JPH0344144B2 - - Google Patents
Info
- Publication number
- JPH0344144B2 JPH0344144B2 JP20601783A JP20601783A JPH0344144B2 JP H0344144 B2 JPH0344144 B2 JP H0344144B2 JP 20601783 A JP20601783 A JP 20601783A JP 20601783 A JP20601783 A JP 20601783A JP H0344144 B2 JPH0344144 B2 JP H0344144B2
- Authority
- JP
- Japan
- Prior art keywords
- zinc
- suction pipe
- pot
- lead
- evaporation
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 claims description 58
- 239000011701 zinc Substances 0.000 claims description 57
- 229910052725 zinc Inorganic materials 0.000 claims description 57
- 238000001704 evaporation Methods 0.000 claims description 17
- 238000007738 vacuum evaporation Methods 0.000 claims description 15
- 230000008020 evaporation Effects 0.000 claims description 14
- 238000000034 method Methods 0.000 claims description 10
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 9
- 230000008018 melting Effects 0.000 description 6
- 238000002844 melting Methods 0.000 description 6
- 229910000831 Steel Inorganic materials 0.000 description 4
- 229910052742 iron Inorganic materials 0.000 description 4
- 239000010959 steel Substances 0.000 description 4
- 239000000956 alloy Substances 0.000 description 2
- 229910045601 alloy Inorganic materials 0.000 description 2
- 238000005260 corrosion Methods 0.000 description 2
- 230000007797 corrosion Effects 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 238000001994 activation Methods 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- -1 ceramics or carbon Chemical compound 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 238000013021 overheating Methods 0.000 description 1
- 238000005192 partition Methods 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
- 230000008023 solidification Effects 0.000 description 1
- 238000007711 solidification Methods 0.000 description 1
- 238000001771 vacuum deposition Methods 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/22—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
- C23C14/24—Vacuum evaporation
- C23C14/246—Replenishment of source material
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Physical Vapour Deposition (AREA)
Description
【発明の詳細な説明】
本発明は、亜鉛の真空蒸着装置への亜鉛の供給
方法に関し、特に亜鉛の真空蒸着装置へ亜鉛を供
給する吸上げ管の寿命延長を図つた上記方法に関
するものである。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for supplying zinc to a zinc vacuum evaporation apparatus, and more particularly to the above method for extending the life of a suction pipe that supplies zinc to a zinc vacuum evaporation apparatus. .
第1図に亜鉛の真空蒸着装置の中心部の概略図
を示す。図示されていない前処理装置(表面活性
化、帯鋼の適温の加熱又は冷却等)および予備真
空室を通つてきた帯鋼1が、真空蒸着室2に送り
込まれ、チヤンネル10に面したサボートロール
3に巻付けられる。帯鋼1にメツキされる亜鉛
は、ヒータ6を備えた亜鉛溶解炉5で溶解され溶
解亜鉛4となり、大気圧と真空蒸着室の差圧で押
し上げられ吸上げ管7を通つて蒸発鍋8に供給さ
れる。蒸発鍋8の上部に設けられたヒータ9で加
熱された亜鉛は蒸発し、チヤンネル10を通つて
帯鋼1に蒸着される。 FIG. 1 shows a schematic diagram of the central part of the zinc vacuum evaporation apparatus. The steel strip 1 that has passed through a pretreatment device (not shown) (surface activation, heating or cooling the steel strip to an appropriate temperature, etc.) and a preliminary vacuum chamber is fed into a vacuum deposition chamber 2, and is transported to a support roll facing the channel 10. It is wrapped around 3. Zinc to be plated on the steel strip 1 is melted in a zinc melting furnace 5 equipped with a heater 6 to become molten zinc 4, which is pushed up by the differential pressure between atmospheric pressure and the vacuum evaporation chamber and passes through a suction pipe 7 to an evaporation pot 8. Supplied. Zinc is heated by a heater 9 provided at the top of the evaporating pot 8 and is vaporized and deposited on the steel strip 1 through a channel 10.
上記プロセスにおいて問題となるのは、蒸発鍋
8ならびに吸上げ管7の溶融亜鉛による侵食であ
る。溶融亜鉛の温度は、500℃前後であるため熱
的には鉄系の材料のものでは問題ないが、亜鉛と
鉄が合金を形成し、融点の高いドロスを生じ蒸発
鍋の寿命を短くするのみならず、吸上げ管を詰め
てしまう。このために、蒸発鍋や吸上げ管を溶融
亜鉛と反応しない、例えば、セラミツク、カーボ
ン等でライニングすることが考えられるが、いず
れも熱膨脹の差で剥離したり、真空が保持できな
い等の理由で、耐久性のある装置は今だに実用化
されていない。 A problem in the above process is corrosion of the evaporating pot 8 and the suction pipe 7 by molten zinc. The temperature of molten zinc is around 500℃, so there is no problem thermally with iron-based materials, but zinc and iron form an alloy, producing dross with a high melting point and shortening the life of the evaporation pot. Instead, the suction tube is stuffed. For this purpose, it is possible to line the evaporating pot and suction pipe with materials that do not react with molten zinc, such as ceramics or carbon, but these may peel off due to differences in thermal expansion or cannot maintain a vacuum. , durable equipment has not yet been put into practical use.
本発明は、上記欠点を補うために、とくに内面
のライニング処理の至難な吸上げ管の寿命延長を
計るものである。 In order to compensate for the above-mentioned drawbacks, the present invention aims to extend the life of suction pipes whose inner surfaces are extremely difficult to line.
すなわち本発明は、亜鉛の真空蒸着装置へ亜鉛
を供給するにあたり、真空蒸着装置の真空蒸着室
内の蒸発鍋に亜鉛を供給する装置である吸上げ管
の内部および前記蒸発鍋の下部を溶融鉛で充たし
た後、前記溶融鉛内を通して亜鉛を前記吸上げ管
の内面に直接接触することなく蒸発鍋に供給する
ことを特徴とする、亜鉛の真空蒸着装置への亜鉛
の供給方法に関するものである。 That is, in supplying zinc to a zinc vacuum evaporation apparatus, the present invention uses molten lead to fill the inside of a suction pipe, which is a device for supplying zinc to an evaporation pot in the vacuum evaporation chamber of the vacuum evaporation apparatus, and the lower part of the evaporation pot. The present invention relates to a method for supplying zinc to a zinc vacuum evaporation apparatus, characterized in that after filling the molten lead, the zinc is supplied to the evaporation pot without directly contacting the inner surface of the suction tube.
従来から溶融鉛は鉄と反応しないので、鉄容器
の下部に溶融鉛を存在させ、亜鉛による侵食を防
ぐことは知られており、蒸発鍋にこれを適用した
例が、特願昭56−11577号明細書に開示されてい
る。本発明は、上記の方法を亜鉛の真空蒸着装置
への亜鉛供給装置である吸上げ管に適用したもの
である。 Since molten lead does not react with iron, it has been known to prevent corrosion by zinc by placing molten lead in the lower part of an iron container.An example of this being applied to an evaporation pot is disclosed in Japanese Patent Application No. 11577-1983. It is disclosed in the specification of No. The present invention applies the above method to a suction pipe that is a zinc supply device to a zinc vacuum evaporation device.
以下に、本発明の方法を図面により説明する。 The method of the present invention will be explained below with reference to the drawings.
第2図は、本発明に適用される溶解炉吸上げ管
の一例の部分側面断面図を示し、第3図はその平
面図(第2図の−矢視図)を示す。吸上げ管
7を囲んで、溶融鉛11と溶融亜鉛4を分離する
隔壁5−1を設け、吸上げ管7の亜鉛側aに亜鉛
の流入口7−1を設ける。第4図A、Bは、亜右
鉛の流入口7−1の拡大断面図である。亜鉛の供
給がない状態では、第4図Aに示すように流入口
7−1の上部が亜鉛4と鉛11の境界面となり、
吸上げ管7は完全に溶融鉛11で充たされてい
る。亜鉛を第3図のa部に供給すると、第4図B
に示すように、まず、亜鉛4のレベルがL1から
L1′に上り、一方鉛11は押されて、鉛側bでは、
鉛レベルはL3からL3′に上る。このため、当然亜
鉛4と鉛11の境界面はL2からL2′に下り、流入
口7−1の上部レベルより下り、比重差によつて
亜鉛4は、吸上げ管7内の溶融鉛11の内を浮上
りながら図示されていない蒸発鍋に達する。次
に、亜鉛の供給の手順を第5図A〜Cに示す。 FIG. 2 shows a partial side sectional view of an example of a melting furnace suction pipe applied to the present invention, and FIG. 3 shows a plan view thereof (a view taken along the - arrow in FIG. 2). A partition wall 5-1 is provided surrounding the suction pipe 7 to separate the molten lead 11 and the molten zinc 4, and a zinc inlet 7-1 is provided on the zinc side a of the suction pipe 7. 4A and 4B are enlarged sectional views of the zinc inlet 7-1. When zinc is not supplied, the upper part of the inlet 7-1 becomes the interface between zinc 4 and lead 11, as shown in FIG. 4A.
The suction pipe 7 is completely filled with molten lead 11. When zinc is supplied to part a in Fig. 3, it becomes part B in Fig. 4.
First, the level of zinc 4 increases from L 1 to
L 1 ', while lead 11 is pushed, and on lead side b ,
Lead levels rise from L 3 to L 3 ′. Therefore, naturally, the interface between zinc 4 and lead 11 descends from L 2 to L 2 ', below the upper level of the inlet 7-1, and due to the difference in specific gravity, the zinc 4 is absorbed by the molten lead in the suction pipe 7. 11 until it reaches an evaporation pot (not shown). Next, the procedure for supplying zinc is shown in FIGS. 5A to 5C.
まず、第5図Aの状態で溶融鉛11のみを使用
し、蒸発鍋まで鉛を充填する。次に、第5図Bに
示すように溶融亜鉛4をa部に注入して前記した
ように亜鉛を蒸発鍋に送り込む。定常作業時の亜
鉛補給は、必ずしも溶融亜鉛である必要はなく、
第5図Cに示すように、亜鉛インゴツト15を投
入することが一般的である。また、亜鉛の注入
は、例えば第6図に示すように、吸上げ管7の下
部に直接投入することも可能であり、更に、第7
図に示すように、線状の亜鉛12を送りロール1
3、ガイド14を通して吸上げ管7に送り込み、
溶解しながら蒸発鍋に送り込んでもよい。 First, in the state shown in FIG. 5A, only molten lead 11 is used, and lead is filled up to the evaporation pot. Next, as shown in FIG. 5B, molten zinc 4 is injected into part a , and the zinc is sent into the evaporation pot as described above. Zinc replenishment during regular work does not necessarily have to be molten zinc;
As shown in FIG. 5C, a zinc ingot 15 is generally introduced. Furthermore, it is also possible to inject zinc directly into the lower part of the suction pipe 7, as shown in FIG.
As shown in the figure, a linear zinc 12 is fed to a feed roll 1.
3. Send it into the suction pipe 7 through the guide 14,
It may also be fed into an evaporation pot while being dissolved.
作用としては、真空蒸着室と大気のシールを溶
融鉛で行い、この鉛の中に亜鉛を送り込んで浮上
させることによつて、亜鉛を直接吸上げ管に接触
させずに必要量だけ蒸発鍋に供給するものであ
る。 The mechanism works by sealing the vacuum evaporation chamber and the atmosphere with molten lead, and by feeding zinc into the lead and making it float, only the necessary amount of zinc can be delivered to the evaporation pot without directly contacting the suction pipe. supply.
本発明の方法によれば、亜鉛の吸上げ管内での
亜鉛と内面との接触は、従来の亜鉛の吸上げに比
べれば無視される程度に少なくなる。また、亜鉛
の吸上げ管は、管内の凝固を防ぐために外部から
加熱されているが、鉛は亜鉛より融点が低いの
で、過熱する必要がない。すなわち、亜鉛が充填
されているとき局部的に過熱すれば、その部分が
鉄と合金化して融点の上昇が起り、ますます加熱
が必要となり、悪循環して管の寿命を著しく短縮
することになるが、本発明ではこのような過熱を
必要としない。 According to the method of the present invention, the contact between the zinc and the inner surface in the zinc wicking tube is negligible compared to conventional zinc wicking. Also, zinc suction pipes are heated from the outside to prevent solidification inside the pipe, but lead has a lower melting point than zinc, so there is no need to overheat it. In other words, if the tube is locally overheated when it is filled with zinc, that area will alloy with iron and its melting point will rise, necessitating even more heating, creating a vicious cycle that will significantly shorten the life of the tube. However, the present invention does not require such overheating.
第1図は、亜鉛の真空蒸着装置の中心部の概略
図を示し、第2図は、本発明に適用される溶解炉
吸上げ管の一例を示す部分側面断面図であり、第
3図は、第2図の−矢視図である。第4図
は、亜鉛の流入口の拡大断面図である。第5図
は、本発明による亜鉛の供給手順を示し、第6図
および第7図は、亜鉛の供給様態の他の例を示
す。
FIG. 1 shows a schematic view of the center of a zinc vacuum evaporation apparatus, FIG. 2 is a partial side sectional view showing an example of a melting furnace suction tube applied to the present invention, and FIG. , is a - arrow view of FIG. FIG. 4 is an enlarged sectional view of the zinc inlet. FIG. 5 shows the zinc supply procedure according to the present invention, and FIGS. 6 and 7 show other examples of zinc supply modes.
Claims (1)
り、真空蒸着装置の真空蒸着室内の蒸発鍋に亜鉛
を供給する装置である吸上げ管の内部および前記
蒸発鍋の下部を溶融鉛で充たした後、前記溶融鉛
内を通して亜鉛を前記吸上げ管の内面に直接接触
することなく蒸発鍋に供給することを特徴とす
る、亜鉛の真空蒸着装置への亜鉛の供給方法。1. When supplying zinc to a zinc vacuum evaporation device, after filling the inside of the suction pipe and the lower part of the evaporation pot, which is a device that supplies zinc to the evaporation pot in the vacuum evaporation chamber of the vacuum evaporation device, with molten lead, A method for supplying zinc to a zinc vacuum evaporation apparatus, characterized in that zinc is supplied to an evaporation pot through the molten lead without directly contacting the inner surface of the suction pipe.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP20601783A JPS60100663A (en) | 1983-11-04 | 1983-11-04 | Method for supplying zinc to vacuum deposition device for zinc |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP20601783A JPS60100663A (en) | 1983-11-04 | 1983-11-04 | Method for supplying zinc to vacuum deposition device for zinc |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS60100663A JPS60100663A (en) | 1985-06-04 |
JPH0344144B2 true JPH0344144B2 (en) | 1991-07-05 |
Family
ID=16516523
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP20601783A Granted JPS60100663A (en) | 1983-11-04 | 1983-11-04 | Method for supplying zinc to vacuum deposition device for zinc |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS60100663A (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1967604A1 (en) * | 2007-03-08 | 2008-09-10 | Applied Materials, Inc. | Evaporation crucible and evaporation apparatus with directional evaporation |
-
1983
- 1983-11-04 JP JP20601783A patent/JPS60100663A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS60100663A (en) | 1985-06-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
GR3005073T3 (en) | ||
JP2014505794A (en) | Automatic feeder for industrial metal steam generators. | |
EP0685287B1 (en) | Wave soldering Apparatus and process | |
JP2914863B2 (en) | Molten metal container and coating line for induction heating meniscus coating | |
JPH0344144B2 (en) | ||
US3467058A (en) | Apparatus for vaporizing metal | |
US3561399A (en) | Metal coating apparatus | |
JP2005105326A (en) | Method and apparatus for manufacturing coated metal wire | |
US5134629A (en) | Inductor loop coating | |
KR920006059B1 (en) | Lead casting method of nuclear waste container | |
US3483030A (en) | Chill cladding method and apparatus | |
JP2019162648A (en) | Molten metal supply device and molten metal supply method | |
JP4770616B2 (en) | Method for continuous casting of molten metal and immersion lance for continuous casting | |
JPH0578800A (en) | First tapping method of channel induction furnace for galvanizing | |
JPH027395B2 (en) | ||
JP3532041B2 (en) | Preheating device for immersion nozzle for continuous casting | |
US3203824A (en) | Method and apparatus for cladding metal tubes | |
JPS59137151A (en) | Heat insulating method of riser | |
JP3814044B2 (en) | Method and apparatus for manufacturing metal-ceramic composite member | |
JPS62177163A (en) | Continuous alloy plating equipment | |
JPS6240427B2 (en) | ||
CN117626191A (en) | Continuous vapor deposition method and apparatus | |
US868418A (en) | Method of making composite pipe. | |
JPS62182259A (en) | Continuous alloy plating equipment | |
JPS5874273A (en) | Sticking method of brazing material |