[go: up one dir, main page]

JPH0344766B2 - - Google Patents

Info

Publication number
JPH0344766B2
JPH0344766B2 JP58023112A JP2311283A JPH0344766B2 JP H0344766 B2 JPH0344766 B2 JP H0344766B2 JP 58023112 A JP58023112 A JP 58023112A JP 2311283 A JP2311283 A JP 2311283A JP H0344766 B2 JPH0344766 B2 JP H0344766B2
Authority
JP
Japan
Prior art keywords
microphone
stethoscope
correction filter
blood pressure
ear
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58023112A
Other languages
Japanese (ja)
Other versions
JPS59149129A (en
Inventor
Yoshinori Sainomoto
Fumio Kitagawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP58023112A priority Critical patent/JPS59149129A/en
Publication of JPS59149129A publication Critical patent/JPS59149129A/en
Publication of JPH0344766B2 publication Critical patent/JPH0344766B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Measuring Pulse, Heart Rate, Blood Pressure Or Blood Flow (AREA)

Description

【発明の詳細な説明】 〔技術分野〕 本発明は血圧計のコロトコフ音集音装置に関す
るものである。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field] The present invention relates to a Korotkoff sound collection device for a blood pressure monitor.

〔背景技術〕[Background technology]

現在、一般的である非観血的血圧測定の標準臨
床法はコロトコフ音による聴診法が基本とされて
いる。この方法は人体上腕に腕帯を巻き、この腕
帯内の阻血カフ(ゴム製の空気袋)に空気を送入
し、予想される最高血圧値より20〜30mmHg高目
に加圧し、動脈を圧迫して血流を止める。次に阻
血カフ内の空気圧を2〜3mmHg/secの速度で
徐々に排気していく。やがて動脈がわずかに開か
れ血流が流れ出し、その際血管壁を側方向にコロ
トコフ音といわれる減衰振動音が発生する。この
コロトコフ音は脈に同期して発生し続けるが、や
がて動脈が十分に開かれ、血流が一定すると消滅
する。このコロトコフ音が発現したときの腕帯の
カフ圧が最高血圧値であり、消滅する前、すなわ
ち最後にコロトコフ音が発生したときのカフ圧が
最低血圧値である。
Currently, the standard clinical method for non-invasive blood pressure measurement is based on auscultation using Korotkoff sounds. In this method, a cuff is wrapped around the upper arm of the human body, and air is injected into the ischemic cuff (rubber air bag) inside the cuff, pressurizing the blood pressure to a level 20 to 30 mmHg higher than the expected systolic blood pressure, thereby opening the artery. Apply pressure to stop blood flow. Next, the air pressure inside the ischemic cuff is gradually exhausted at a rate of 2 to 3 mmHg/sec. Eventually, the artery opens slightly and blood begins to flow, producing a damped vibration sound called Korotkoff's sound in the lateral direction of the blood vessel wall. This Korotkoff sound continues to occur in synchronization with the pulse, but eventually disappears when the artery is sufficiently opened and blood flow becomes constant. The cuff pressure of the arm cuff when the Korotkoff sounds occur is the systolic blood pressure value, and the cuff pressure before the Korotkoff sounds disappear, that is, the last time the Korotkoff sounds occur, is the diastolic blood pressure value.

第1図は医師が聴診法で血圧測定を行なう場合
の構成図を示すものであり、身体の上腕1に巻回
された腕帯2を加圧球7により導管5を介して加
圧せしめる。8は排気調整バルブ、3は聴診器、
4は医師、6は水銀柱である。上述のように、加
圧球7により腕帯2を加圧し、排気調整バルブ8
を用いてカフ圧の調節を行うとともに、聴診器3
を腕帯2の手指側近くに置き、医師4が耳でコロ
トコフ音を判別し、コロトコフ音の発現、消滅時
のカフ圧は水銀柱6を読むことで知ることができ
る。このような聴診法による血圧測定には、かな
りの熱練度を要する上に主観的判断が入ることが
多いため測定精度にばらつきがある。そこで、素
人にも簡単に測定ができ、しかも安定して測定が
できる電子血圧計が開発されるようになつた。し
かし、従来の電子血圧計においては、聴診器特
性、人間の聴観特性が十分考慮されていないため
に、医師の血圧測定値との相違が問題となつてき
ている。つまり、従来の電子血圧計においては、
腕帯に内蔵したマイクロフオン等のセンサーでコ
ロトコフ音を検出し、聴診法による医師の判断と
統計的に(多数の臨床データをとり相対的に最適
になるように)適当な周波数帯域を決めフイルタ
により弁別していた。そのため、医師の聞いてい
るコロトコフ音とセンサー及びフイルタにより検
出されるコロトコフ音では本質的に特性の異なる
ものであり、一致しているとはいえなかつた。ま
た最適なセンサー、フイルタの周波数帯域、コン
パレータレベルを決めるためには統計的に一致さ
せようとするため、多数の臨床データを解析する
必要があり、開発に膨大な時間と手間がかかると
いう問題があつた。
FIG. 1 shows a configuration diagram when a doctor measures blood pressure by auscultation, in which a cuff 2 wrapped around an upper arm 1 of the body is pressurized by a pressure ball 7 via a conduit 5. 8 is the exhaust adjustment valve, 3 is the stethoscope,
4 is a doctor and 6 is a column of mercury. As mentioned above, the arm cuff 2 is pressurized by the pressure ball 7, and the exhaust adjustment valve 8 is
Adjust the cuff pressure using the stethoscope 3.
is placed near the finger side of the arm cuff 2, the doctor 4 distinguishes the Korotkoff sounds by ear, and the cuff pressure at the onset and disappearance of the Korotkoff sounds can be determined by reading the mercury column 6. Measuring blood pressure using such auscultation method requires considerable skill and skill, and often involves subjective judgment, resulting in variations in measurement accuracy. Therefore, electronic blood pressure monitors that can be easily and stably measured even by laymen have been developed. However, in conventional electronic blood pressure monitors, the characteristics of a stethoscope and the characteristics of human hearing have not been sufficiently taken into account, and therefore, the difference between blood pressure measurements taken by a doctor has become a problem. In other words, in the conventional electronic blood pressure monitor,
The Korotkoff sound is detected by a sensor such as a microphone built into the arm cuff, and the appropriate frequency band is determined based on the judgment of the doctor through auscultation and statistically (by taking a large amount of clinical data so that it is relatively optimal). It was distinguished by Therefore, the Korotkoff sounds heard by the doctor and the Korotkoff sounds detected by the sensor and filter have essentially different characteristics and cannot be said to match. In addition, in order to determine the optimal sensor, filter frequency band, and comparator level, statistical matching is required, which requires analysis of a large amount of clinical data, resulting in the problem of requiring a huge amount of time and effort for development. It was hot.

〔発明の目的〕[Purpose of the invention]

本発明は上述の点に鑑みて提供したものであつ
て、聴診法により医師が判断しているのと同じ条
件でコロトコフ音を判別し、聴診法と一致した正
確な血圧測定を行うことを目的とした血圧計のコ
ロトコフ音集音装置を提供するものである。
The present invention has been provided in view of the above-mentioned points, and an object of the present invention is to distinguish Korotkoff sounds under the same conditions as those used by doctors by auscultation, and to perform accurate blood pressure measurement consistent with auscultation. The present invention provides a Korotkoff sound collection device for a blood pressure monitor.

〔発明の開示〕[Disclosure of the invention]

以下、本発明の実施例を図面により詳述する。
第2図は本発明の実施例の構成図を示すものであ
る。2は身体の上腕1に巻回される腕帯、6は加
圧球7により腕帯2に空気を送入するための導管
である。3は聴診器で、導管3aと聴診器ヘツド
3b等から構成される。また聴診器3の耳当て部
は以下のように構成される。すなわち、一方の耳
当て部にはマイクロフオンホルダー10を取付
け、その端部にはコロトコフ音検出用のマイクロ
フオン11が装着してある。また、他方の耳当て
部にもマイクロフオンホルダー10と疑似マイク
ロフオン12とが装着してある。ここで、聴診器
3の耳当て部端部からマイクロフオン11の検出
面までの距離は外耳道の長さ(約30mm)と等しく
してある。この状態での聴診器3の周波数と利得
との特性は第4図に示す曲線イのようになり、実
際に人間が聴診器を耳に装着した場合の聴診器特
性は第4図の曲線ロのようになる。そこで、上記
聴診器3の特性を第4図ロのようにするためのも
のが耳装着補正器9である。この耳装着補正器9
は、注射針9a(長さ50mm、径1.2mm)を2個のマ
イクロフオンホルダー10に挿入し、その他端を
導管9a(長さ135mm、径4mm)で連通させたもの
である。これによる人間が聴いているのと同じ聴
診器特性になる。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
FIG. 2 shows a configuration diagram of an embodiment of the present invention. Reference numeral 2 denotes a cuff that is wrapped around the upper arm 1 of the body, and 6 is a conduit through which air is introduced into the cuff 2 by means of a pressurizing ball 7. 3 is a stethoscope, which is composed of a conduit 3a, a stethoscope head 3b, and the like. Further, the earmuff portion of the stethoscope 3 is configured as follows. That is, a microphone holder 10 is attached to one earmuff, and a microphone 11 for detecting Korotkoff sounds is attached to the end of the microphone holder 10. A microphone holder 10 and a pseudo microphone 12 are also attached to the other earmuff. Here, the distance from the end of the earmuff of the stethoscope 3 to the detection surface of the microphone 11 is set equal to the length of the external auditory canal (approximately 30 mm). The frequency and gain characteristics of the stethoscope 3 in this state are as shown in curve A shown in Fig. 4, and the stethoscope characteristics when a human actually wears the stethoscope in the ear are as shown in curve A shown in Fig. 4. become that way. Therefore, the ear-worn corrector 9 is used to make the characteristics of the stethoscope 3 as shown in FIG. 4B. This ear-worn corrector 9
In this example, an injection needle 9a (length 50 mm, diameter 1.2 mm) is inserted into two microphone holders 10, and the other ends are communicated with each other through a conduit 9a (length 135 mm, diameter 4 mm). This results in the same stethoscope characteristics as those heard by humans.

マイクロフオン11自体には周波数特性があ
り、本実施例に用いたエレクトレツト型のマイク
ロフオン11においては、第5図aに示すような
マイク感度特性を有している。そのため、マイク
感度特性を平坦にするため、第5図bに示すよう
なマイク感度特性とは逆特性を有するマイク感度
補正フイルタ13により補正をする必要がある。
The microphone 11 itself has frequency characteristics, and the electret type microphone 11 used in this embodiment has microphone sensitivity characteristics as shown in FIG. 5a. Therefore, in order to flatten the microphone sensitivity characteristics, it is necessary to perform correction using a microphone sensitivity correction filter 13 having characteristics opposite to the microphone sensitivity characteristics as shown in FIG. 5b.

次に、人間の聴感には周波数特性があり、一般
に低域の感度が悪い。人間の聴感特性としては、
純音に対する等ラウドネス曲線が用いられる。第
6図aは60dBの等ラウドネス曲線(ISO/R226)
である。これは、1000Hzの60ホンの音圧レベルを
各周波数について測定したものを結んで得られた
ものである。そして、この特性の逆特性を求め
1000Hzを0dBとしたものが第6図に示す聴感補正
フイルタ特性であり、聴感補正フイルタ14とし
て構成し、人間の耳で聞く状態と等価となるよう
にしてある。このように、聴診器3、耳装着補正
器9およびマイクロフオンホルダー10に取付け
たマイクロフオン11の出力を、第5図bの特性
を持つマイク感度補正フイルタ13、第6図bの
特性を有する聴感補正フイルタ14に通すことに
より、医師が耳に感じるのと同じコロトコフ音信
号が得られるものである。
Next, human hearing has frequency characteristics, and low-frequency sensitivity is generally poor. As for the characteristics of human hearing,
Equal loudness curves for pure tones are used. Figure 6a is a 60dB equal loudness curve (ISO/R226)
It is. This was obtained by combining the sound pressure levels measured for each frequency of 60 1000Hz phones. Then, find the inverse characteristic of this characteristic.
The characteristics of the audibility correction filter shown in FIG. 6 are those in which 1000 Hz is 0 dB, which is configured as the audibility correction filter 14 so as to be equivalent to the state of hearing with the human ear. In this way, the outputs of the stethoscope 3, the ear-worn corrector 9, and the microphone 11 attached to the microphone holder 10 are filtered by the microphone sensitivity correction filter 13 having the characteristics shown in FIG. 5b, and the microphone sensitivity correction filter 13 having the characteristics shown in FIG. 6b. By passing the signal through the audibility correction filter 14, the same Korotkoff sound signal as felt by the doctor's ears can be obtained.

また、15はコンパレータで、聴感補正フイル
タ14からの出力レベルが所定値以上であればコ
ロトコフ音信号と認識して次段の制御回路18に
送つている。16は腕帯2のカフ圧を検知する圧
力センサーで、この圧力センサー16の出力を
A/Dコンバータ17に入力せしめ、デイジタル
信号に変換されたA/Dコンバータ17の出力は
制御回路18に送られる。制御回路18では、コ
ンパレータ15の出力とA/Dコンバータ17の
出力とにより最高最低血圧値を測定し、表示器1
9によりその測定値をデイジタル的に表示せしめ
る。
Further, 15 is a comparator which, if the output level from the audibility correction filter 14 is above a predetermined value, recognizes it as a Korotkoff sound signal and sends it to the control circuit 18 at the next stage. Reference numeral 16 denotes a pressure sensor that detects the cuff pressure of the cuff 2. The output of the pressure sensor 16 is input to the A/D converter 17, and the output of the A/D converter 17, which is converted into a digital signal, is sent to the control circuit 18. It will be done. The control circuit 18 measures the systolic diastolic blood pressure value based on the output of the comparator 15 and the output of the A/D converter 17, and displays the value on the display 1.
9 displays the measured value digitally.

しかして、血圧測定においては、上腕1に腕帯
2を巻き、聴診器3の膜面を腕帯2の手指側近く
の動脈上に置く。その後、加圧球7により腕帯2
内の阻血カフに空気を送り込み、予想される最高
血圧値より20〜30mmHg高目に加圧する。次に排
気調節バルブ8を調節して、2〜3mmHg/secの
速度で排気していく。それと同時に聴診器3、耳
装着補正器9、マイクロフオン11によりコロト
コフ音を検出し、更にマイク感度補正フイルタ1
3および聴感補正フイルタ14を通した後、コン
パレータ15により一定レベル以上の信号をコロ
トコフ音を認識し、コロトコフ音パルスとして制
御回路18に入力する。一方、カフ圧は導管6を
通して連結された圧力センサー16により検出
し、A/Dコンバータ17を通したあと制御回路
18に入力される。制御回路18においては、最
初にコロトコフ音パルスが入力されたときの圧力
センサー16、A/Dコンバータ17により得ら
れるカフ圧を最高血圧値として表示器19に表示
するとともに、コロトコフ音が最後に入力された
ときのカフ圧を最低血圧値として表示器19に表
示する。このあと、排気調節バルブ8を全開して
腕帯2内の阻血カフ内の空気を急速に排気して測
定を終了する。
Therefore, in blood pressure measurement, the cuff 2 is wrapped around the upper arm 1, and the membrane surface of the stethoscope 3 is placed on the artery near the finger side of the cuff 2. After that, the arm cuff 2 is pressed by the pressure ball 7.
Air is pumped into the ischemic cuff inside the patient and pressurized to 20 to 30 mmHg higher than the expected systolic blood pressure. Next, the exhaust control valve 8 is adjusted to exhaust the air at a rate of 2 to 3 mmHg/sec. At the same time, the stethoscope 3, the ear-worn corrector 9, and the microphone 11 detect the Korotkoff sound, and the microphone sensitivity correction filter 1
3 and an auditory correction filter 14, a comparator 15 recognizes a signal of a certain level or higher as a Korotkoff sound, and inputs it to a control circuit 18 as a Korotkoff sound pulse. On the other hand, the cuff pressure is detected by a pressure sensor 16 connected through a conduit 6, and inputted to a control circuit 18 after passing through an A/D converter 17. In the control circuit 18, the cuff pressure obtained by the pressure sensor 16 and the A/D converter 17 when the Korotkoff sound pulse is first inputted is displayed on the display 19 as the systolic blood pressure value, and the cuff pressure obtained when the Korotkoff sound pulse is inputted last is displayed on the display 19. The cuff pressure at that time is displayed on the display 19 as the diastolic blood pressure value. Thereafter, the exhaust control valve 8 is fully opened to rapidly exhaust the air in the ischemic cuff in the arm cuff 2, and the measurement is completed.

ところで、実際に本実施例の方法で血圧測定を
行う場合、聴診器3の導管3a部分は約70cmあ
り、測定に不便であり、またノイズも拾い易い。
また導管3aを除いた聴診器ヘツド3bのみの周
波数特性はほぼフラツトであるので、導管3aを
除いて直線聴診器ヘツド3bにマイクロフオン1
1を取り付け、第4図のロに示す導管3aおよび
耳装着時の特性を電気的フイルタで構成すること
により、使い勝手の良い血圧計が得られる。その
構成を第3図に示す。つまり、第3図に示すよう
に、聴診器の代わりに腕帯2内にマイクロフオン
11を内蔵し、このマイクロフオン11の周波数
特性と、第4図のロに示す聴診器特性との差を聴
診器特性補正フイルタ20により実現せしめてい
る。そして、聴感補正フイルタ14より後は、前
記の基本例と同じである。このように、聴診器の
代わりに腕帯2内にマイクロフオン11を内蔵
し、このマイクロフオン11の周波数特性と実際
に耳に装着した場合の聴診器特性との差を聴診器
特性補正フイルタ20により実現することができ
ることになり、そのため、ノイズによる誤動作も
なくなり、使い勝手が良く、測定がし易くなるも
のである。これにより、聴診器を用いる必要がな
いので、使い勝手が良く、しかも各フイルタ2
0,14により、医師の耳で感じたと同じ状態で
血圧測定ができるため、医師が行う聴診法の血圧
測定とよく一致した測定が行なえるものである。
By the way, when actually measuring blood pressure using the method of this embodiment, the conduit 3a portion of the stethoscope 3 is approximately 70 cm long, which is inconvenient for measurement and also tends to pick up noise.
Also, since the frequency characteristic of only the stethoscope head 3b excluding the conduit 3a is almost flat, the microphone 1 is connected to the straight stethoscope head 3b excluding the conduit 3a.
An easy-to-use blood pressure monitor can be obtained by attaching the blood pressure monitor 1 and configuring the conduit 3a shown in FIG. Its configuration is shown in FIG. In other words, as shown in FIG. 3, a microphone 11 is built into the arm cuff 2 instead of a stethoscope, and the difference between the frequency characteristics of this microphone 11 and the stethoscope characteristics shown in FIG. This is realized by a stethoscope characteristic correction filter 20. The components after the auditory sensation correction filter 14 are the same as in the basic example described above. In this way, instead of a stethoscope, a microphone 11 is built into the arm cuff 2, and the difference between the frequency characteristics of this microphone 11 and the stethoscope characteristics when actually worn on the ear is detected by the stethoscope characteristics correction filter 20. As a result, malfunctions due to noise are eliminated, and it is easy to use and perform measurements. This eliminates the need to use a stethoscope, making it easy to use and allowing each filter to
0 and 14, it is possible to measure blood pressure in the same condition as it is felt with the doctor's ears, so it is possible to perform a measurement that closely matches blood pressure measurement using the auscultation method performed by a doctor.

〔発明の効果〕〔Effect of the invention〕

本発明は上述のように、コロトコフ音を集音す
る聴診器と、聴診器の両方の耳当て部に夫々取付
けたマイクロフオンホルダーと、聴診器の耳当て
部の端部から検出面までの距離を耳の外耳道の長
さと略等しくなるように一方のマイクロフオンホ
ルダーに装着したコロトコフ音検出用マイクロフ
オンと、このマイクロフオンと他方のマイクロフ
オンホルダーに装着した擬似マイクロフオンとに
夫々注射針を挿入し該注射針の基部間を導管で接
続して、聴診器を実際に耳に装着した場合の聴診
器特性にする耳装着補正器と、マイクロフオン自
体が有する周波数特性を平坦にするマイク感度補
正フイルタと、マイク感度補正フイルタの出力を
身体の耳自体が有する聴感特性に合わせる聴感補
正フイルタとを具備したものであるから、聴診器
特性、聴感特性を考慮できて、そのため、医師が
耳で感じたコロトコフ音と同じコロトコフ音信号
を得ることができ、それにより、コロトコフ音認
識を行なうため、医師の聴診法で行なう血圧測定
とよく一致した測定が行なえるという効果を奏す
るものである。
As described above, the present invention provides a stethoscope that collects Korotkoff sounds, a microphone holder attached to both ear flaps of the stethoscope, and a distance from the end of the ear flap of the stethoscope to the detection surface. Insert the injection needle into the Korotkoff sound detection microphone attached to one microphone holder so that the length is approximately equal to the length of the external auditory canal of the ear, and into the pseudo microphone attached to this microphone and the other microphone holder. An ear-worn corrector connects the bases of the injection needles with a conduit to make the stethoscope characteristic when the stethoscope is actually worn in the ear, and a microphone sensitivity correction device that flattens the frequency characteristics of the microphone itself. Since it is equipped with a filter and an audibility correction filter that adjusts the output of the microphone sensitivity correction filter to the audibility characteristics of the body's own ear, it is possible to take stethoscope characteristics and audibility characteristics into consideration. It is possible to obtain the same Korotkoff sound signal as the Korotkoff sound, thereby performing Korotkoff sound recognition, which has the effect of making it possible to perform a measurement that closely matches blood pressure measurement performed by a doctor's auscultation method.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は医師の聴診法による血圧測定を示す構
成図、第2図は本発明の実施例の構成図、第3図
は同上の第2図を改良した例を示す構成図、第4
図は同上の聴診器特性図、第5図aは同上のマイ
ク感度特性図、同図bは同上のマイク感度補正フ
イルタ特性図、第6図aは同上の聴感特性図、同
図bは同上の聴感補正フイルタ特性図である。 3は聴診器、9は耳装着補正器、9aは注射
針、9bは導管、10はマイクロフオンホルダ
ー、11はマイクロフオン、12は擬似マイクロ
フオン、13はマイク感度補正フイルタ、14は
聴感補正フイルタである。
Fig. 1 is a block diagram showing blood pressure measurement by a doctor's auscultation method, Fig. 2 is a block diagram of an embodiment of the present invention, Fig. 3 is a block diagram showing an example improved from Fig. 2 above, and Fig. 4
The figure shows the stethoscope characteristic diagram as above, the figure 5a shows the microphone sensitivity characteristic diagram as above, the figure b shows the microphone sensitivity correction filter characteristic diagram as above, the figure 6a shows the auditory sensitivity characteristic diagram as above, and the figure b shows as above. FIG. 3 is a stethoscope, 9 is an ear-worn corrector, 9a is a syringe needle, 9b is a conduit, 10 is a microphone holder, 11 is a microphone, 12 is a pseudo microphone, 13 is a microphone sensitivity correction filter, and 14 is an auditory sensation correction filter. It is.

Claims (1)

【特許請求の範囲】 1 コロトコフ音を集音する聴診器と、聴診器の
両方の耳当て部に夫々取付けたマイクロフオンホ
ルダーと、聴診器の耳当て部の端部から検出面ま
での距離を耳の外耳道の長さと略等しくなるよう
に一方のマイクロフオンホルダーに装着したコロ
トコフ音検出用マイクロフオンと、このマイクロ
フオンと他方のマイクロフオンホルダーに装着し
た擬似マイクロフオンとに夫々注射針を挿入し該
注射針の基部間を導管で接続して、聴診器を実際
に耳に装着した場合の聴診器特性にする耳装着補
正器と、マイクロフオン自体が有する周波数特性
を平坦にするマイク感度補正フイルタと、マイク
感度補正フイルタの出力を身体の耳自体が有する
聴感特性に合わせる聴感補正フイルタとを具備し
て成る血圧計のコロトコフ音集音装置。 2 聴感補正フイルタとして60dB等ラウドネス
曲線の逆特性を用いたことを特徴とする特許請求
の範囲第1項記載の血圧計のコロトコフ音集音装
置。
[Scope of Claims] 1. A stethoscope that collects Korotkoff sounds, a microphone holder attached to each earmuff of the stethoscope, and a distance from the end of the earmuff of the stethoscope to the detection surface. Insert the injection needle into the Korotkoff sound detection microphone attached to one microphone holder so that the length is approximately equal to the length of the external auditory canal of the ear, and into the pseudo microphone attached to this microphone and the other microphone holder. An ear-worn corrector that connects the bases of the injection needles with a conduit to give stethoscope characteristics when the stethoscope is actually worn in the ear, and a microphone sensitivity correction filter that flattens the frequency characteristics of the microphone itself. A Korotkoff sound collection device for a blood pressure monitor, comprising: and an auditory sensation correction filter that matches the output of the microphone sensitivity correction filter to the auditory characteristics of the body's own ears. 2. The Korotkoff sound collection device for a blood pressure monitor according to claim 1, characterized in that an inverse characteristic of a 60 dB equal loudness curve is used as the audibility correction filter.
JP58023112A 1983-02-15 1983-02-15 Korotokov sound gathering device of hemomanometer Granted JPS59149129A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58023112A JPS59149129A (en) 1983-02-15 1983-02-15 Korotokov sound gathering device of hemomanometer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58023112A JPS59149129A (en) 1983-02-15 1983-02-15 Korotokov sound gathering device of hemomanometer

Publications (2)

Publication Number Publication Date
JPS59149129A JPS59149129A (en) 1984-08-27
JPH0344766B2 true JPH0344766B2 (en) 1991-07-09

Family

ID=12101392

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58023112A Granted JPS59149129A (en) 1983-02-15 1983-02-15 Korotokov sound gathering device of hemomanometer

Country Status (1)

Country Link
JP (1) JPS59149129A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61136704U (en) * 1985-02-14 1986-08-25
US5681635A (en) * 1994-01-20 1997-10-28 Tulip Memory Systems, Inc. Magnetic recording medium having a ceramic substrate, an underlayer having a dense fibrous zone T structure, and a magnetic layer
JP2019010415A (en) * 2017-06-30 2019-01-24 ヤマハ株式会社 Electronic manometer, blood pressure measurement method and electronic stethoscope

Also Published As

Publication number Publication date
JPS59149129A (en) 1984-08-27

Similar Documents

Publication Publication Date Title
US6004274A (en) Method and apparatus for continuous non-invasive monitoring of blood pressure parameters
US20030220584A1 (en) Headset for measuring physiological parameters
JP6692420B2 (en) Auxiliary device for blood pressure measurement and blood pressure measurement device
JPH01242031A (en) Measurement of blood pressure
JPH11500025A (en) Method and apparatus for calculating blood pressure
WO2009127091A1 (en) Sphygmomanometer
US5406953A (en) Apparatus for measurement of blood pressure with electronic amplification system for Karotkoff sounds
US20170290519A1 (en) Blood pressure measuring auxiliary device and blood pressure measuring apparatus, and design method therefor
JP2020121120A (en) Biological information acquisition device
JPH0344766B2 (en)
KR102570356B1 (en) Improved Blood Pressure Measurement System
CN110720902B (en) Blood pressure measuring method and sphygmomanometer
CN219742697U (en) Acoustic impedance middle ear function measurement analysis device
CN118680594B (en) Blood vessel sound collection system of contact pressure self-adaptation
JPH08256999A (en) Living body information monitoring device
KR200259030Y1 (en) Electro-stethoscope
CN113100729A (en) A blood pressure measurement device based on intelligent cuff
JP4673030B2 (en) Blood pressure measurement device
JPS58149731A (en) Non-observing type hemomanometer apparatus
CN221242861U (en) Dual-mode sphygmomanometer based on oscillography and auscultation principles
JP2006102249A (en) Blood pressure index measuring device, blood pressure index measuring method, control program, and computer-readable storage medium
TWM643481U (en) Inflatable cuff, pulse waveform acquisition device and pulse waveform acquisition system
JPH0614888A (en) Measuring method and device for pulse wave and Korotkoff sound, and cuff
JP2006102252A (en) Cardiovascular function measuring device, cardiovascular function measuring method, control program, and computer-readable storage medium
JPH01214338A (en) Blood pressure monitoring method