[go: up one dir, main page]

JPH0344064A - Junction structure of aluminum nitride substrate and metal substrate - Google Patents

Junction structure of aluminum nitride substrate and metal substrate

Info

Publication number
JPH0344064A
JPH0344064A JP1180034A JP18003489A JPH0344064A JP H0344064 A JPH0344064 A JP H0344064A JP 1180034 A JP1180034 A JP 1180034A JP 18003489 A JP18003489 A JP 18003489A JP H0344064 A JPH0344064 A JP H0344064A
Authority
JP
Japan
Prior art keywords
substrate
metal
aluminum nitride
layer
nitride substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1180034A
Other languages
Japanese (ja)
Inventor
Yutaka Takeshima
裕 竹島
Yasunobu Yoneda
康信 米田
Yukio Sakabe
行雄 坂部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP1180034A priority Critical patent/JPH0344064A/en
Publication of JPH0344064A publication Critical patent/JPH0344064A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector

Landscapes

  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

PURPOSE:To eliminate the degradation of junction strength caused by low wettability, and improve the junction strength to a metal substrate, by forming a titanium nitride layer on an aluminum nitride substrate, forming a metal material layer on the surface thereof, and joining the metal substrate to said metal material layer by using wax material or solder. CONSTITUTION:On the surface of an aluminum nitride substrate 10 facing a copper substrate 11, a titanium nitride layer 12 is formed so as to cover the surface. Said titanium nitride layer 12 is formed by baking TiN paste. The lower surface of said layer 12 is coated with a metal layer 13 formed by Cu- plating. The metal layer 13 and the substrate 11 are joined by using wax material 14 composed of Ag-Cu. Thereby the junction strength between the aluminum nitride substrate 10 and the copper substrate 11 can be remarkably improved, and the stress caused by the difference between thermal expansion coefficients of both substrates can be relieved, so that the exfoliation caused by temperature change can be prevented.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、例えばICパッケージ、パワーダイオードや
パワートランジスタ等の発熱部品を窒化アルミニュウム
基板を介して金属基板に接合する際の、該金属基板と上
記窒化アル兆ニュウム基板との接合構造に関し、特に両
者の接合強度を向上できるとともに、熱膨張率の差によ
る剥離を防止できるようにした構造に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention is applicable to a metal substrate, for example, when heat-generating components such as an IC package, a power diode, or a power transistor are bonded to a metal substrate via an aluminum nitride substrate. The present invention relates to a bonding structure with the aluminum trinium nitride substrate, and particularly relates to a structure that can improve bonding strength between the two and prevent peeling due to a difference in coefficient of thermal expansion.

〔従来の技術〕[Conventional technology]

一般にパワーダイオード等の発熱部品は、その内部温度
が所定の限界温度を越えないように常時放熱する必要が
ある。そのため従来から熱伝導率の大きい窒化アルミニ
ュウム基板をヒートシンクとして使用し、この窒化アル
ミニュウム基板を金属基板、例えば銅基板上に接合する
構造が採用されている。このような発熱部品を窒化アル
ミニュウム基板を介して銅基板に接合する構造として、
従来、第2図に示すものがある。これは、銅基板1上に
ばんだ2により窒化アルミニュウム基板3を接続し、該
アルミニュウム基板3上に同しくはんだ4によりパワー
ダイオード5を接続して構成されている。
Generally, heat generating components such as power diodes must constantly radiate heat so that their internal temperature does not exceed a predetermined temperature limit. Therefore, a structure has conventionally been adopted in which an aluminum nitride substrate with high thermal conductivity is used as a heat sink, and this aluminum nitride substrate is bonded to a metal substrate, such as a copper substrate. As a structure in which such heat-generating components are bonded to a copper substrate via an aluminum nitride substrate,
Conventionally, there is one shown in FIG. This is constructed by connecting an aluminum nitride substrate 3 to a copper substrate 1 using a solder 2, and connecting a power diode 5 to the aluminum substrate 3 using a solder 4.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかしながら、上記従来の銅基板1と窒化アルミニュウ
ム基板3とをはんだ2により接合する構造は、該アルミ
ニュウム基板3は金属融液との濡れ性が悪いことから、
所定の接合強度を得難いという問題点がある。また、上
記窒化アルミニュウム基板3と銅基板1とは両者の熱膨
張率の差が大きいことから、周囲の温度変化の影響で剥
離し易く、品質に対する信頼性が低いという問題点もあ
る。
However, in the conventional structure in which the copper substrate 1 and the aluminum nitride substrate 3 are bonded together by the solder 2, since the aluminum substrate 3 has poor wettability with metal melt,
There is a problem that it is difficult to obtain a predetermined bonding strength. Further, since the aluminum nitride substrate 3 and the copper substrate 1 have a large difference in coefficient of thermal expansion, there is also the problem that they are likely to peel off due to changes in ambient temperature, resulting in low quality reliability.

本発明は上記従来の状況に鑑みてなされたもので、窒化
アルミニュウム基板と金属基板との接合強度を向上でき
るとともに、熱膨張率の差に起因して生しる剥離を防止
できる窒化アル嵩ニュウム基板と金属基板との接合構造
を提供することを目的としている。
The present invention has been made in view of the above-mentioned conventional situation, and it is possible to improve the bonding strength between an aluminum nitride substrate and a metal substrate, and to prevent peeling caused by the difference in coefficient of thermal expansion. The purpose is to provide a bonding structure between a substrate and a metal substrate.

〔問題点を解決するための手段〕[Means for solving problems]

そこで本発明は、窒化アル旦ニュウム基板の表面に窒化
チタン層を形成するとともに、該チタン層の表面に金属
材層を形成し、該金属材層の表面にろう材、又ははんだ
により金属基板を接合したことを特徴とする窒化アルミ
ニュウム基板と金属基板との接合構造である。
Therefore, in the present invention, a titanium nitride layer is formed on the surface of an aluminum nitride substrate, a metal material layer is formed on the surface of the titanium layer, and a metal substrate is attached to the surface of the metal material layer using a brazing material or solder. This is a bonded structure of an aluminum nitride substrate and a metal substrate, which are bonded together.

ここで、本発明において上記構成を採用した理由につい
て説明する。
Here, the reason why the above configuration is adopted in the present invention will be explained.

、まず、窒化アルミニュウム基板に窒化チタン層を形成
したのは、窒化アルミニュウム板の濡れ性を改善するた
めである。また、この窒化チタン層は上記窒化アルくニ
ュウム基板にTiNペーストを塗布し、これを焼き付け
て形成することにより実現できる。
First, the reason why a titanium nitride layer was formed on an aluminum nitride substrate was to improve the wettability of the aluminum nitride plate. The titanium nitride layer can be formed by applying a TiN paste to the aluminum nitride substrate and baking it.

11、上記窒化チタン層に金属層を形成したのは、この
金属層が窒化アルミニュウム基板と金属基板との接合強
度を向上させる上で必要不可欠であるからである。この
場合、上記金属層は厚さ1μm以上にするのが望ましく
、この厚さが1μm以下では満足できる強度が得られな
い。また、上記厚さの上限は特に規定しないが、10μ
m程度が好ましい。これ以上厚くしても接合強度は向上
しないからである。さらに、上記金属層には、Cu、A
u、Ag、Ni等の金属が採用でき、これの形成方法と
しては、電解めっき法2厚膜印刷法、スパッタリング法
等が採用できる。
11. The reason why a metal layer was formed on the titanium nitride layer is that this metal layer is essential for improving the bonding strength between the aluminum nitride substrate and the metal substrate. In this case, it is desirable that the metal layer has a thickness of 1 μm or more; if the thickness is less than 1 μm, satisfactory strength cannot be obtained. In addition, the upper limit of the above thickness is not particularly specified, but is 10 μm.
About m is preferable. This is because even if it becomes thicker than this, the bonding strength will not improve. Furthermore, the metal layer includes Cu, A
Metals such as u, Ag, and Ni can be used, and as methods for forming this, electrolytic plating, two-thick film printing, sputtering, etc. can be used.

〔作用〕[Effect]

本発明に係る窒化アルミニュウム基板と金属基板との接
合構造によれば、窒化アルミニュウム基板に窒化チタン
層を形成するとともに、この表面に金属材層を形成し、
該金属材層にろう材又ははんだにより金属基板を接合し
たので、低濡れ性による接合強度の悪化を解消でき、上
記金属基板との接合強度を大幅に向上できるとともに、
窒化アルミニュウム基板と金属基板との熱膨張率の差に
よる応力を緩和でき、温度変化による剥離の問題も解消
できる。従って、本発明の接合構造をICパッケージや
パワーダイオード等の発熱部品の接合基板として採用し
た場合は、必要な接合強度を確保し、かつ発熱による剥
離を防止しながら、上記室・化アルミニュウム基板をヒ
ートシンクとして効率よく活用でき、品質に対する信頼
性を大幅に向上できる。
According to the bonding structure between an aluminum nitride substrate and a metal substrate according to the present invention, a titanium nitride layer is formed on the aluminum nitride substrate, and a metal material layer is formed on the surface of the titanium nitride layer,
Since the metal substrate is bonded to the metal material layer using a brazing material or solder, deterioration in bond strength due to low wettability can be eliminated, and the bond strength with the metal substrate can be significantly improved.
Stress caused by the difference in thermal expansion coefficient between the aluminum nitride substrate and the metal substrate can be alleviated, and the problem of peeling due to temperature changes can also be solved. Therefore, when the bonding structure of the present invention is adopted as a bonding substrate for heat-generating components such as IC packages and power diodes, it is possible to secure the necessary bonding strength and prevent peeling due to heat generation while bonding the aluminum substrate. It can be used efficiently as a heat sink, greatly improving reliability in terms of quality.

〔実施例〕〔Example〕

以下、本発明の実施例を図について説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.

第1図は本発明の一実施例による窒化アルミニュウム基
板と金属基板との接合構造を説明するための図である。
FIG. 1 is a diagram for explaining a bonding structure between an aluminum nitride substrate and a metal substrate according to an embodiment of the present invention.

本実施例ではパワーダイオード等の発熱電子部品を金属
基板上に接合する場合を例にとって説明する。
This embodiment will be explained by taking as an example a case where a heat generating electronic component such as a power diode is bonded onto a metal substrate.

図において、10はパワーダイオード(図示せず)等の
発熱電子部品が搭載される窒化アル呉ニュウム基板であ
り、これは銅基板11に接合されている。上記窒化アル
ミニュウム基板10の銅基板11との対向面には窒化チ
タン層12が被覆形成されている。この窒化チタン層1
2はTiNペーストを焼き付けて形成されたものである
。また、上記窒化チタン層12の下側表面にはCuめっ
きによる金属層13が被覆形成されており、該金属層1
3は厚さ1μm以上になるように形成されている。
In the figure, 10 is an aluminum nitride substrate on which heat generating electronic components such as power diodes (not shown) are mounted, and this is bonded to a copper substrate 11. The surface of the aluminum nitride substrate 10 facing the copper substrate 11 is coated with a titanium nitride layer 12 . This titanium nitride layer 1
2 is formed by baking TiN paste. Further, the lower surface of the titanium nitride layer 12 is coated with a metal layer 13 formed by Cu plating.
3 is formed to have a thickness of 1 μm or more.

そして、上記金属層13と上記銅基板11とはAg  
Cuからなるろう材14により接合されている。なお、
上記金属層13と銅基板11とははんだにより接合して
もよい。
The metal layer 13 and the copper substrate 11 are made of Ag.
They are joined by a brazing filler metal 14 made of Cu. In addition,
The metal layer 13 and the copper substrate 11 may be joined by solder.

次に本実施例の作用効果について説明する。Next, the effects of this embodiment will be explained.

本実施例においては、発熱電子部品からの熱を熱伝導性
の高い窒化アルミニュウム基板10を介して常時放熱し
ており、これにより上記発熱電子部品の内部温度が所定
の限界温度を越えないようにしている。
In this embodiment, heat from the heat generating electronic components is constantly radiated through the highly thermally conductive aluminum nitride substrate 10, thereby preventing the internal temperature of the heat generating electronic components from exceeding a predetermined limit temperature. ing.

ここで、従来の接合構造は、銅基板と窒化アルミニュウ
ム基板とを単にはんだで接合する構造であることから、
両者の接合強度が低く、しかも両者の熱膨張率の差が起
因して剥離し易いという問題があった。これに対して、
本実施例では、窒化アルごニュウム基板10を、これの
表面に順次形成した窒化チタン層12.銅めっき金属層
13を介してAg−Cuろう材14で銅基板11に接合
したので、両者の接合強度を大幅に向上できるとともに
、窒化アルミニュウム基板10と銅基板11との熱膨張
率の差による応力を緩和でき、温度変化による剥離を防
止でき、品質に対する信頼性を向上できる。
Here, since the conventional bonding structure is a structure in which a copper substrate and an aluminum nitride substrate are simply bonded by soldering,
There was a problem in that the bonding strength between the two was low, and furthermore, the two were easily peeled off due to the difference in their coefficient of thermal expansion. On the contrary,
In this embodiment, an aluminum nitride substrate 10 is formed with a titanium nitride layer 12. Since it is bonded to the copper substrate 11 with the Ag-Cu brazing material 14 through the copper plating metal layer 13, the bonding strength between the two can be greatly improved, and the difference in thermal expansion coefficient between the aluminum nitride substrate 10 and the copper substrate 11 can be Stress can be alleviated, peeling caused by temperature changes can be prevented, and quality reliability can be improved.

なお、上記実施例ではパワーダイオード等の発熱部品を
窒化アルミニュウム基板を介して銅基板に接合する場合
を例にとって説明したが、本発明の接合構造はこれに限
られるものではなく、他の用途においても勿論適用でき
る。
In addition, although the above embodiment describes the case where a heat generating component such as a power diode is bonded to a copper substrate via an aluminum nitride substrate, the bonding structure of the present invention is not limited to this, and may be used in other applications. Of course, it can also be applied.

また、上記実施例では、金属層にCuを採用したが、こ
れは他にfi、u、Ag、Ni等を採用してもよくこの
場合においても接合強度を向上できる。
Further, in the above embodiment, Cu is used for the metal layer, but other materials such as fi, u, Ag, Ni, etc. may also be used, and the bonding strength can also be improved in this case.

さらに、上記金属層を形成する方法として、上記実施例
では電解めっきを例にとったが、他に厚膜印刷法、スパ
ッタリング法等が採用できる。
Furthermore, as a method for forming the metal layer, although electrolytic plating was used as an example in the above embodiments, other methods such as thick film printing, sputtering, etc. can be used.

さらにまた、上記実施例では、金属基板として銅基板を
例にとったが、これは他の金属板の場合にも適用できる
Furthermore, in the above embodiments, a copper substrate was used as an example of the metal substrate, but this can also be applied to other metal plates.

ここで、本実施例の接合構造を実現するための一具体例
を説明するとともに、その効果を確認するために行った
試験について説明する。
Here, a specific example for realizing the joining structure of this example will be explained, and a test conducted to confirm the effect will be explained.

■ まず、窒化アルミニュウム(A#N)粉末と、焼結
助剤として酸化イツトリウム(yz○3)粉末とをY$
備する。上記/’IN粉末にY2O3粉末を3wt%添
加、混合し、これに有機バインダーを加えてシート材を
形成する。このシート材の表面にA4NとTiNとを重
量比1:1に混合したA7!N−TiNペーストを塗布
した後、乾燥し、これにより窒化アルくニュウム基板を
形成する。
■ First, aluminum nitride (A#N) powder and yttrium oxide (yz○3) powder as a sintering agent were mixed at Y$.
Prepare. 3 wt % of Y2O3 powder is added and mixed with the above /'IN powder, and an organic binder is added thereto to form a sheet material. A7! A4N and TiN are mixed at a weight ratio of 1:1 on the surface of this sheet material! After applying the N-TiN paste, it is dried to form an aluminum nitride substrate.

■ 上記窒化アルミニュウム基板の上面にTiNペース
トを塗布し、これを窒素雰囲気中にて800℃×2時間
で脱バインダー処理を行い、しかる後窒素雰囲気中にて
1850℃×5時間で焼威し、体焼結する。これにより
、窒化アルごニュウム基板10の上面に窒化チタン層1
2が形成される。
■ Applying TiN paste on the top surface of the aluminum nitride substrate, debinding it in a nitrogen atmosphere at 800°C for 2 hours, and then burning it in a nitrogen atmosphere at 1850°C for 5 hours. Body sintering. As a result, a titanium nitride layer 1 is formed on the upper surface of the aluminum nitride substrate 10.
2 is formed.

■ 上記窒化チタン層12の上面に、電解めっきにより
厚さ1μm以上のCu膜を被覆し、これにより金属層1
3を形成する。この金属層I3の上面に、Ag−Cuか
らなるろう材14により、厚さ300 μmの銅基板1
1を接合し、これによりこれにより本実施例の接合構造
が構成される。
■ The top surface of the titanium nitride layer 12 is coated with a Cu film with a thickness of 1 μm or more by electrolytic plating.
form 3. A copper substrate 1 with a thickness of 300 μm is formed on the upper surface of this metal layer I3 by a brazing filler metal 14 made of Ag-Cu.
1 is joined, thereby configuring the joining structure of this embodiment.

次に上記製造方法により作成された窒化アルミニュウム
基板10と銅基板11との接合強度を測定した。この測
定は、上記銅基板1■にリード線を半田付は接続し、こ
のリード線を上記窒化アルミニュウム基板10と銅基板
11との接合面に対して垂直方向に、該接合面が離れる
まで引張って、その接合強度を測定した。
Next, the bonding strength between the aluminum nitride substrate 10 and the copper substrate 11 produced by the above manufacturing method was measured. This measurement is performed by connecting a lead wire to the copper substrate 1■ by soldering, and pulling the lead wire in a direction perpendicular to the bonding surface between the aluminum nitride substrate 10 and the copper substrate 11 until the bonding surface separates. Then, the bonding strength was measured.

表はその結果を示し、試料隘1は上記金属層13の膜厚
を0.5μmにした場合、以下m2.Nn3゜階4はそ
れぞれ膜厚を1.0μm、10μm、50μmにした場
合を示す。
The table shows the results. For sample size 1, when the thickness of the metal layer 13 was set to 0.5 μm, the thickness was as follows: m2. Nn3° level 4 shows the cases where the film thicknesses are 1.0 μm, 10 μm, and 50 μm, respectively.

同表からも明らかなように、金属層13の膜厚が0.5
μmの場合は、接合強度が0.2 kg/ vs■2と
低く、満足できる値が得られていない。これに対して膜
厚1.0 μm以上にした場合は、いずれも接合強度は
3〜6kg/m”と高くなっていることがわかる。一方
、上記膜厚を10μm以上にしても、接合強度は向上し
ておらず、コストの観点から上記金属層の厚さは1〜1
0μmの範囲内が好ましいといえる。
As is clear from the table, the thickness of the metal layer 13 is 0.5
In the case of μm, the bonding strength is as low as 0.2 kg/vs2, and a satisfactory value cannot be obtained. On the other hand, when the film thickness is 1.0 μm or more, the bonding strength is as high as 3 to 6 kg/m”.On the other hand, even when the film thickness is 10 μm or more, the bonding strength is has not been improved, and from the viewpoint of cost, the thickness of the metal layer is 1 to 1.
It can be said that a range of 0 μm is preferable.

〔発明の効果〕〔Effect of the invention〕

以上のように本発明に係る窒化アルくニュウム基板と金
属基板との接合構造によれば、窒化アルミニュウム基板
の表面に順次窒化チタン層、金属材層を形成し、該金属
材層の表面にろう、又ははんだにより金属基板を接合し
たので、窒化アルミニュウム基板と金属基板との接合強
度を向上できるとともに、熱膨張率の差による剥離の問
題を解消できる効果がある。
As described above, according to the bonding structure between an aluminum nitride substrate and a metal substrate according to the present invention, a titanium nitride layer and a metal material layer are sequentially formed on the surface of an aluminum nitride substrate, and a wax is applied to the surface of the metal material layer. Since the metal substrates are bonded using , or solder, the bonding strength between the aluminum nitride substrate and the metal substrate can be improved, and the problem of peeling due to the difference in coefficient of thermal expansion can be solved.

/Q //Q /

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例による窒化アル旦ニュウム基
板と金属基板との接合構造を説明するための断面図、第
2図は従来の接合構造を示す断面図である。 図において、10は窒化アルミニュウム基板、11は銅
基板、12は窒化チタン層、13は銅めっき金属層、1
4はAg−Cuろう材である。
FIG. 1 is a sectional view for explaining a bonding structure between an aluminum nitride substrate and a metal substrate according to an embodiment of the present invention, and FIG. 2 is a sectional view showing a conventional bonding structure. In the figure, 10 is an aluminum nitride substrate, 11 is a copper substrate, 12 is a titanium nitride layer, 13 is a copper plating metal layer, 1
4 is an Ag-Cu brazing material.

Claims (1)

【特許請求の範囲】[Claims] (1)窒化アルミニュウム基板の表面に窒化チタン層を
形成し、該チタン層の表面に金属材層を形成するととも
に、該金属材層の表面にろう材、又ははんだにより金属
板を接合したことを特徴とする窒化アルミニュウム基板
と金属板との接合構造。
(1) A titanium nitride layer is formed on the surface of an aluminum nitride substrate, a metal material layer is formed on the surface of the titanium layer, and a metal plate is bonded to the surface of the metal material layer using a brazing material or solder. Features a bonding structure between an aluminum nitride substrate and a metal plate.
JP1180034A 1989-07-11 1989-07-11 Junction structure of aluminum nitride substrate and metal substrate Pending JPH0344064A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1180034A JPH0344064A (en) 1989-07-11 1989-07-11 Junction structure of aluminum nitride substrate and metal substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1180034A JPH0344064A (en) 1989-07-11 1989-07-11 Junction structure of aluminum nitride substrate and metal substrate

Publications (1)

Publication Number Publication Date
JPH0344064A true JPH0344064A (en) 1991-02-25

Family

ID=16076320

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1180034A Pending JPH0344064A (en) 1989-07-11 1989-07-11 Junction structure of aluminum nitride substrate and metal substrate

Country Status (1)

Country Link
JP (1) JPH0344064A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108033810A (en) * 2017-12-12 2018-05-15 北京科技大学 A kind of preparation method of aluminium nitride ceramics copper-clad plate

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108033810A (en) * 2017-12-12 2018-05-15 北京科技大学 A kind of preparation method of aluminium nitride ceramics copper-clad plate

Similar Documents

Publication Publication Date Title
US20080272180A1 (en) Method of manufacturing heat spreader module
JPH0261539B2 (en)
JP2012099779A (en) Power module using burning join and manufacturing method of the power module
TW548805B (en) Element bonding substrate and its forming method
JPH06296084A (en) Thermal conductor of high conductivity, wiring board provided therewith and manufacture thereof
JPH05347469A (en) Ceramic circuit board
JPH08102570A (en) Ceramic circuit board
JPH0344064A (en) Junction structure of aluminum nitride substrate and metal substrate
JP3167796B2 (en) Ceramic circuit board
JP2017168635A (en) Substrate for power module and manufacturing method of power module
JP2517024B2 (en) Ceramic package and its manufacturing method
JP2000086368A (en) Nitride ceramic substrate
JPS61121489A (en) Cu wiring sheet for manufacture of substrate
JPH0255271A (en) Bond structure consisting of aluminum nitride substrate and metallic plate
WO2024047959A1 (en) Semiconductor device and bonding method
JP4332047B2 (en) Electronic equipment
JPH03157989A (en) Bonding structure of ceramic board and metal plate
JP2515051Y2 (en) Package for storing semiconductor devices
JPS60107845A (en) Circuit substrate for semiconductor
JP2809799B2 (en) Semiconductor device
JP3222348B2 (en) Manufacturing method of ceramic package
JPS63242985A (en) Aluminum nitride substrate
JP2715686B2 (en) Method for manufacturing ceramic-metal joined body
JPH02240995A (en) Ceramic substrate for electronic component mounting
JP2750469B2 (en) Semiconductor package