JPH0342604A - Production of light transmission body made of plastic - Google Patents
Production of light transmission body made of plasticInfo
- Publication number
- JPH0342604A JPH0342604A JP1175512A JP17551289A JPH0342604A JP H0342604 A JPH0342604 A JP H0342604A JP 1175512 A JP1175512 A JP 1175512A JP 17551289 A JP17551289 A JP 17551289A JP H0342604 A JPH0342604 A JP H0342604A
- Authority
- JP
- Japan
- Prior art keywords
- monomer
- polymer
- refractive index
- outer periphery
- index distribution
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)
Abstract
Description
【発明の詳細な説明】
[産業上の利用分野]
本発明は、光集束性レンズ、光集束性ファイバー等に利
用される、プラスチック柱状体の中心から外周に向かっ
て連続的な屈曲率分布を有するプラスチック光伝送体の
製造方法に関するものである。Detailed Description of the Invention [Industrial Application Field] The present invention provides a continuous curvature distribution from the center to the outer periphery of a plastic columnar body used in light-focusing lenses, light-focusing fibers, etc. The present invention relates to a method of manufacturing a plastic optical transmission body having the following properties.
[従来の技術〕
柱状体の中心から外周に向かって連続的な屈曲率分布を
有する光伝送体は、すでに特公昭47−816号公報に
おいてガラス製のものが提案されている。しかしながら
、ガラス製の屈折率分布型光伝送体は、生産性が低く、
高価なものとなり、かつ屈曲性も乏しいという問題点を
有している。[Prior Art] As an optical transmission body having a continuous curvature distribution from the center to the outer periphery of a columnar body, one made of glass has already been proposed in Japanese Patent Publication No. 47-816. However, the productivity of gradient index optical transmission bodies made of glass is low;
It has the problems of being expensive and having poor flexibility.
このようなガラス製の屈折率分布型光伝送体に対し、プ
ラスチック製の屈折率分布型光伝送体を製造する方法が
いくつか提案されている。In contrast to such a gradient index optical transmission body made of glass, several methods have been proposed for manufacturing a gradient index optical transmission body made of plastic.
これらプラスチック柱状体の中心から外周に向かって連
続的な屈折率分布を有するプラスチック光伝送体の製造
方法を大別すると、(1)イオン架橋重合体よりなる合
成樹脂棒の中心軸よりその表面に向かって金属イオンを
連続的に濃度変化をもたせるようにしたもの(特公昭4
726913号公報)、(2)屈折率の異なる2種以上
の透明な重合体の混合物より製造された合成樹脂製柱状
体を特定の溶剤で処理し、前記合成樹脂体の構成収骨の
少なくとも1つを部分的に溶解除去することによって製
造するもの(特公昭47−28059号公報)、(3)
2種の屈折率の異なるモノマー混合物を、重合方法を工
夫して、表面から内部にわたり連続的に屈折率分布がで
きるように柱状に重合付型するもの(特公昭54−30
301号公報)、(4)柱状の架橋重合体の表面より屈
折率の低いモノマーを内部へ向かって拡散させて、表面
より内部にわたり、このモノマーの含有率が連続的に変
化するように配置したのちに重合して屈折率分布をもた
せるようにしたもの(特公昭52−5857号公報、特
公昭56−37521号公報)、および(5)反応性を
有する柱状重合体の表面より内部に向かって、重合体よ
りも低い屈折率を有する低分子化合物を拡散、反応させ
て、表面より内部にわたり連続的に屈折率分布をもたせ
るようにするもの(特公昭57−29682号公報)等
である。The manufacturing method of plastic optical transmitters having a continuous refractive index distribution from the center to the outer circumference of these plastic columnar bodies can be roughly divided into: (1) from the central axis of a synthetic resin rod made of an ionically crosslinked polymer to its surface; A device in which the concentration of metal ions is continuously changed toward
726913), (2) A synthetic resin columnar body manufactured from a mixture of two or more transparent polymers having different refractive indexes is treated with a specific solvent, and at least one of the constituent bones of the synthetic resin body is treated with a specific solvent. (Japanese Patent Publication No. 47-28059), (3)
A method in which a mixture of two monomers with different refractive indexes is polymerized into a columnar shape by devising a polymerization method to create a continuous refractive index distribution from the surface to the inside (Japanese Patent Publication No. 54-30
301 Publication), (4) A monomer having a lower refractive index than the surface of the columnar crosslinked polymer is diffused toward the inside, and the content of this monomer is arranged so as to change continuously from the surface to the inside. Those that are later polymerized to give a refractive index distribution (Japanese Patent Publication No. 52-5857, Japanese Patent Publication No. 56-37521), and (5) Reactive columnar polymers from the surface to the inside. , a method in which a low-molecular compound having a refractive index lower than that of the polymer is diffused and reacted to provide a continuous refractive index distribution from the surface to the interior (Japanese Patent Publication No. 57-29682).
これら屈折率分布型柱状体の従来法の共通した問題点と
しては、柱状体中への各種化合物の拡散あるいは抽出な
どの工程に長時間を要することや長さが限定されるなど
から、生産工程は断続的であり、換言すればバッチ式生
産方法であり、生産性が極めて悪いのと同時に製造条件
の選定が極めて難しかったり、再現性が得られない等、
工業化技術としては、それぞれ問題点を有する製造方法
である。Common problems with conventional methods for producing these gradient index columnar bodies include the long time it takes to diffuse or extract various compounds into the columnar bodies, and the length of the columnar bodies is limited. It is an intermittent production method, in other words, it is a batch production method, which has extremely low productivity, and at the same time, it is extremely difficult to select manufacturing conditions and cannot achieve reproducibility.
As industrial technologies, each manufacturing method has its own problems.
[発明が解決しようとする問題点]
本発明は、上記従来技術が抱えていた断続的な生産工程
による不合理性を解決し、ガラスあるいはプラスチック
光ファイバーと同様な連続的な生産を可能とするもので
ある。[Problems to be Solved by the Invention] The present invention solves the irrationality caused by the intermittent production process of the above-mentioned prior art, and enables continuous production similar to glass or plastic optical fibers. It is.
「問題点を解決するための手段]
すなわち、本発明の要旨とするところは、低屈折率の重
合体(A)を中空状に賦形し、重合体(八)よりも屈折
率の高い単量体(B)を与える単量体(C)単独、又は
単量体(C)と透明な重合体を形成し得る単量体(D)
を含んだ単量体混合物と透明な重合体(E)とからなる
重合性組成物を中空の内部に充たし、糸状としたその後
、単量体(C)を重合体(A)中に拡散させることによ
って、糸状の中心部から外周部へ単量体(C)及び必要
により単量体(D)の連続的な濃度分布を与えた後、あ
るいは与えながら、これら未重合の単量体を重合するこ
とを特徴とする柱状物の中心から外周に向かって連続的
な屈折率分布を付与せしめることを特徴とするプラスチ
ック光伝送体の製造方法にある。"Means for Solving the Problems" That is, the gist of the present invention is to form a polymer (A) with a low refractive index into a hollow shape, and form a polymer with a higher refractive index than the polymer (8). Monomer (C) alone that provides polymer (B), or monomer (D) that can form a transparent polymer with monomer (C)
A polymerizable composition consisting of a monomer mixture containing a transparent polymer (E) and a transparent polymer (E) is filled into the hollow interior to form a thread, and then the monomer (C) is diffused into the polymer (A). After or while providing a continuous concentration distribution of the monomer (C) and, if necessary, the monomer (D) from the center to the outer periphery of the filament, these unpolymerized monomers are polymerized. A method of manufacturing a plastic light transmitting body is characterized in that a continuous refractive index distribution is imparted from the center to the outer periphery of a columnar object.
本発明の屈折率分布型プラスチック光伝送体の製造方法
の一例を第1図に示した。まず、透明な比較的低屈折率
の重合体(A)を押し出しノズルヘッド(5)から中空
系状に押出す。この中空糸状体の中空部に、重合体(A
)よりも屈折率の高い重合体(B)を与える単量体(C
)又は該単量体(C) と透明な重合体を形成し得る他
の単量体(D)との単量体混合物と透明な重合体(E)
との混合物をシリンダー(1)に仕込み、ヒーター(3
)で加熱し、ピストン(4)で定量的に混練部を通ずこ
とによって均一な組成物としたものを押出して充填する
。次いでこの押出物を円柱状の形状に保ちながら、定速
度で引上げながら保温基(7)内へ導き、単量体(C)
又は単量体(C)と単量体(D)とを重合体(A)の中
空糸(6)の壁部へ拡散させて、柱状体の中心部からそ
の外周に向って屈折率が低くなるような屈折率分布を与
えながら、又は与えた後、活性光線照射部(8)に導き
、未重合の単量体を重合固化させて、ニップローラー(
10)を径へ巻取りドラム(11)に巻取ることによっ
て目的とする屈折率分布型プラスチック光伝送体を得る
。この際、保温基(7)の温度コントロール性の向上、
及び活性光線の照射効率を高めるため、ガス導入孔(9
)より窒素、アルゴン等の気体を導入してやるのがよい
。An example of the method for manufacturing the gradient index plastic optical transmission body of the present invention is shown in FIG. First, a transparent polymer (A) having a relatively low refractive index is extruded from an extrusion nozzle head (5) into a hollow system. The polymer (A
) gives a polymer (B) with a higher refractive index than the monomer (C
) or a monomer mixture of the monomer (C) and another monomer (D) capable of forming a transparent polymer, and a transparent polymer (E)
A mixture of
) and quantitatively passed through a kneading section with a piston (4) to form a uniform composition, which is then extruded and filled. Next, while maintaining this extrudate in a cylindrical shape, it is pulled up at a constant speed and introduced into the heat-retaining group (7), and the monomer (C)
Alternatively, the monomer (C) and the monomer (D) are diffused into the wall of the hollow fiber (6) of the polymer (A), so that the refractive index decreases from the center of the columnar body toward the outer periphery. While or after giving a refractive index distribution such that
10) is wound around the drum (11) to obtain the desired graded index plastic optical transmission body. At this time, improving the temperature controllability of the heat retaining base (7),
In order to increase the irradiation efficiency of actinic rays, gas introduction holes (9
) It is better to introduce a gas such as nitrogen or argon.
本発明を実施するに際して用いる透明な重合体(A)の
具体例としてはポリメチルメタクリレートをはじめとす
るアクリル系重合体、ポリスチレンをはしめとするスチ
レン系重合体、ポリカーボネート類、ポリフルオロアル
キル(メタ)アクリレートの単独重合体又は共重合体、
フッ化ビニルデンとテトラフルオロエチレンを主体とす
る共重合体、パーフルオロ2.2−ジメチル−L3−ジ
オキゾールと他の弗素含有単量体との共重合体等を挙げ
ることができ、これらの重合体は押出成形により透明な
中空糸状物を形成できるものであることが必要である。Specific examples of the transparent polymer (A) used in carrying out the present invention include acrylic polymers including polymethyl methacrylate, styrenic polymers including polystyrene, polycarbonates, and polyfluoroalkyl (meth). Acrylate homopolymers or copolymers,
Examples include copolymers mainly composed of vinyldene fluoride and tetrafluoroethylene, copolymers of perfluoro 2,2-dimethyl-L3-dioxole and other fluorine-containing monomers, etc. It is necessary that a transparent hollow fiber-like product can be formed by extrusion molding.
本発明を実施するに際して重合体(A)よりも高い屈折
率の重合体を作り得る単量体(C)の具体例としてはメ
チル(メタ)アクリレート、ベンジル(メタ)アクリレ
ート、シクロヘキシル(メタ)アクリレート、アダマン
チル(メタ)アクリレート、ジビニルベンゼン、n−ブ
チル(メタ)アクリレート等を挙げることができ、これ
らの単量体を挙げることができ、これら単量体(C)は
その重合体の屈折率が重合体(A)の屈折率に対し0.
01以上、好しくは0.03以上大きなものを選定する
のが好しい。Specific examples of the monomer (C) that can produce a polymer with a higher refractive index than the polymer (A) when carrying out the present invention include methyl (meth)acrylate, benzyl (meth)acrylate, and cyclohexyl (meth)acrylate. , adamantyl (meth)acrylate, divinylbenzene, n-butyl (meth)acrylate, etc., and these monomers (C) have a refractive index of the polymer. 0.0 with respect to the refractive index of the polymer (A).
It is preferable to select a value larger than 0.01, preferably larger than 0.03.
本発明を実施するに際し、必要により用いる単量体(D
)としては単量体(C)に示した単量体と同一の単量体
を用いることができる。この場合単量体(D)は単量体
(C)とは異った屈折率の重合体を作り得るものを用い
ることができ、単量体(C)と単量体(D)との単量体
混合物を用いることにより柱状体の中心部を外周部との
屈折率差の大きな屈折率分布型プラスチック光伝送体と
なし得ること、或いは二次曲線分布型の明確な屈折率分
布型プラスチック光伝送体を得ることができるようにな
る。When carrying out the present invention, monomers (D
) can be the same monomer as the monomer shown in monomer (C). In this case, the monomer (D) can be one that can form a polymer with a different refractive index from that of the monomer (C), and the monomer (C) and monomer (D) By using a monomer mixture, the center of the columnar body can be made into a refractive index distribution type plastic optical transmitter with a large refractive index difference from the outer periphery, or a refractive index distribution type plastic with a clear quadratic curve distribution type can be formed. It becomes possible to obtain optical transmission bodies.
単量体(C)又は単量体(C)と単量体(’D )との
単量体混合物を併用する重合体(E)としては、中空糸
状物を作るのに用いた重合体(A)と同一の重合体を用
いることができる。屈折率分布が二次曲線分布に近似の
屈折率分布型プラスチック光伝送体を得るには重合体1
’)としては重合体(A)の屈折率が同−又はぼり同一
の屈折率の重合体を用いるのがよい。The polymer (E) used in combination with monomer (C) or a monomer mixture of monomer (C) and monomer ('D) is the polymer (E) used to make the hollow fiber material ( The same polymers as in A) can be used. To obtain a refractive index distribution type plastic optical transmitter whose refractive index distribution approximates a quadratic curve distribution, polymer 1 is used.
As '), it is preferable to use a polymer having the same or almost the same refractive index as the polymer (A).
本発明の方法によると、従来の屈折率分布型プラスチッ
ク光伝送体の製造法とは異なり、その製造工程を連続型
とすることが極めて容易であり、また屈折率分布付与の
ための化合物の柱状物の揮散、抽出などの不都合で繁雑
な工程を用いる必要がなく、また均一な屈折率分布を備
えた屈折率分布型プラスチック光伝送体を作り得るとい
う大きな特徴を備えている。According to the method of the present invention, unlike the conventional method for manufacturing a refractive index distribution type plastic optical transmitter, it is extremely easy to make the manufacturing process continuous, and the columnar shape of the compound for imparting the refractive index distribution is very easy. It has the great feature that there is no need to use inconvenient and complicated processes such as volatilization and extraction of substances, and that it is possible to produce a refractive index distribution type plastic optical transmission body with a uniform refractive index distribution.
以下実施例により本発明を更に詳細に説明する。The present invention will be explained in more detail with reference to Examples below.
実施例1
ポリ−(2,2,3,3−テトラフルオロプロピルメタ
クリレート) (Nn =1.423、〔η) 0.5
5(M1!に、25°Cにて測定)を220°Cで、外
径1、OO恥、内径0.5 mmの中空状に賦形し、そ
の中空の内部にポリ−(2,2,3,3−テトラフルオ
ロプロピルメタクリレート) (ND=1.423、〔
η) 2.98(MEK、 25℃にて測定)50重
量部、メチルメタクリレート50重量部(該単量体の重
合体の屈折率ND=1.489)、1−ヒドロキシシク
ロへキシルフェニルケトン1重量部を第1図に示すシリ
ンダー(1)内に均一に混合して挿入し、次いで混練部
(2)を通しノズル(5)より押し出す。こうして複合
ストランドファイバーを得たのち、このストランドファ
イバー(6)を70°CのN2ガスが51!、/min
で流れている保温基(7)に導き、3分後に20+10
ケごカルランプ8本より紫外線を3分間照射して光重合
して直径1.0 mmの屈折率分布型光伝送体を得た。Example 1 Poly-(2,2,3,3-tetrafluoropropyl methacrylate) (Nn = 1.423, [η) 0.5
5 (measured on M1! at 25°C) at 220°C into a hollow shape with an outer diameter of 1, an inner diameter of 0.5 mm, and poly(2,2 ,3,3-tetrafluoropropyl methacrylate) (ND=1.423, [
η) 2.98 (MEK, measured at 25°C) 50 parts by weight, 50 parts by weight of methyl methacrylate (refractive index of the monomer polymer ND = 1.489), 1-hydroxycyclohexylphenyl ketone 1 Parts by weight are uniformly mixed and inserted into the cylinder (1) shown in FIG. 1, and then passed through the kneading section (2) and extruded from the nozzle (5). After obtaining a composite strand fiber in this way, this strand fiber (6) was heated to 70°C with N2 gas at 51! ,/min
20 + 10 after 3 minutes.
The product was photopolymerized by irradiation with ultraviolet rays from 8 Kegokar lamps for 3 minutes to obtain a gradient index optical transmission body with a diameter of 1.0 mm.
この光伝送体の屈折率分布をインターフアコ干渉顕微鏡
で測定したところ、中心屈折率が1、452、外周部の
屈折率が1.428であり、中心から外周部にかけて連
続的に変化していた。When the refractive index distribution of this optical transmission body was measured using an interfaco interference microscope, the refractive index at the center was 1,452 and the refractive index at the outer periphery was 1.428, which changed continuously from the center to the outer periphery. .
また、この光伝送体を3.2 mmの長さにその両端を
研磨し画像を観察したところ、倒立実像が観察された。Furthermore, when both ends of this optical transmission body were polished to a length of 3.2 mm and an image was observed, an inverted real image was observed.
実施例2
ポリメチルメタクリレート(ND=1.489、〔η)
0.36 (MEK、 25°Cにて測定)を23
0°Cで、外径0.95mm、内径0.78mmの中空
状に賦形し、その中空の内部にポリメチルメタクリ0
レート(Nn −1,489、〔η) 0.36 (
MEK、 25°Cにて測定)50重量部、ヘンシルメ
タクリレート40重量部(該単量体の重合体屈折率N、
−1,568Lメチルメタクリレ一ト10重量部(該単
量体の重合体屈折率ND−1,489) 、1ヒドロキ
シシクロへキシルフェニルケトン1重量部を第1図に示
すシリンダー(1)内に均一に混合して挿入し、次いで
混練部(2)を通しノズル(5)より押し出す。こうし
て複合ストランドファイバーを得たのち、このストラン
ドファイバー(6)を70°CのN2ガスが542/m
inで流れている保温基(7)に導き、3分後に20匈
のケミカルランプ8本で紫外線を3分間照射して光重合
して直径1.0mmの屈折率分布型光伝送体を得た。Example 2 Polymethyl methacrylate (ND=1.489, [η)
0.36 (MEK, measured at 25°C) to 23
A hollow shape with an outer diameter of 0.95 mm and an inner diameter of 0.78 mm was formed at 0°C, and polymethyl methacrylate (Nn -1,489, [η) 0.36 (
MEK, measured at 25°C) 50 parts by weight, Hensyl methacrylate 40 parts by weight (polymer refractive index N of the monomer,
-10 parts by weight of 1,568L methyl methacrylate (polymer refractive index of the monomer ND-1,489) and 1 part by weight of 1-hydroxycyclohexylphenyl ketone were placed in the cylinder (1) shown in FIG. The mixture is uniformly mixed and inserted into the kneading section (2), and then extruded from the nozzle (5). After obtaining a composite strand fiber in this way, this strand fiber (6) was heated to 542/m of N2 gas at 70°C.
After 3 minutes, it was irradiated with ultraviolet rays for 3 minutes using eight 20-liter chemical lamps for photopolymerization to obtain a gradient index optical transmission body with a diameter of 1.0 mm. .
この光伝送体の屈折率分布をインターフアコ干渉顕微鏡
で測定したところ、中心屈折率が1.515、外周部の
屈折率が1.495であり、中心から外周部にかけて連
続的に変化していた。When the refractive index distribution of this optical transmission body was measured using an interfaco interference microscope, the refractive index at the center was 1.515 and the refractive index at the outer periphery was 1.495, and it changed continuously from the center to the outer periphery. .
また、この光伝送体を2.7 m+nの長さにその両1
端を研磨し画像を観察したところ、倒立実像が観察され
た。Furthermore, when both ends of this optical transmission body were polished to a length of 2.7 m+n and the image was observed, an inverted real image was observed.
Claims (1)
にその重合体よりも屈折率の高い重合体(B)をあたえ
る単量体(C)単独、又は単量体(C)と透明な重合体
を形成し得る単量体(D)を含んだ単量体混合物と重合
体(D)とからなる重合性組成物を中空の内部に充填し
、糸状としその後、単量体(C)を重合体(A)中に拡
散させることによって、糸状の中心部から外周部へ単量
体(C)の連続的な濃度分布を与えた後、あるいは与え
ながら、未重合の単量体を重合することを特徴とする中
心から外周に向かって連続的な屈折率分布を有するプラ
スチック光伝送体の製造方法。A monomer (C) alone, or a monomer (C) that shapes a low refractive index polymer (A) into a hollow shape and simultaneously provides a polymer (B) with a higher refractive index than that polymer. A polymerizable composition consisting of a monomer mixture containing a monomer (D) capable of forming a transparent polymer and a polymer (D) is filled into a hollow interior to form a thread, and then the monomer After or while providing a continuous concentration distribution of monomer (C) from the center to the outer periphery of the filament by diffusing (C) into the polymer (A), unpolymerized monomer 1. A method for producing a plastic light transmitting body having a continuous refractive index distribution from the center to the outer periphery, the method comprising polymerizing the body.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1175512A JPH0342604A (en) | 1989-07-10 | 1989-07-10 | Production of light transmission body made of plastic |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1175512A JPH0342604A (en) | 1989-07-10 | 1989-07-10 | Production of light transmission body made of plastic |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0342604A true JPH0342604A (en) | 1991-02-22 |
Family
ID=15997349
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1175512A Pending JPH0342604A (en) | 1989-07-10 | 1989-07-10 | Production of light transmission body made of plastic |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0342604A (en) |
-
1989
- 1989-07-10 JP JP1175512A patent/JPH0342604A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5390274A (en) | Distributed graded index type optical transmission plastic article and method of manufacturing same | |
JPS61130904A (en) | Method for producing opticalt ransmission body consisting of synthetic resin | |
JPH0342604A (en) | Production of light transmission body made of plastic | |
JPH0365904A (en) | Production of light transmission body made of plastic | |
JPH03192310A (en) | Manufacture of plastic optical transmission body | |
JPH0233104A (en) | Manufacture of plastic optical transmission body | |
JPH10123336A (en) | Production of optical material having gradient refractive index | |
JPS62215204A (en) | Production of plastic optical transmission body | |
JP2005526278A (en) | Manufacturing method of plastic optical fiber preform | |
JPH0381703A (en) | Production of plastic optical transmission body | |
JPH0381704A (en) | Production of plastic optical transmission body | |
US6013205A (en) | Method and apparatus for manufacturing distributed refractive index plastic optical-fiber | |
JPH0364705A (en) | Production of plastic optical transmission body | |
JPH0364704A (en) | Production of plastic optical transmission body | |
JPH01265207A (en) | Production of light transmission body | |
JP3263195B2 (en) | Manufacturing method of refractive index distribution type plastic molding | |
JPH09218311A (en) | Production of preform for graded index plastic optical fiber and apparatus therefor | |
JPH0378706A (en) | Production of plastic optical transmission body | |
JPH0364706A (en) | Plastic optical transmission body | |
JPS62108208A (en) | Plastic optical transmission body and its production | |
JPH09138313A (en) | Production of distributed refractive index plastic optical fiber | |
JPH11153717A (en) | Production of graded index optical fiber | |
JP3066865B2 (en) | Method for manufacturing plastic optical transmission body | |
JPH03290605A (en) | Production of plastic optical transmission body | |
JPH09138312A (en) | Production of preform for distributed refractive index plastic optical fiber |