known that an encoding method using cosine (COS) transformation is effective when compressing digitized gradation image data. In this transform encoding method, the image is N
The image is divided into a plurality of blocks of XN pixels, and each block is subjected to two-dimensional discrete cosine transform (hereinafter referred to as two-dimensional DCT transform) to obtain transform coefficients, and each component is quantized. At this time, the number of quantization levels for each component is determined using the variance of each component.

スキャナによって読み取った画像に対し、上記のような
符号化を行う場合、1回走査した画像情報を2回読み出
す必要がある。1回目の読み出しでは2次元DCT変換
を行ったのち、各成分の統計量をとって分散を求め、各
成分毎の量子化レベル数を決定する。ついで、2回目の
読み出しでは、読み出した画像を2次元DCT変換した
のち、上記のようにして決められた量子化レベルで符号
化を行う。
When encoding an image read by a scanner as described above, it is necessary to read out the image information scanned once twice. In the first reading, after performing two-dimensional DCT transformation, the statistics of each component are taken to find the variance, and the number of quantization levels for each component is determined. Then, in the second readout, the readout image is subjected to two-dimensional DCT transformation, and then encoded at the quantization level determined as described above.

なお、この種の装置に関するものとして、例えば、特開
昭63−109662号公報がある。
Note that, for example, Japanese Patent Application Laid-Open No. 109662/1983 is related to this type of device.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかし、上記従来技術においては、圧縮していない画像
情報を記憶することになるため、大容量の記憶装置が必
要となり、コストアップを招く不具合がある。そこで、
原稿を2回走査し、1回目の走査では2次元DCT変換
を行ったのちに各成分の統計量をとって分散を求め、各
成分毎の量子化レベル数を決定する。2回目の走査では
、読み出した画像を2次元DCT変換したのち、上記の
ようにして決められた量子化レベルで符号化を行つ。
However, in the above-mentioned conventional technology, since uncompressed image information is stored, a large-capacity storage device is required, resulting in an increase in cost. Therefore,
The document is scanned twice, and in the first scan, after performing two-dimensional DCT transformation, the statistics of each component are taken to find the variance, and the number of quantization levels for each component is determined. In the second scan, the read image is subjected to two-dimensional DCT transformation, and then encoded at the quantization level determined as described above.

しかし、この方法では、圧縮されていない画像を格納す
る記憶装置は必要としないが、画像読取部は走査を行う
ために原稿上を2回往復する動作が必要になり、作業能
率が低くなるという問題がある。
However, although this method does not require a storage device to store uncompressed images, it does require the image reading unit to move back and forth over the document twice to scan, which reduces work efficiency. There's a problem.

本発明の目的は、上記従来技術の実情に鑑みてなされた
もので、画像読取部の走査を2回往復させることなく圧
縮処理が行えるようにした画像符号化装置を提供するこ
とにある。
SUMMARY OF THE INVENTION An object of the present invention has been made in view of the above-mentioned state of the prior art, and it is an object of the present invention to provide an image encoding device that can perform compression processing without having to reciprocate scanning of an image reading unit twice.

〔課題を解決するための手段〕 上記目的を達成するために、本発明は、原稿に相対移動
する走査光学系で前記原稿の画像を光学的に読み取り、
その読取情報に対して2次元離散コサイン変換を施して
圧縮処理を行う画像符号化装置において、往路時の原稿
走査による読取情報に対する統計的性質に基づいて分散
処理を行う分散処理手段と、復路時の原稿走査による読
取情報及び前記分散処理手段の処理結果に基づいて符号
化を行う符号化処理手段とを設けるようにしたものであ
る。
[Means for Solving the Problem] In order to achieve the above object, the present invention optically reads an image of the document with a scanning optical system that moves relative to the document,
In an image encoding device that performs compression processing by performing two-dimensional discrete cosine transformation on the read information, there is provided a distributed processing means that performs distributed processing based on statistical properties of the read information obtained by scanning the document during the forward trip; and encoding processing means for encoding based on the information read by scanning the original and the processing results of the distributed processing means.

〔作用〕[Effect]

上記手段によれば、原稿走査の往路に読み取られた画像
情報に対して2次元離散コサイン変換が行われ、これに
対する各成分の統計量から分散が求められ、この分散値
から各成分毎の量子化レベル数が決定される。つぎに、
原稿走査、の復路で読み取られた画像情報に対し、同様
に2次元離散コサイン変換が行われ、その結果に対し往
路時に求めた量子化レベル数を基に符号化を行う。した
がって、1往復の走査で符号化を達成することが可能に
なる。
According to the above means, a two-dimensional discrete cosine transform is performed on the image information read in the forward path of document scanning, the variance is determined from the statistics of each component, and from this variance value, the quantum The number of conversion levels is determined. next,
A two-dimensional discrete cosine transform is similarly performed on the image information read during the return pass of document scanning, and the result is encoded based on the number of quantization levels determined during the return pass. Therefore, it becomes possible to achieve encoding with one round trip scan.

〔実施例〕〔Example〕

以下、第1図〜第3図を参照して本発明の詳細な説明す
る。
Hereinafter, the present invention will be explained in detail with reference to FIGS. 1 to 3.

第1図は本発明による画像符号化装置の一実施例を示す
ブロック図、第2図は読取部の詳細を示す模式的正面図
、第3図は本発明の処理を示すフローチャートである。
FIG. 1 is a block diagram showing an embodiment of an image encoding device according to the present invention, FIG. 2 is a schematic front view showing details of a reading section, and FIG. 3 is a flowchart showing the processing of the present invention.

第1図に示すように、読取部によって光学的に読み取ら
れた原稿の画像情報のデジタル化した信号をNライン毎
に記憶するためにNラインメモリ1が設けられ、このN
ラインメモリエにはNXNバッファ2が接続されている
。NXNバッファ2には、上記した2次元DCT変換を
行う2次元DCT変換部3が接続され、この2次元DC
T変換部3にNXNバッファ4が接続されている。
As shown in FIG. 1, an N line memory 1 is provided to store every N lines digital signals of image information of a document optically read by a reading section.
An NXN buffer 2 is connected to the line memory. The NXN buffer 2 is connected to a two-dimensional DCT transform unit 3 that performs the two-dimensional DCT transform described above.
An NXN buffer 4 is connected to the T converter 3.

NXNバッファ4には、後記するスイッチ9に連動して
切り替わるスイッチ5が接続され、その出力の一方に分
散処理を行う分散処理部6が接続され、他方に量子化処
理を行う量子化部7が接続されている。分散処理部6に
は、ビット割当テーブル記憶部8が接続され、その出力
端にはスイッチ9力、く接続されている。スイッチ9は
、ビット割当テーブル記憶部8の出力信号を出力端子ま
たは量子化部7へ選択出力する。
A switch 5 that switches in conjunction with a switch 9 (to be described later) is connected to the NXN buffer 4, and a distributed processing section 6 that performs distributed processing is connected to one of its outputs, and a quantization section 7 that performs quantization processing is connected to the other output. It is connected. A bit allocation table storage section 8 is connected to the distributed processing section 6, and a switch 9 is connected to its output terminal. The switch 9 selectively outputs the output signal of the bit allocation table storage section 8 to the output terminal or the quantization section 7 .

第2図において、原稿22を載置するガラス台21は装
置上面に配設され、ガラス台21の下部には、読取部を
形成する走査光学系30が配設されている。この走査光
学系30は、ガラス台2の下部を主走査方向に往復動し
て原稿の画像を読み取る。光学系は、原稿22を照射す
る光源23、原稿面よりの反射光を所定位置に結像させ
るレンズアレイ24、このレンズアレイ24よりの光を
光−電変換する光電変換部25より構成されている。
In FIG. 2, a glass stand 21 on which a document 22 is placed is disposed on the upper surface of the apparatus, and a scanning optical system 30 forming a reading section is disposed below the glass stand 21. This scanning optical system 30 reciprocates the lower part of the glass table 2 in the main scanning direction to read the image of the document. The optical system is composed of a light source 23 that illuminates the original 22, a lens array 24 that focuses reflected light from the original surface on a predetermined position, and a photoelectric conversion unit 25 that converts light from this lens array 24 into electricity. There is.

走査光学系30を往復動させる駆動機構は、走査光学系
30に係着されるワイヤ26、このワイヤ26を回転自
在に装填するプーリ27a、27b、このプーリ27a
、27.bを回転させる駆動源となるモータ28、この
モータ28の回転軸に装着されたプーリ29、このプー
リ29とプーリ27bの間に架設されるベルト30より
構成されている。
The drive mechanism for reciprocating the scanning optical system 30 includes a wire 26 that is attached to the scanning optical system 30, pulleys 27a and 27b that rotatably load this wire 26, and this pulley 27a.
, 27. It is comprised of a motor 28 serving as a drive source for rotating the motor 28, a pulley 29 attached to the rotating shaft of the motor 28, and a belt 30 installed between the pulley 29 and the pulley 27b.

このような構成において、走査開始指令が出されると、
モータ28が回転し、その回転はプーリ27bに伝達さ
れ、ワイヤ26が時計方向に回転する。ワイヤ26が回
転することによって、走査光学系30は図示のB方向へ
水平移動する。走査光学系30が走査終了位置へ到達す
ると、モータ28は回転を停止し、ついで逆転する。こ
の逆転により、ワイヤ26が反時計方向へ回転し、走査
光学系30は図示の入方向へ移動する。走査光学系30
が移動する過程で、光電変換部25は画像う副走査方向
に1画素ずつ読み取り、各画素の濃度を多値信号で出力
する。この出力信号が、第1図に示したNラインメモリ
1に人力される。
In such a configuration, when a scan start command is issued,
The motor 28 rotates, and the rotation is transmitted to the pulley 27b, causing the wire 26 to rotate clockwise. As the wire 26 rotates, the scanning optical system 30 moves horizontally in the direction B shown in the figure. When the scanning optical system 30 reaches the scanning end position, the motor 28 stops rotating and then reverses. This reversal causes the wire 26 to rotate counterclockwise and the scanning optical system 30 to move in the illustrated inward direction. Scanning optical system 30
In the process of movement, the photoelectric conversion unit 25 reads the image pixel by pixel in the sub-scanning direction and outputs the density of each pixel as a multi-value signal. This output signal is manually input to the N line memory 1 shown in FIG.

次に、第3図を参照して本発明の実施例の動作を説明す
る。
Next, the operation of the embodiment of the present invention will be explained with reference to FIG.

光電変換部25から出力された多値信号は、Nライン毎
にNラインメモリ1に格納される(ステップ31)。N
ラインメモリ1に格納された信号は、所定のタイミング
でNXNバッファ2に読み出され、2次元DCT変換部
3に人力される。
The multilevel signal output from the photoelectric conversion section 25 is stored in the N line memory 1 every N lines (step 31). N
The signal stored in the line memory 1 is read out to the NXN buffer 2 at a predetermined timing and inputted to the two-dimensional DCT conversion section 3.

2次元DCT変換部3では、画像情報をNXNのブロッ
クに分割し、各ブロック毎に逐次2次元DCT変換によ
り、直交変換を行う(ステップ32)。ここで、画像信
号がXo、1.j=0〜N−1の場合の2次元DCT変
換は、次式で定義される。
The two-dimensional DCT transformation unit 3 divides the image information into N×N blocks, and sequentially performs orthogonal transformation on each block by two-dimensional DCT transformation (step 32). Here, the image signals are Xo, 1. Two-dimensional DCT transformation in the case of j=0 to N-1 is defined by the following equation.

(ただし、u、■=0,1.・・・、N−11C(w)
 = 1 / aT:、w=OC(w)=1で、w=0
.1.2〜N)2次元DCT変換部3による上記変換出
力yUvは、NXNバッファ4に記憶される。
(However, u, ■=0, 1..., N-11C(w)
= 1/aT:, w=OC(w)=1, w=0
.. 1.2 to N) The conversion output yUv from the two-dimensional DCT conversion unit 3 is stored in the NXN buffer 4.

走査光学系30の往路(第2図のB方向)のとき、スイ
ッチ5は分散処理部6を選択しているので、分散処理が
実行される(ステップ33)。分散処理部6は、分散処
理結果を基にビット割当テーブルを作成(ステップ34
)し、これをビット割当テーブル記憶部8に記憶する。
During the forward path of the scanning optical system 30 (direction B in FIG. 2), the switch 5 selects the dispersion processing section 6, so dispersion processing is executed (step 33). The distributed processing unit 6 creates a bit allocation table based on the distributed processing results (step 34).
) and stores this in the bit allocation table storage section 8.

このとき、スイッチ9は伝送路lO側を選択しているの
で、ビット割当テーブル記憶部8のビット割当テーブル
内容が、ヘッダ情報として伝送路10へ送出される。
At this time, since the switch 9 has selected the transmission path IO side, the bit allocation table contents of the bit allocation table storage section 8 are sent to the transmission path 10 as header information.

一方、走査光学系30の復路においては、スイッチ5及
び9が量子化部7を選択している。往路の場合と同様に
、データが読み込まれ(ステップ35)、2次元DCT
変換部3によって2次元DCT変換が行われる(ステッ
プ36)。
On the other hand, on the return path of the scanning optical system 30, the switches 5 and 9 select the quantization section 7. As in the case of the outbound trip, the data is read (step 35) and subjected to two-dimensional DCT.
A two-dimensional DCT transformation is performed by the transformation unit 3 (step 36).

ついで、NxNバッファ4からのNXN係数、及びビッ
ト割当テーブル記憶部8から読み出されたビット割当テ
ーブルが量子化部7に印加され、これらに基づいて量子
化部7は量子化処理を実行する(ステップ37)。
Next, the NXN coefficients from the NxN buffer 4 and the bit allocation table read from the bit allocation table storage section 8 are applied to the quantization section 7, and based on these, the quantization section 7 executes quantization processing ( Step 37).

各係数のビット割り当ては、各成分の分散値から決定さ
れる。そして、各係数の分散値は次式で表される。
The bit allocation for each coefficient is determined from the variance value of each component. Then, the variance value of each coefficient is expressed by the following equation.

(ただし、Kはブロックの総数) また、各係数に割り当てられるビット数は、式で表され
る。
(K is the total number of blocks) Furthermore, the number of bits allocated to each coefficient is expressed by the formula.

muv=+ (10g 2 σuv 2 次 (ただし、Mはlブロックについて割り当てられるビッ
ト数) このように分散の大きな係数は多くのビット数で量子化
し、小さな係数は少ない係数で量子化することにより、
全体としてのビット数を低減しても、再生したときに視
覚的に劣化の少ない画像を得ることができる。なお、符
号化したデータを復元する場合には、符号化とは逆の処
理を行えばよい。すなわち、逆量子化によって係数を求
め、2次元DCT逆変換を行うことにより画像を再生す
る。量子化された結果は、伝送路10に送出される(ス
テップ38)。
muv=+ (10g 2 σuv quadratic (where M is the number of bits allocated for l block) In this way, by quantizing coefficients with large variance with a large number of bits, and quantizing small coefficients with a small number of coefficients,
Even if the overall number of bits is reduced, it is possible to obtain an image with less visual deterioration when reproduced. Note that when restoring encoded data, the process opposite to that of encoding may be performed. That is, the coefficients are obtained by inverse quantization, and the image is reproduced by performing two-dimensional DCT inverse transformation. The quantized result is sent to the transmission line 10 (step 38).

なお、量子化部7から伝送路lOに送出された情報を受
信する受信部(不図示)では、最初に送られたビット割
当テーブルを基に、量子化された値を逆量子化し、これ
を2次元DCT逆変換をして画像を再生する。
Note that the receiving section (not shown) that receives the information sent from the quantizing section 7 to the transmission path 1O dequantizes the quantized value based on the bit allocation table sent first, and then dequantizes the quantized value. The image is reproduced by performing two-dimensional DCT inverse transformation.

以上のように、原稿を1往復走査するのみにより、画像
の統計的性質に基づいた画像情報の圧縮が可能になる。
As described above, image information can be compressed based on the statistical properties of the image by only scanning the original once back and forth.

〔発明の効果〕〔Effect of the invention〕

以上説明した通り、本発明によれば、原稿に相対移動す
る走査光学系で前記原稿の画像を光学的に読み取り、そ
の読取情報に対して2次元離散コサイン変換を施して圧
縮処理を行う画像符号化装置において、往路時の原稿走
査による読取情報に対する統計的性質に基づいて分散処
理を行う分散処理手段と、復路時の原稿走査による読取
情報及び前記分散処理手段の処理結果に基づいて符号化
を行う符号化処理手段とを設けるようにしたので、原稿
走査を2往復させることなく符号化を達成でき、ページ
メモリなどを不必要にす・ることができる。
As explained above, according to the present invention, an image code that optically reads an image of a document with a scanning optical system that moves relative to the document, performs two-dimensional discrete cosine transformation on the read information, and performs compression processing. The encoding device includes a distributed processing unit that performs distributed processing based on statistical properties on information read by scanning a document during the forward trip, and a distributed processing device that performs encoding based on the information read by scanning the document during the return trip and the processing result of the distributed processing device. Since an encoding processing means is provided, encoding can be achieved without scanning the document twice, and a page memory or the like can be made unnecessary.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明による画像符号化装置の一実施例を示す
ブロック図、第2図は読取部の詳細を示す模式的正面図
、第3図は本発明の処理を示すフローチャートである。 l・・・Nラインメモリ、2・・・NXNバッファ、3
・・・2次元DCT変換部、4・・・NXNバッファ、
5,9・・・スイッ、チ、6・・・分散処理部、7・・
・量子化部、8・・・ビット割当テーブル記憶部、10
・・・伝送路、30・・・走査光学系。
FIG. 1 is a block diagram showing an embodiment of an image encoding device according to the present invention, FIG. 2 is a schematic front view showing details of a reading section, and FIG. 3 is a flowchart showing the processing of the present invention. l...N line memory, 2...NXN buffer, 3
...2-dimensional DCT conversion unit, 4...NXN buffer,
5, 9...Switch, 6...Distributed processing unit, 7...
- Quantization unit, 8...Bit allocation table storage unit, 10
...Transmission line, 30...Scanning optical system.

Claims (1)

【特許請求の範囲】[Claims] 原稿に相対移動する走査光学系で前記原稿の画像を光学
的に読み取り、その読取情報に対して2次元離散コサイ
ン変換を施して圧縮処理を行う画像符号化装置において
、往路時の原稿走査による読取情報から得られる統計的
性質に基づいて分散処理を行う分散処理手段と、復路時
の原稿走査による読取情報及び前記分散処理手段の処理
結果に基づいて符号化を行う符号化処理手段とを具備す
ることを特徴とする画像符号化装置。
In an image encoding device that optically reads an image of the document with a scanning optical system that moves relative to the document, and performs a two-dimensional discrete cosine transform on the read information and performs compression processing, the image is read by scanning the document during the forward pass. It comprises a distributed processing means that performs distributed processing based on statistical properties obtained from the information, and an encoding processing means that performs encoding based on information read by scanning a document during the return trip and the processing result of the distributed processing means. An image encoding device characterized by:
JP17895189A 1989-07-13 1989-07-13 Image coding device Expired - Lifetime JP2710831B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17895189A JP2710831B2 (en) 1989-07-13 1989-07-13 Image coding device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17895189A JP2710831B2 (en) 1989-07-13 1989-07-13 Image coding device

Publications (2)

Publication Number Publication Date
JPH0345083A true JPH0345083A (en) 1991-02-26
JP2710831B2 JP2710831B2 (en) 1998-02-10

Family

ID=16057510

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17895189A Expired - Lifetime JP2710831B2 (en) 1989-07-13 1989-07-13 Image coding device

Country Status (1)

Country Link
JP (1) JP2710831B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5535013A (en) * 1991-04-19 1996-07-09 Matsushita Electric Industrial Co., Ltd. Image data compression and expansion apparatus, and image area discrimination processing apparatus therefor
US6442122B1 (en) 1998-05-19 2002-08-27 Matsushita Electric Industrial Co., Ltd. Disc loading apparatus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5535013A (en) * 1991-04-19 1996-07-09 Matsushita Electric Industrial Co., Ltd. Image data compression and expansion apparatus, and image area discrimination processing apparatus therefor
US6442122B1 (en) 1998-05-19 2002-08-27 Matsushita Electric Industrial Co., Ltd. Disc loading apparatus

Also Published As

Publication number Publication date
JP2710831B2 (en) 1998-02-10

Similar Documents

Publication Publication Date Title
EP0763925B1 (en) Image encoding optimising the amount of generated code
EP1349394B1 (en) System and method for progressively transforming and coding digital data
JPH04270565A (en) Picture compression system
JPH04229382A (en) Method and device for resolution conversion of digital image data
JPH0345083A (en) Picture encoder
JPH065888B2 (en) Image data quantization method and apparatus
JP3590648B2 (en) Method of compressing original image data and method of expanding original image data
JPH07240922A (en) Image coding / decoding device
JPH10336427A (en) Image encoded data display conversion method
JPH0364168A (en) Picture encoder
JPH06245200A (en) Scanning method and apparatus for energy distribution of two-dimensional data
JP2830639B2 (en) Predictive coding device
JP2003244443A (en) Image encoder and image decoder
JPH04215385A (en) Image data encoding/restoring method and device
JP2666631B2 (en) Binary image decoding device
JPS63280576A (en) Compression coding method
JPH11331844A (en) Fixed length block encoder and decoder
JPH03139964A (en) Image signal circuit for facsimile equipment
JPH0423678A (en) Picture coder
JP3032281B2 (en) Image encoding method and image decoding method
JPH0758945A (en) Image reader
JP4148456B2 (en) Image decoding apparatus, image decoding method, program, and recording medium
JPH06152811A (en) Facsimile equipment
JPH0487469A (en) Picture processing unit
JPH07162689A (en) Picture encoding device

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071024

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081024

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081024

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091024

Year of fee payment: 12

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091024

Year of fee payment: 12