JPH0343502A - Pavement method by use of water permeable cement-concrete mixed with steel fiber - Google Patents
Pavement method by use of water permeable cement-concrete mixed with steel fiberInfo
- Publication number
- JPH0343502A JPH0343502A JP17572089A JP17572089A JPH0343502A JP H0343502 A JPH0343502 A JP H0343502A JP 17572089 A JP17572089 A JP 17572089A JP 17572089 A JP17572089 A JP 17572089A JP H0343502 A JPH0343502 A JP H0343502A
- Authority
- JP
- Japan
- Prior art keywords
- water
- mixed
- concrete
- permeable cement
- steel fibers
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000000835 fiber Substances 0.000 title claims abstract description 29
- 229910000831 Steel Inorganic materials 0.000 title claims abstract description 27
- 239000010959 steel Substances 0.000 title claims abstract description 27
- 238000000034 method Methods 0.000 title claims description 6
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 title abstract description 15
- 239000004568 cement Substances 0.000 claims abstract description 29
- 238000005452 bending Methods 0.000 abstract description 17
- 239000000463 material Substances 0.000 abstract description 3
- 238000004321 preservation Methods 0.000 abstract 1
- 238000010586 diagram Methods 0.000 description 5
- 230000035699 permeability Effects 0.000 description 5
- 239000000203 mixture Substances 0.000 description 4
- 230000000694 effects Effects 0.000 description 2
- 238000009472 formulation Methods 0.000 description 2
- 230000000704 physical effect Effects 0.000 description 2
- 239000010935 stainless steel Substances 0.000 description 2
- 229910001220 stainless steel Inorganic materials 0.000 description 2
- 239000004925 Acrylic resin Substances 0.000 description 1
- 229920000178 Acrylic resin Polymers 0.000 description 1
- 229910001335 Galvanized steel Inorganic materials 0.000 description 1
- 239000010426 asphalt Substances 0.000 description 1
- 238000005056 compaction Methods 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 230000008602 contraction Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 239000000839 emulsion Substances 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 239000008397 galvanized steel Substances 0.000 description 1
- 238000006703 hydration reaction Methods 0.000 description 1
- JEIPFZHSYJVQDO-UHFFFAOYSA-N iron(III) oxide Inorganic materials O=[Fe]O[Fe]=O JEIPFZHSYJVQDO-UHFFFAOYSA-N 0.000 description 1
- 239000012466 permeate Substances 0.000 description 1
- 239000004576 sand Substances 0.000 description 1
Landscapes
- Road Paving Structures (AREA)
Abstract
Description
【発明の詳細な説明】
[産業上の利用分野]
本発明は、鋼繊維を混入した透水性セメントコンクリー
トによる舗装方法に関する。DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method of paving with water-permeable cement concrete mixed with steel fibers.
[従来の技術]
近年、急激な都市化に伴い、雨水の浸透しない領域が増
大したため、降雨後短時間に多量の雨水が流出する、い
わゆる都市型洪水が発生し、社会問題となっている。こ
れらの対策として、降った雨水を極力その場で地中に浸
透させることが有効であり、これにより河川の氾濫防止
、植生の地中生態の改善、自然体系の還元を図ることが
できる。[Prior Art] In recent years, rapid urbanization has increased the area where rainwater cannot penetrate, resulting in so-called urban flooding, in which a large amount of rainwater flows out in a short period of time after rainfall, and this has become a social problem. As a countermeasure for these, it is effective to allow rainwater to permeate into the ground as much as possible, which can prevent river flooding, improve the underground ecology of vegetation, and restore the natural system.
この目的で、アスファルト系やセメント系の透水性舗装
が提供されている(例えば特開昭59−150806号
公報など)。For this purpose, asphalt-based and cement-based water permeable pavements have been provided (for example, Japanese Patent Application Laid-open No. 150806/1983).
[発明が解決しようとする課題]
しかし、従来の透水性舗装は、歩道や重交通を対象とし
ており、重交通の車道に対しては、力学特性、耐久性の
諸条件から実用化に至っていない。[Problem to be solved by the invention] However, conventional water permeable pavements are intended for sidewalks and heavy traffic, and have not been put into practical use for heavy traffic roads due to various mechanical properties and durability conditions. .
本発明は、重交通の車道にも耐えられる鋼繊維を混入し
た透水性セメントコンクリートによる舗装方法を提供す
ることを目的としている。The object of the present invention is to provide a method of paving with water-permeable cement concrete mixed with steel fibers that can withstand heavy traffic on roadways.
[課題を解決するための手段]
本発明によれば、水セメント比が25〜40%、細骨材
率が0〜40%及び空隙率が10〜20%に配合された
透水性セメントコンクリートに、防錆加工を施した鋼繊
維を容積で0. 1〜2. 0%混入したものを、路盤
又は路床上に舗装するものである。[Means for Solving the Problems] According to the present invention, permeable cement concrete is mixed with a water-cement ratio of 25 to 40%, a fine aggregate ratio of 0 to 40%, and a porosity of 10 to 20%. , the volume of steel fiber with anti-corrosion treatment is 0. 1-2. 0% mixture is used to pave the roadbed or roadbed.
上記防錆加工を施した鋼繊維には、ステンレス鋼や亜鉛
メツキ加工鋼の、長さが10〜50m1断面積が0.
1〜1. 0!nIAの一般に市販されている公知の繊
維を用いるのが好ましい。The above-mentioned rust-preventing steel fibers include stainless steel or galvanized steel with a length of 10 to 50 m and a cross-sectional area of 0.
1-1. 0! It is preferable to use generally commercially known fibers of nIA.
[作用]
上記のように構成された鋼繊維を用いた透水性セメント
コンクリートによる舗装方法においては、鋼繊維の混入
により曲げ強度、曲げタフネスなどの力学特性がこれを
用いない透水性セメントコンクリートより向上し、車両
荷重による変形や気温変化による伸縮等に起因する亀裂
の発生が防止される。[Function] In the paving method using water-permeable cement concrete using steel fibers configured as described above, the mechanical properties such as bending strength and bending toughness are improved due to the inclusion of steel fibers compared to water-permeable cement concrete that does not use this material. This prevents the occurrence of cracks caused by deformation due to vehicle loads and expansion/contraction due to temperature changes.
また、鋼繊維は防錆加工されているので、透水による発
錆が防止され、錆による鋼繊維の物性の変化が防止され
る。In addition, since the steel fibers have been subjected to a rust-proofing treatment, rusting due to water permeation is prevented, and changes in the physical properties of the steel fibers due to rust are prevented.
[実施例] 以下図面を参照して本発明の詳細な説明する。[Example] The present invention will be described in detail below with reference to the drawings.
本発明による透水性セメントコンクリートは、第1図に
示すように配合されている。なお、鋼繊維には、長さが
10〜50mm、断面積が0. 1〜1、 0InIA
の市販のステンレ鋼繊維が、上記配合例えば0. 5容
積%で配合され、また、脛和剤には、例えばアクリル系
樹脂エマルジョンが用いられている。The water-permeable cement concrete according to the present invention is mixed as shown in FIG. Note that the steel fiber has a length of 10 to 50 mm and a cross-sectional area of 0. 1-1, 0InIA
Commercially available stainless steel fibers with the above formulation, e.g. For example, an acrylic resin emulsion is used in the shin patch.
上記水セメント比は、重量比であり、この比が25%以
下では、水和反応に必要な水量が不足して所要の強度が
得られなく、40%以上では、セメントと水との混合が
余りに流動性をおびて骨材に付着しなくなり、上記のよ
うに、例えば32゜8%に採られている。The above water-cement ratio is a weight ratio, and if this ratio is less than 25%, the amount of water required for the hydration reaction will be insufficient and the required strength will not be obtained, and if it is more than 40%, the mixing of cement and water will be difficult. It becomes too fluid and does not adhere to the aggregate, so as mentioned above, it is set at 32°8%, for example.
また、細骨材率とは、細骨材(1)子細骨材(2)と細
骨材(1)子細骨材(2)十粗骨材との容積率であり、
この率が40%以上では、水の通路を細骨材(砂)が埋
めて透水性が得られないので、上記のように、例えば2
5.4%に採られている。In addition, the fine aggregate ratio is the volume ratio of fine aggregate (1) fine aggregate (2) and fine aggregate (1) fine aggregate (2) coarse aggregate,
If this ratio is 40% or more, fine aggregate (sand) fills the water passages and water permeability cannot be obtained.
It was adopted by 5.4%.
また、空隙率とは、透水性コンクリートの中に空間が占
める率であり、この率が10%以下では、所定の透水性
が得られず、20%以上では、強度が不足するので、上
記のように、例えば14%に採られている。In addition, porosity is the ratio of space occupied in water-permeable concrete. If this ratio is less than 10%, the specified water permeability cannot be obtained, and if it is more than 20%, the strength will be insufficient. For example, 14% of respondents said that
また、鋼繊維の混入率は、第2図に示す曲げタフネス特
性の試験結果から判るように、曲げタフネス(角柱材料
を2点支持し、その荷重−撓み曲線を調べ、2点支持の
スパンをlとし、撓みが(A’/150)になるまでの
荷重−撓み曲線の面積を曲げタフネスという)は、鋼繊
維を混入しない、いわゆるプレーン透水性セメントコン
クリートAに対し、鋼繊維を0.1%、0.5%及び2
%混入したそれぞれの透水性セメントコンクリートB1
C及びDにおいて、混入率0. 1%以下では、余り効
果がなく、また、2%以上では混率0゜5%に比べて曲
げ強度及び曲げタフネスが低下しており余り効果がない
ので、上記のように、例えば085%に採られている。In addition, the mixing rate of steel fibers can be determined by bending toughness (a prismatic material is supported at two points, the load-deflection curve is examined, and the span of the two-point support is 1, and the area of the load-deflection curve until the deflection becomes (A'/150) is called bending toughness). %, 0.5% and 2
% of each water permeable cement concrete B1 mixed with
In C and D, the contamination rate is 0. If it is less than 1%, it is not very effective, and if it is more than 2%, the bending strength and bending toughness are lower than that of 0.5%, so it is not very effective. It is being
上記のように配合されている空隙率14%、鋼繊維混入
率0. 5%の透水性セメントコンクリートCにおいて
は、曲げ強度、曲げタフネス及び透水係数などの力学、
物理的特性は、次のように改善される。The porosity is 14% and the steel fiber content is 0. For 5% permeable cement concrete C, mechanics such as bending strength, bending toughness and permeability coefficient,
Physical properties are improved as follows.
第3図には、空隙率を変化した場合のプレーン透水性セ
メントコンクリートAと鋼繊維0.5%混入透水性セメ
ントコンクリートCとの曲げ強度の試験結果が示されて
いる。この結果から判るように空隙率14%において、
曲げ強度は、コンクリートAが49 kg f /cn
fに対し、コンクリートCが51.7kgf/cfに増
大する。上記の空隙率を変化させることにより、所要の
曲げ強度40〜60kgf/atが得られる。FIG. 3 shows the bending strength test results of plain permeable cement concrete A and permeable cement concrete C mixed with 0.5% steel fiber when the porosity was changed. As can be seen from this result, at a porosity of 14%,
The bending strength of concrete A is 49 kgf/cn
Concrete C increases to 51.7 kgf/cf with respect to f. By changing the above-mentioned porosity, a required bending strength of 40 to 60 kgf/at can be obtained.
第2図において、曲げタフネスは、コンクリートCは、
コンクリートAに対し約3倍に改善されている。In Figure 2, the bending toughness of concrete C is
The improvement is about three times that of concrete A.
第4図には、空隙率を変化した場合の透水係数の試験結
果が示されている。この結果から判るように、空隙率1
4%の鋼繊維0,5%混入透水性コンクリートCの透水
係数は、約4 X i O−2am/secで、好まし
い透水係数I X L O−2cm/ s eC以上の
値が得られる。FIG. 4 shows the test results of the hydraulic conductivity when the porosity was changed. As can be seen from this result, the porosity is 1
The permeability coefficient of the water permeable concrete C containing 0.5% of 4% steel fibers is about 4 X i O-2 am/sec, which is a value higher than the preferred permeability coefficient I X L O-2 cm/s eC.
舗装に際し、鋼繊維混入透水性セメントコンクリートの
舗装厚は、交通量の区分に応じて第5図に示した版厚に
決められる。When paving, the thickness of the permeable cement concrete mixed with steel fibers is determined according to the traffic volume as shown in Figure 5.
また、第6図に示すように、版厚Tの全厚を、鋼繊維混
入透水性セメントコンクリートCとし、又は第7図に示
すように、版厚Tの上層を鋼繊維混入透水性セメントコ
ンクリートCとし、下層をプレーン透水性セメントコン
クリートAとし、若しくは第8図に示すように、版厚T
の上層をプレーン透水性セメントコンクリートAとし、
下層を鋼繊維混入透水性セメントコンクリートCとする
ことができる。これらのうち、第6図及び第7図に示す
舗装は、表面に鋼繊維が現れるので、そのため滑り抵抗
が大きく、自動車専用道路に最適であり、第8図に示す
舗装は、表面に鋼繊維が現れないので、歩行者と車の混
在する道路に最適である。In addition, as shown in Fig. 6, the entire thickness of the plate thickness T is made of water permeable cement concrete C mixed with steel fibers, or as shown in Fig. 7, the upper layer of the plate thickness T is made of water permeable cement concrete mixed with steel fibers. C, and the lower layer is plain permeable cement concrete A, or as shown in Figure 8, the plate thickness is T.
The upper layer is plain permeable cement concrete A,
The lower layer can be made of water-permeable cement concrete C mixed with steel fibers. Among these, the pavement shown in Figures 6 and 7 has steel fibers on the surface, so it has high slip resistance and is ideal for automobile roads, and the pavement shown in Figure 8 has steel fibers on the surface. It is ideal for roads with a mixture of pedestrians and cars.
施工に際し、生コンプラント等で配合混練りした鋼繊維
混入透水性セメントコンクリートCを、ダンプトラック
で現場に運搬し、路盤又は路床E上にペーパで敷均し、
ローラで転圧したのち、養生を行う。During construction, permeable cement concrete C mixed with steel fibers mixed with ready-mixed concrete, etc. is transported to the site by dump truck, and spread with paper on the roadbed or subgrade E.
After compaction with rollers, curing is performed.
[発明の効果]
本発明は、以上説明したように構成されているので、以
下に記載されるような効果を奏する。[Effects of the Invention] Since the present invention is configured as described above, it produces effects as described below.
曲げ強度、曲げタフネスが大きく、かつ、滑り抵抗が大
きいので、重交通の車道舗装に最適な工法である。It has high bending strength, bending toughness, and high slip resistance, making it the most suitable method for paving roads with heavy traffic.
また、適切な空隙率を有するため、雨水を地中に還元し
、植生を改善し、河川の氾濫を防止に効果的であり、ま
た、路面排水施設を不要にすることもできる。In addition, since it has an appropriate porosity, it is effective in returning rainwater to the ground, improving vegetation, and preventing river flooding, and can also eliminate the need for road drainage facilities.
第1図は本発明を実施する配合例を説明する図面、第2
図は曲げタフネス特性図、第3図は空隙率〜曲げ強度特
性図、第4図は空隙率〜透水係数特性図、第5図は交通
量区分と版厚の関係を説明する図、第6図ないし第8図
はそれぞれ異なる舗装態様の鉛直断面図である。
A・・・プレーン透水性セメントコンクリートC・・・
鋼繊維0.5%混入透水性セメントコンクリート
E ・
・路盤又は路床Fig. 1 is a drawing explaining a formulation example for carrying out the present invention, Fig. 2
The figure is a bending toughness characteristic diagram, Figure 3 is a porosity-bending strength characteristic diagram, Figure 4 is a porosity-permeability coefficient characteristic diagram, Figure 5 is a diagram explaining the relationship between traffic volume classification and plate thickness, and Figure 6 is a diagram explaining the relationship between traffic volume classification and plate thickness. Figures 8 to 8 are vertical sectional views of different pavement types. A...Plain permeable cement concrete C...
Permeable cement concrete mixed with 0.5% steel fiber E・・Roadbed or roadbed
Claims (1)
び空隙率が10〜20%に配合された透水性セメントコ
ンクリートに、防錆加工を施した鋼繊維を容積で0.1
〜2.0%混入したものを、路盤又は路床上に舗装する
ことを特徴とする鋼繊維を混入した透水性セメントコン
クリートによる舗装方法。Permeable cement concrete with a water-cement ratio of 25 to 40%, a fine aggregate ratio of 0 to 40%, and a porosity of 10 to 20% is mixed with 0.1 volume of rust-preventing steel fibers.
A method of paving using water-permeable cement concrete mixed with steel fibers, characterized in that the concrete containing ~2.0% of steel fibers is paved on a roadbed or roadbed.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP17572089A JPH0343502A (en) | 1989-07-10 | 1989-07-10 | Pavement method by use of water permeable cement-concrete mixed with steel fiber |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP17572089A JPH0343502A (en) | 1989-07-10 | 1989-07-10 | Pavement method by use of water permeable cement-concrete mixed with steel fiber |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0343502A true JPH0343502A (en) | 1991-02-25 |
Family
ID=16001061
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP17572089A Pending JPH0343502A (en) | 1989-07-10 | 1989-07-10 | Pavement method by use of water permeable cement-concrete mixed with steel fiber |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0343502A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5403117A (en) * | 1992-04-09 | 1995-04-04 | Sumitomo Rubber Industries, Ltd. | Pavement, a paving material and methods of producing said pavement and said paving material |
KR100457645B1 (en) * | 2002-04-29 | 2004-11-17 | 이광영 | air emiting hat |
JP2015010918A (en) * | 2013-06-28 | 2015-01-19 | 鹿島建設株式会社 | Method for estimating durability of concrete |
CN111233391A (en) * | 2020-01-16 | 2020-06-05 | 苏州望意阳环保科技有限公司 | Preparation method of steel fiber permeable pavement |
-
1989
- 1989-07-10 JP JP17572089A patent/JPH0343502A/en active Pending
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5403117A (en) * | 1992-04-09 | 1995-04-04 | Sumitomo Rubber Industries, Ltd. | Pavement, a paving material and methods of producing said pavement and said paving material |
KR100457645B1 (en) * | 2002-04-29 | 2004-11-17 | 이광영 | air emiting hat |
JP2015010918A (en) * | 2013-06-28 | 2015-01-19 | 鹿島建設株式会社 | Method for estimating durability of concrete |
CN111233391A (en) * | 2020-01-16 | 2020-06-05 | 苏州望意阳环保科技有限公司 | Preparation method of steel fiber permeable pavement |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Ghafoori et al. | Development of no-fines concrete pavement applications | |
JP3280847B2 (en) | Permeable concrete pavement method | |
Tennis et al. | Pervious concrete pavements | |
AM et al. | Development of high quality pervious concrete specifications for Maryland conditions. | |
Garber et al. | Guide to cement-based integrated pavement solutions. | |
Zhuge | A review of permeable concrete and its application to pavements | |
Damrongwiriyanupap et al. | Application of roller compacted concrete in Colorado’s roadways | |
JPH0343502A (en) | Pavement method by use of water permeable cement-concrete mixed with steel fiber | |
JP4555460B2 (en) | Permeable block pavement and construction method of permeable block pavement | |
KR19980068367A (en) | Permeable Color Concrete Packaging Method | |
Indhu et al. | Experimental investigation of top mix permeable concrete on pedestrian pathway | |
Paglia et al. | The concrete and asphalt road pavements: an overview | |
Garg | Compressive strength enhancement of pervious concrete using polymer fiber | |
Bakshi et al. | Pervious Concrete | |
Paglia et al. | The concrete versus asphalt roadways: case studies | |
Williams et al. | Roller compacted concrete for roadway pavement | |
Murata et al. | Evaluation of porous concrete pavements in japan | |
Rahman | Development of Durability Performance Related Test Methods for Pervious Concrete Pavement | |
Schaefer et al. | Pervious concrete overlay design, construction and performance | |
Chaurasiya | Water Absorbing Pavement: A Preliminary study for New Age Concrete | |
Springenschmid et al. | Recent developments in the design and construction of concrete pavements for german expressways (autobahns) | |
Wei et al. | Research on permeable concrete road construction technology and quality inspection | |
Concrete | ACPT | |
Ludwig et al. | Application of roller-compacted concrete (RCC) technology to roadway paving | |
Collins et al. | THE DESIGN AND CONSTRUCTION OF CONCRETE ROADS OVERSEAS. |