JPH0343821Y2 - - Google Patents
Info
- Publication number
- JPH0343821Y2 JPH0343821Y2 JP18894182U JP18894182U JPH0343821Y2 JP H0343821 Y2 JPH0343821 Y2 JP H0343821Y2 JP 18894182 U JP18894182 U JP 18894182U JP 18894182 U JP18894182 U JP 18894182U JP H0343821 Y2 JPH0343821 Y2 JP H0343821Y2
- Authority
- JP
- Japan
- Prior art keywords
- solar cell
- cell array
- array
- voltage
- series
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
Description
【考案の詳細な説明】
本考案は太陽電池アレイの表面にアンテナや観
測用プローブ等の影が生じたり、光強度の増加等
により太陽電池温度が高くなつて、太陽電池発生
電力が減少する様な場合のその減少量を出来るだ
け少なくした太陽電池電源装置に関するものであ
る。[Detailed explanation of the invention] This invention is designed to reduce the power generated by solar cells when shadows from antennas, observation probes, etc. appear on the surface of the solar cell array, and when the temperature of the solar cells increases due to increases in light intensity, etc. This invention relates to a solar cell power supply device that minimizes the amount of decrease in such cases.
従来の太陽電池電源装置は、人工衛星などの太
陽電池アレイの表面に生じたアンテナや観測用プ
ローブ等の影による太陽電池発生電力の減少を少
なくするために、太陽電池アレイの各太陽電池素
子と並列にシヤントダイオードを接続し、その影
を受けて非動作状態となつた太陽電池素子をバイ
パスすることにより太陽電池アレイがオープン状
態になるのを防いでいた。しかし、本方式では、
バイパスされた部分の太陽電池の起電力が零とな
るばかりでなく、シヤントダイオードによる電圧
低下も影響するため、太陽電池アレイのオープン
状態になることは防止出来るが、その発生電力の
減少を少なくするのは困難であつた。 Conventional solar battery power supplies are designed to reduce the reduction in power generated by solar cells due to the shadows of antennas, observation probes, etc. that appear on the surface of solar cell arrays such as artificial satellites. By connecting a shunt diode in parallel and bypassing the solar cell elements that were inactive due to the shadow, the solar cell array was prevented from becoming open. However, in this method,
Not only does the electromotive force of the solar cells in the bypassed area become zero, but the voltage drop due to the shunt diode also affects the solar cell array, so it is possible to prevent the solar cell array from becoming open, but it is possible to prevent the reduction in the generated power. It was difficult to do so.
第1図a,bは影を受けない時の太陽電池アレ
イの構成図とその等価回路図とを示し、第2図
a,bは太陽電池アレイの一部に影を受けた時の
構成図とその等価回路図とを示し、第3図はこれ
らの出力特性図を示す。人工衛星1に実装された
太陽電池アレイ2が影を受けない時は、全ての太
陽電池素子3は光を受けて動作状態となつてい
る。また、人工衛星1に実装された太陽電池アレ
イ2の一部がアンテナ又は観測プローブ等の影5
を受けた時は、一部の太陽電池素子は影5を受け
非動作状態となる。この時はその太陽電池素子4
をバイパスするためのシヤントダイオード6側を
電流が流れる。 Figures 1a and b show the configuration of the solar cell array when it is not shaded and its equivalent circuit diagram, and Figures 2a and b are the configuration diagrams when a part of the solar cell array is shaded. and their equivalent circuit diagrams, and FIG. 3 shows their output characteristic diagrams. When the solar cell array 2 mounted on the artificial satellite 1 is not shaded, all the solar cell elements 3 receive light and are in an operating state. In addition, a part of the solar cell array 2 mounted on the artificial satellite 1 may be in the shadow 5 of an antenna or an observation probe, etc.
When this occurs, some of the solar cell elements receive the shadow 5 and become inoperative. At this time, the solar cell element 4
A current flows through the shunt diode 6 to bypass the current.
第3図の太陽電池アレイの出力特性(V−I特
性)図において、xは第1図の太陽電池アレイ2
が影を受けない時の特性曲線、yは第2図の太陽
電池アレイ2の一部に影5を受けた時の特性曲線
である。太陽電池アレイ2が全く影を受けず太陽
電池素子の全てが光を受けた特性線xにおいて
は、太陽電池電源装置の動作電圧をVBUSとする
と、出力特性上の動作点Aにおいて電流値Cが得
られる。一方、太陽電池アレイ2の一部にアンテ
ナや観測プローブ5等の影を受けた特性線yにお
いて、非動作の太陽電池は等価回路に示す様にダ
イオードの逆特性をもつて太陽電池アレイ2をオ
ープン状態にするが、このオープン状態になるの
を防ぐためにシヤントダイオード6を太陽電池素
子に並列に接続している。この場合その動作電圧
VBUSにおいては、動作点Bとなり、きわめて低い
電流値Dしか得らず発生電力は大幅に減少してし
まう。 In the output characteristic (V-I characteristic) diagram of the solar cell array in FIG. 3, x is the solar cell array 2 in FIG.
y is a characteristic curve when a part of the solar cell array 2 in FIG. 2 is exposed to a shadow 5. On the characteristic line x where the solar cell array 2 is not shaded at all and all of the solar cell elements are exposed to light, if the operating voltage of the solar cell power supply is V BUS , the current value C at the operating point A on the output characteristics is obtained. On the other hand, on the characteristic line y where a part of the solar cell array 2 is shaded by the antenna, observation probe 5, etc., the non-operating solar cell has the opposite characteristics of a diode as shown in the equivalent circuit, and the solar cell array 2 is However, in order to prevent this open state, a shunt diode 6 is connected in parallel to the solar cell element. In this case its operating voltage
In V BUS , the operating point is B, and only an extremely low current value D is obtained, resulting in a significant reduction in the generated power.
なお、太陽電池アレイ2の直列数を増すことに
より、一部に影を受けても動作電圧VBUSでの電流
値を増すことができるがこの場合、太陽電池素子
数が増し、材料費、製作費等のコストが増加する
ばかりでなく重量の増加、太陽電池パネルの大型
化など衛星システム全体にも大きな影響を及ぼす
ことになる。 Note that by increasing the number of solar cell arrays 2 connected in series, it is possible to increase the current value at the operating voltage V BUS even if some parts are shaded, but in this case, the number of solar cell elements increases, resulting in lower material costs and production This not only increases costs, but also increases weight, increases the size of solar panels, and has a major impact on the entire satellite system.
本考案の目的は、これらの問題点を解決し、太
陽電池素子の電気的接続を適宜切換えることによ
り、太陽電池アレイの表面に生じたアンテナや観
測用プローブ等の影響等による太陽電池発生電力
の減少を出来るだけ少なくした太陽電池電源装置
を提供することにある。 The purpose of this invention is to solve these problems and reduce the power generated by solar cells due to the effects of antennas, observation probes, etc. on the surface of the solar cell array by appropriately switching the electrical connections of solar cell elements. It is an object of the present invention to provide a solar cell power supply device in which the reduction is minimized.
本考案の太陽電池電源装置は、それぞれシヤン
トダイオードと並列接続された太陽電池素子を複
数個直列接続した複数の太陽電池ブロツクと、こ
れら太陽電池ブロツクの両端を並列あるいは直列
に切換接続して太陽電池アレイを構成するリレー
と、前記太陽電池アレイの出力電圧が所定基準電
圧より減少したことを検出する電圧検出手段と、
この電圧検出手段がその電圧減少を検出したとき
前記太陽電池ブロツクの並列接続部分を一部直列
接続に切換えるように前記リレーを駆動するリレ
ー駆動手段とを含み構成される。 The solar cell power supply device of the present invention includes a plurality of solar cell blocks each having a plurality of series-connected solar cell elements each connected in parallel with a shunt diode, and a solar cell power source by switchingly connecting both ends of these solar cell blocks in parallel or series. a relay constituting a battery array; voltage detection means for detecting that the output voltage of the solar battery array has decreased below a predetermined reference voltage;
The device includes relay driving means for driving the relay so that when the voltage detection means detects a decrease in the voltage, the parallel connection portions of the solar cell blocks are partially switched to series connection.
以下図面により本考案を詳細に説明する。 The present invention will be explained in detail below with reference to the drawings.
第4図は本考案の実施例のブロツク図である。
すなわち、所定の電力を得るために必要な枚数の
太陽電池素子7を電気的に直並列接続した太陽電
池アレイ2は、制御部8において太陽電池アレイ
2からのモニタ信号と基準電圧部10の出力信号
とを比較し、そのモニタ信号が基準電圧部10の
出力信号より低くなつた場合にアレイ切換部9に
切換用信号を送る働きをする。このアレイ切換部
9は制御部8からの信号により太陽電池素子7の
接続を切換える働きをするもので、リレー11,
12およびそのリレー駆動回路等から構成され
る。 FIG. 4 is a block diagram of an embodiment of the present invention.
That is, in the solar cell array 2 in which the number of solar cell elements 7 required to obtain a predetermined power are electrically connected in series and parallel, the control section 8 outputs the monitor signal from the solar cell array 2 and the output of the reference voltage section 10. When the monitor signal becomes lower than the output signal of the reference voltage section 10, it sends a switching signal to the array switching section 9. This array switching section 9 functions to switch the connection of the solar cell elements 7 according to a signal from the control section 8, and the relay 11,
12 and its relay drive circuit.
第5図a,bは本考案において太陽電池アレイ
2の一部が影5を受けた時の構成図およびその等
価回路図である。図示のように、太陽電池アレイ
2の各ブロツク毎にリレー11,12が設けられ
これらブロツクが影5を受けないときは、リレー
11,12の各接点は並列接続(黒点側)となつ
ているが、これらブロツクが影5を受けたときは
その状態を制御部8が判定してリレー11,12
の接点を直列接続(白点側)に切換えるよう制御
するものである。 FIGS. 5a and 5b are a block diagram and an equivalent circuit diagram when a part of the solar cell array 2 is shaded 5 in the present invention. As shown in the figure, relays 11 and 12 are provided for each block of the solar cell array 2, and when these blocks are not affected by the shadow 5, the contacts of the relays 11 and 12 are connected in parallel (on the black dot side). However, when these blocks receive the shadow 5, the control unit 8 determines the state and relays 11, 12
This control switches the contacts to series connection (white dot side).
第6図は第3図および第5図に示した太陽電池
アレイの出力特性図であり、出力特性線zが本考
案により直列接続とされた場合の特性を示す。 FIG. 6 is an output characteristic diagram of the solar cell array shown in FIGS. 3 and 5, and shows the characteristics when the output characteristic line z is connected in series according to the present invention.
次に本実施例の動作を説明する。 Next, the operation of this embodiment will be explained.
まず、太陽電池アレイ2がアンテナ又は観測プ
ローブ等の影を受けない場合、すなわち太陽電池
アレイからのモニタ信号が基準電圧部の出力信号
より高い場合は太陽電池素子は第1図bの様に並
列接続され、出力特性線xに示すように、動作電
圧VBUSにおける動作点Aにおいて電流値Dが得ら
れる。次に、太陽電池アレイの一部に影5を受け
太陽電池アレイからのモニタ信号が基準電圧部1
0の出力信号より低くなると制御部8からアレイ
切換部に切換用信号が送られ、太陽電池素子は第
5図bの様に直列接続され、この時の出力特性は
特性線zのように動作電圧VBUSにおいて約1/2電
流値Fをとる。 First, if the solar cell array 2 is not shaded by an antenna or observation probe, etc., that is, if the monitor signal from the solar cell array is higher than the output signal of the reference voltage section, the solar cell elements are paralleled as shown in Figure 1b. As shown by the output characteristic line x, a current value D is obtained at the operating point A at the operating voltage V BUS . Next, a part of the solar cell array is shaded 5, and the monitor signal from the solar cell array is shifted to the reference voltage section 1.
When the output signal becomes lower than 0, a switching signal is sent from the control unit 8 to the array switching unit, and the solar cell elements are connected in series as shown in Fig. 5b, and the output characteristics at this time operate as shown by the characteristic line z. Approximately 1/2 current value F at voltage V BUS .
なお、従来の影を受けてもアレイ接続の切換を
行なわない場合の出力特性は、特性線yとなり、
VBUSにおいてきわめて低い電流値Eをとるので、
本考案を実施することにより、影を受けた場合の
太陽電池アレイの発生電力の減少量を少なくでき
ることがわかる。 In addition, the output characteristics when the array connection is not switched even though it is influenced by the conventional method is the characteristic line y,
Since the current value E is extremely low at V BUS ,
It can be seen that by implementing the present invention, the amount of decrease in power generated by the solar cell array when exposed to shadows can be reduced.
なお、本考案は、人工衛星のみならず内惑星探
査機に搭載される太陽電池電源装置にも適用でき
る。この場合、太陽に接近するに従つて太陽電池
アレイに照射される光強度が強くなるため太陽電
池の温度が高くなる。一般に太陽電池の温度特性
は高温になるほど光エネルギーから電気エネルギ
ーへの変換効率が低下するので、太陽電池アレイ
の発生電力も減少する。 Note that the present invention can be applied not only to artificial satellites but also to solar battery power supplies mounted on inner planet probes. In this case, as the solar cell array approaches the sun, the intensity of the light irradiated onto the solar cell array increases, so the temperature of the solar cells increases. In general, the temperature characteristics of solar cells are such that the higher the temperature, the lower the efficiency of converting light energy into electrical energy, and therefore the power generated by the solar cell array also decreases.
第7図は太陽電池アレイ出力の温度特性図を示
す。図中、uが常温時の特性線、wが高温時の特
性線、vは本考案の実施例として高温時に太陽電
池素子の接続を切換えた時の出力特性線である。
図のように動作電圧VBUSとした場合、本考案を実
施することにより、高温時における太陽電池アレ
イの発生電力の減少量を少なくできることがわか
る。 FIG. 7 shows a temperature characteristic diagram of the solar cell array output. In the figure, u is a characteristic line at normal temperature, w is a characteristic line at high temperature, and v is an output characteristic line when the connection of the solar cell element is switched at high temperature as an embodiment of the present invention.
When the operating voltage is V BUS as shown in the figure, it can be seen that by implementing the present invention, the amount of decrease in power generated by the solar cell array at high temperatures can be reduced.
以上説明した様に、本考案によれば太陽電池ア
レイの一部にアンテナや観測用プローブ等の影が
生じたり、高温となつて出力が低下した場合に、
太陽電池素子の接続を並列接続に切換えられるた
め太陽電池発生電力の減少量を少なくできるとい
う利点がある。 As explained above, according to the present invention, when a part of the solar array is shaded by an antenna or observation probe, or when the output is reduced due to high temperature,
Since the connection of the solar cell elements can be switched to parallel connection, there is an advantage that the amount of decrease in the power generated by the solar cells can be reduced.
第1図a,bは従来の太陽電池アレイの構成図
およびその等価回路図、第2図a,bは第1図の
太陽電池アレイの一部に影を受けた時の構成図お
よびその等価回路図、第3図は太陽電池アレイの
出力特性図、第4図は本考案の実施例のブロツク
図、第5図a,bは本考案による太陽電池アレイ
の一部が影を受けた時の構成図およびその等価回
路図、第6図は第3図および第5図の太陽電池ア
レイの出力特性図、第7図は太陽電池アレイ出力
の温度特性図である。図において、1……人工衛
星、2……太陽電池アレイ、3……動作状態の太
陽電池素子、4……非動作状態の太陽電池素子、
5……影、6……シヤントダイオード、7……太
陽電池素子、8……制御部、9……アレイ切換
部、10……基準電圧部、11,12……リレー
である。
Figures 1a and b are block diagrams of conventional solar cell arrays and their equivalent circuit diagrams. Figures 2a and b are block diagrams and their equivalent circuits when shaded by a portion of the solar cell array in Figure 1. The circuit diagram, Fig. 3 is an output characteristic diagram of the solar cell array, Fig. 4 is a block diagram of an embodiment of the present invention, and Fig. 5 a and b are diagrams when a part of the solar cell array according to the present invention is shaded. FIG. 6 is a diagram showing the output characteristics of the solar cell arrays shown in FIGS. 3 and 5, and FIG. 7 is a diagram showing the temperature characteristics of the solar cell array output. In the figure, 1...Artificial satellite, 2...Solar cell array, 3...Solar cell element in operating state, 4...Solar cell element in non-operating state,
5... Shadow, 6... Shunt diode, 7... Solar cell element, 8... Control section, 9... Array switching section, 10... Reference voltage section, 11, 12... Relay.
Claims (1)
太陽電池素子を複数個直列接続した複数の太陽電
池ブロツクと、これら太陽電池ブロツクの両端を
並列あるいは直列に切換接続して太陽電池アレイ
を構成するリレーと、前記太陽電池アレイの出力
電圧が所定基準電圧より減少したことを検出する
電圧検出手段と、この電圧検出手段がその電圧減
少を検出したとき前記太陽電池ブロツクの並列接
続部分を一部直列接続に切換えるように前記リレ
ーを駆動するリレー駆動手段とを含む太陽電池電
源装置。 A plurality of solar cell blocks each having a plurality of series-connected solar cell elements each connected in parallel with a shunt diode, and a relay that constitutes a solar cell array by switchingly connecting both ends of these solar cell blocks in parallel or series; Voltage detecting means for detecting that the output voltage of the solar cell array has decreased from a predetermined reference voltage, and a part of the parallel connected portions of the solar cell blocks being switched to series connected when the voltage detecting means detects the voltage decrease. and relay driving means for driving the relay.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP18894182U JPS5992544U (en) | 1982-12-14 | 1982-12-14 | solar power supply |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP18894182U JPS5992544U (en) | 1982-12-14 | 1982-12-14 | solar power supply |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5992544U JPS5992544U (en) | 1984-06-23 |
JPH0343821Y2 true JPH0343821Y2 (en) | 1991-09-13 |
Family
ID=30407482
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP18894182U Granted JPS5992544U (en) | 1982-12-14 | 1982-12-14 | solar power supply |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5992544U (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20000019144A (en) * | 1998-09-09 | 2000-04-06 | 이수근 | Portable multi-power device using solar battery |
-
1982
- 1982-12-14 JP JP18894182U patent/JPS5992544U/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS5992544U (en) | 1984-06-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4725740A (en) | DC-AC converting arrangement for photovoltaic system | |
KR101649081B1 (en) | Dynamically reconfigurable photovoltaic system | |
EP0940858A2 (en) | Photovoltaic power generating system | |
JP2000174307A (en) | Solar battery power generation module and device for diagnosing number of connected modules | |
JP2000089841A (en) | Solar generator | |
Case et al. | Minimum component photovoltaic array maximum power point tracker | |
US4551669A (en) | Packaged solar cell apparatus | |
JPH0343821Y2 (en) | ||
JPH0951638A (en) | Distributed power supply | |
JP3147724B2 (en) | Distributed power supply | |
JPH0946926A (en) | Distributed power unit | |
JPH10284746A (en) | Solar power generation system with snow melting function | |
EP1803203B1 (en) | Apparatus and method for charging an accumulator | |
JP3406124B2 (en) | Photovoltaic power generation system with snow melting function | |
JPH03190538A (en) | Storage battery charger | |
JP2833045B2 (en) | Solar cell power supply | |
JPH01318519A (en) | Method of supplying power for controlling solar photovoltaic power generation system | |
JPS5944792B2 (en) | solar cell device | |
JP2000174318A (en) | Solar cell built-in panel and solar cell power-generating system using the same | |
CN113574765A (en) | Solar unit, solar system, control method for solar unit, and control method for solar system | |
JP2001218368A (en) | Power conversion device and photovoltaic power generation system | |
US4744835A (en) | Arrangement for avoiding unwanted degradation in no-load operation of solar cell modules composed of amorphous silicon | |
JPH1140831A (en) | Solar cell power supply device | |
Rolland et al. | Static device for improving a high voltage photovoltaic generator working under dusty conditions | |
Gucher et al. | Mismatch between batteries and two module types pv arrays Interest of DC-DC converters |