[go: up one dir, main page]

JPH0342195A - Flux-cored wire for cr-base stainless steel welding - Google Patents

Flux-cored wire for cr-base stainless steel welding

Info

Publication number
JPH0342195A
JPH0342195A JP17537089A JP17537089A JPH0342195A JP H0342195 A JPH0342195 A JP H0342195A JP 17537089 A JP17537089 A JP 17537089A JP 17537089 A JP17537089 A JP 17537089A JP H0342195 A JPH0342195 A JP H0342195A
Authority
JP
Japan
Prior art keywords
flux
welding
wire
added
stainless steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP17537089A
Other languages
Japanese (ja)
Other versions
JP2628754B2 (en
Inventor
Tsuneji Ogawa
小川 恒司
Tsuyoshi Kurokawa
剛志 黒川
Fusaki Koshiishi
房樹 輿石
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP17537089A priority Critical patent/JP2628754B2/en
Publication of JPH0342195A publication Critical patent/JPH0342195A/en
Application granted granted Critical
Publication of JP2628754B2 publication Critical patent/JP2628754B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Nonmetallic Welding Materials (AREA)

Abstract

PURPOSE:To manufacture weld metal having excellent workability, specially detachability of slag and further, excellent cracking resistance, etc., by using flux having specified chemical composition in a wire formed by filling flux in a metallic sheath. CONSTITUTION:In the wire formed by filling the flux in the metallic sheath, the flux containing 10 - 35% Cr and 0.3 - 1.2% Nb with respect total weight of the wire and containing 1 - 8% TiO3 and 0.2 - 4% SiO2 and a metallic fluoride so as to satisfy F/Nb >= 0.2, F <= 1.5% expressed in terms of the quantity of F with respect to total weight of the wire as flux is used. Since Nb is specially added and the metallic fluoride is added in proper quantity to adjust the composition, the weld metal excellent is welding workability and specially, having satisfactory detachability of slag is obtained. Accordingly, it is suitable for welding various Cr-base stainless steels and specially ideal for gas shielded arc welding.

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野) 本発明はCr系ステンレス鋼溶接用フラックス入リすイ
ヤに係り、更に詳しくは、優れた溶接作業性(特に良好
なスラグ剥離性)を有し、また優れた酎割れ性と靭性を
持つ溶着金属が得られ、ガスシールドアーク溶接用とし
て適するCr系ステンレス鋼溶接用フラックス入りワイ
ヤに関する。 (従来の技術及び解決しようとする課M)高能率な施工
の要求から、溶接の自動、半自動化が進み、フラックス
入りワイヤは溶接作業性が優れているという特徴より、
近年、特にその需要が増加している。 その中で、オーステナイト系ステンレス9% CCr−
Niステンレス鋼)用やCr系ステンレス鋼用の溶接材
料のフラックス入りワイヤ化も進んできている。 しかしながら、Cr系ステンレス鋼用溶接材料の・フラ
ックス入りワイヤ化は、その施工の難しさなどから遅れ
ているのが現状である。 すなわち、Cr系ステンレス鋼は拡散性水素に起因する
低温割れ感受性が高いため、一般にオーステナイト系ス
テンレス鋼に比べて溶接施工が困難である。その中でも
、Nbを添加して組織のフェライト相を安定化させた溶
接材料は、溶接金属の硬さが低く、低温割れを起こしに
くいものの。 このNb添加はスラグの焼付きを助長し、スラグの剥離
性を劣化させるため、特に良好な溶接作業性が要求され
るフラックス入すワイヤでは問題となる。また、被覆ア
ーク溶接棒に比べるとフラックス入すワイヤの使用電流
は高く、溶接入熱が大きくなるため、更にスラグの焼付
きが発生し易いといえる。 一方、Nbを添加して組織のフェライト相を安定させた
溶接金属では、結晶粒が粗大化すると、著しく靭性を劣
化させる。フラックス入りワイヤにより得られる溶接金
属は、被覆アーク溶接やTIG溶接により得られる溶接
金属よりも、溶接入熱が大きいために結晶粒が粗大化し
易く、また含有する酸素量も高くなるため、靭性も問題
となっている。 本発明は、上記従来技術の問題点を解決するためになさ
れたものであって、Cr系ステンレス鋼用の溶接材料と
して、優れた溶接作業性、特にスラグ剥離性を有し、ま
た優れた耐割れ性と或いは更に優れた靭性を持った溶接
金属が得られるフラックス入りワイヤを提供することを
目的とするものである。 (課題を解決するための手段) か)る目的を達成するため、本発明者は、桶々の成分組
成のフラックス入りワイヤについて鋭意研究を重ねた結
果、特に金属外皮又はフラックス中にNbを添加する場
合、併せて金属弗化物を所定量含有させ、更にフラック
ス成分を規制することにより可能であることを見い出し
、ここに本発明をなしたものである。 すなわち、本発明に係るCr系ステンレス鋼溶接用フラ
ックス入リすイヤは、要するに、ワイヤ全重量に対して
Cr:10−35%及びNb: 0 、3〜1.2%と
、必要に応じて更にC:0.01〜0.12%、A氾:
0.05〜2%、Ti:0.05〜2%及びN:0.0
2〜0.06%を含み、かつ、フラックスとして、ワイ
ヤ全重量に対してTiO2:1〜8%及びSiO2:0
.2〜4%と、金属弗化物をF量換算にてF/Nb≧0
.2.12185%を満足するように含むフラックスを
用いたことを特徴とするものである。 以下に本発明を更に詳細に説明する。 (作用) 前述の如く、本発明に係るCr系ステンレス鋼溶接用フ
ラックス入りワイヤは、ワイヤ全重量に対して、金属外
皮又はフラックス中に所定量のCrとNbを添加11す
ることを必須とし、必要に応じて更に所定量のC,AQ
、Ti及びXを添加すること、かつ、フラックスとして
所定量のTiO2、Sio、及び金属弗化物(F換算)
を含むものを用いるものである。 Cr: Crは耐食性に対して効果のある元素で、10%以上の
添加で特に良好となる。しかし、35′為を超えると著
しく靭性が劣化するので、Crは10〜35%とする。 なお、Crは金属外皮及びフラックスのどちらにも添加
でき、フラックスに添加するときはCr粉、Fe−Cr
粉などの形で添加できる。 Nb: Cr系ステンレス11I溶接用フラツクス入リワイヤに
おいて、Nbを添加すると、前述の如くその溶接金属組
織のフェライト相が安定してマルテンサイト相の析出が
抑制され、溶接金属の硬さが央くなり、酎割れ性が向上
する。その効果はNbを0.3%以上添加することによ
り達成される。しかし、1.2%を超えて添加すると、
フェライト結晶粒が粗大化し、靭性が著しく劣化する。 な九゛、Nbの添加は、前述のタロく僅かな量でもスラ
ブ焼付きを助長し、スラグ剥離性を劣化させるが、後述
の金属弗化物の添加により対処できる。 したがって、Nbiは0.3〜1.2%とする。 なお、NbはFe−Nbなどの形で殆どフラックスから
添加される。 金属弗化物: 本発明者が種々の実験を進めて行く中で、金属弗化物の
フラックスへの添加が前述のNb添加によるスラグの焼
付き防止に非常に効果のあることがわかった。すなわち
、金属弗化物の添加量がF換算にしてF/Nb≧0.2
を満足することによって効果が現れる。しかし、F換算
にして1.5%よりも多く添加すると、スパッタ発生が
多くなり。 溶接作業性を著しく劣化させる。 なお、金属弗化物の添加効果はその種類によらず同様で
あり、例えば、弗化アルミニウム、弗化バリウム、弗化
リチウム、けい弗化ナトリウム、けい弗化カリなどが挙
げられる。この中でけい弗化ナトリウムは特にアークの
安定性を高め、溶接作業性を良好にする。 T、LO,: TiO2は主としてスラグ形成剤として働き、溶接金属
を大気の酸化から保護し、またビード形状を良好にする
。その量は1〜8%が適当であ。しかし、1%未満では
その効果がなく、また8%を超えて添加するとスラグの
粘性が著しく上昇し、融合不良などの溶接欠陥が発生し
易くなる。 5in2: Sio2も主としてスラグ形成剤として働き、またビー
ド形状を良好にする。その量は0.2〜4%が適当であ
。しかし、0.2%未満ではその効果がなく、また4%
を超えて添加するとスラグの粘性が上昇し、融合不良な
どの溶接欠陥が発生し易くなる。 以上の構成により、溶接作業性が良好で、且つ組織のフ
ェライト相が安定し、耐割れ性に優れた溶接金属を得る
ことができる。 更には、以下に示す成分(任意添加)の適量を金属外皮
又はフラックスに添加することにより、靭性が著しく優
れた溶接金属を得ることができる。 C: Cはマルテンサイト形成元素であるが、0.01%未満
では結晶粒度が大きくなり、靭性を劣化させ、また0、
12%を超えて添加すると、マルテンサイト相が析出し
易くなり、耐割れ性を劣化させるので、C量は0.01
〜0.12%とする。 なお、Cは金属外皮及びフラックスのどちらにも添加で
きるが、フラックスに添加するときは高CのMn及び炭
化クロムなどの形で添加できる。 A4: Aflを添加すると結晶粒が微細化され、靭性が改善す
る。しかし、0.05%未満ではその効果がなく、また
2%を超えて添加するとスパッタの発生が多くなり、溶
接作業性を著しく劣化させるので、AQIJ、は0.0
5〜2%とする。なお、AQは金属外皮及びフラックス
のどちらにも添加できるが、フラックスに添加するとき
はAfl粉、Fe−AQ粉などの形で添加できる。 T1: Tiは結晶粒を微細化し、靭性を改善する。しかし、0
.05%未満ではその効果がなく、また2%を超えて添
加すると逆に結晶粒が粗大化し、靭性が劣化するので、
Ti量は0.05〜2%とする。なお、Tiは金属外皮
及びフラックスのどちらにも添加できるが、フラックス
に添加するときは主にFe−Ti粉などの形で添加でき
る。 N: Nは結晶粒を微細化し、靭性を改善する。しかし、0.
02%未満ではその効果がなく、また0.06%を超え
て添加するとブローホールの発生が起こり、耐気孔性が
劣化するので、N量は0.02〜0.06%とする。な
お、Nは金属外皮及びフラックスのどちらにも添加でき
るが、フラックスに添加するときは主に窒化クロムなど
の形で添加できる。 なお、金属外皮としては、軟鋼及び409.410.4
30系のCr系ステンレス鋼などが使用できる。 フランクス入すワイヤの断面形状は、第1図に示すよう
な形状を一例として、適宜の断面形状とすることができ
、またワイヤ径、フラックス充填率等々は特に制限され
ない。 勿論、適用するCrステンレス鋼としては各種成分系、
組成のものが可能なことは云うまでもない。 次に本発明の実施例を示す。 (実施例) 第1表及び第2表に示す組成のフラックス入り供試ワイ
ヤを準備し、以下に説明する要領並びに評価基準にて溶
接作業性、耐割れ性、X線性能、靭性の評価を行った。 それらの結果を第1表及び第2表に併記する。 ■溶接作業性 5US410鋼板(20mm厚)上に第3表に示す条件
でビードオンプレートの溶接を行い、溶接作業性を評価
した。なお、シールドガスの種類は第3表に示すように
2種類であるが、溶接作業性の評価結果は同等の傾向で
あった。 ■耐割れ性、Xi性能、靭性 J4S  Z  3323(ステンレス鋼アーク溶接フ
ラックス入りワイヤ)に準じ、5M41B試験板の開先
内を供試ワイヤにて3層バタリング(ill接条件:第
2表、但し、シールドガスは100%CO3のみ)した
もので溶接金属を作成し、試験を実施した。耐割れ性に
ついてはミクロ組織観察により評価し、X線性能につい
てはJIS  Z  3106に準じて試験を行い、靭
性についてはシャルピー衝撃試験で評価した。それぞれ
の評価基準を第4表に示す。 第1表及び第2表において、Na 1〜Nα9は比較例
、Nα10−Nα3工は本発明例であり、以下の如く考
察される。 比較例41は、Nbが不足しているため、組織にマルテ
ンサイト相が析出しており、耐割れ性が劣っている。ま
た、比較例Nα2は、Nbが過剰なため、フェライト粒
が粗大化し、靭性が劣っている。 比較例Nα3は、Tie、が不足しているため、スラグ
の被りが悪くなり、溶接作業性に劣り、またビード形状
も悪い。また比較例&4は、Tie、が過剰なため、融
合不良が発生し、X線性能が劣っている。 比較例Nα5は、金属弗化物が過剰なため、スパッタ発
生が多く、溶接作業性に劣る。また比較例Nα6は、金
属弗化物が不足しているため、スラグ剥離性が悪く、溶
接作業性に劣る。比較例Na 7は。 金属弗化物が〉7α6よりも更に不足しているため、ス
ラグ剥離性が著しく悪く、溶接作業性に劣る。 比較例Nα8は、Sio、が不足しているため、スラグ
の被りが悪く、溶接作業性に劣る。また、比較例Nα9
は、Sio2が過剰なため、融合不良が発生し、X線性
能に劣る。 一方、本発明例&10〜Nn31は、いずれも、スラグ
剥離性、スラグ被り、スパッタ発生等の溶接作業性が優
れていると共に、耐割れ性、X線性能も優れている。 むお、本発明例Na L OはC量が少ないため、また
本発明例Xα11はC量か多いため、それぞれ若干靭性
に劣る。 本発明例’、+112はAQfiが少ないため、また本
発明例Na 13はAIl量が多いため、それぞれ若干
靭性に劣る。 本発明例Na工4はTi量が少ないため、また本発明例
Na 15はTi量が多いため、それぞれ若干靭性に劣
る。 本発明例& 16はN量が少ないため、また本発明例N
α17はN量が多いため、それぞれ若干靭性に劣る。
(Industrial Application Field) The present invention relates to a flux-cored welder for welding Cr-based stainless steel, and more specifically, it has excellent welding workability (particularly good slag removability) and excellent welding cracking properties. The present invention relates to a flux-cored wire for welding Cr-based stainless steel, which yields a deposited metal with good strength and toughness and is suitable for gas-shielded arc welding. (Conventional technology and section M to be solved) Due to the demand for highly efficient construction, automatic and semi-automated welding has progressed, and flux-cored wire is characterized by excellent welding workability.
In recent years, the demand has particularly increased. Among them, austenitic stainless steel 9% CCr-
The use of flux-cored wire as welding materials for Ni stainless steel and Cr stainless steel is also progressing. However, the conversion of welding materials for Cr-based stainless steel into flux-cored wires is currently delayed due to the difficulty of construction. That is, since Cr stainless steel has a high sensitivity to cold cracking due to diffusible hydrogen, it is generally more difficult to weld than austenitic stainless steel. Among these, welding materials in which the ferrite phase of the structure is stabilized by adding Nb have low hardness of the weld metal and are less likely to cause cold cracking. This Nb addition promotes slag seizure and deteriorates slag removability, which is a problem especially in flux-cored wires that require good welding workability. Furthermore, compared to a coated arc welding rod, the current used by a flux-cored wire is higher and the welding heat input is larger, so that slag seizure is more likely to occur. On the other hand, in a weld metal in which Nb is added to stabilize the ferrite phase of the structure, when the crystal grains become coarse, the toughness is significantly deteriorated. Weld metal obtained by flux-cored wire has a higher welding heat input, which tends to cause coarse grains, and a higher oxygen content, which makes it less tough. This has become a problem. The present invention has been made to solve the problems of the prior art described above, and is a welding material for Cr-based stainless steel that has excellent welding workability, particularly slag removability, and also has excellent resistance to slag. The object of the present invention is to provide a flux-cored wire from which a weld metal with excellent crackability and even better toughness can be obtained. (Means for Solving the Problems) In order to achieve the above object, the present inventor has conducted intensive research on flux-cored wires with a composition similar to that of tubs, and has found that, in particular, Nb is added to the metal sheath or flux. We have discovered that this can be achieved by containing a predetermined amount of metal fluoride and further regulating the flux components, and have hereby accomplished the present invention. That is, the flux-cored wire for welding Cr-based stainless steel according to the present invention contains Cr: 10-35% and Nb: 0, 3-1.2%, as necessary, based on the total weight of the wire. Furthermore, C: 0.01-0.12%, A flood:
0.05-2%, Ti: 0.05-2% and N: 0.0
Contains 2 to 0.06%, and as a flux, TiO2: 1 to 8% and SiO2: 0 based on the total weight of the wire.
.. 2 to 4%, F/Nb≧0 when metal fluoride is converted to F amount
.. It is characterized by using a flux that satisfies 2.12185%. The present invention will be explained in more detail below. (Function) As mentioned above, the flux-cored wire for welding Cr-based stainless steel according to the present invention requires that a predetermined amount of Cr and Nb be added to the metal sheath or flux, based on the total weight of the wire. Further predetermined amounts of C and AQ as necessary
, Ti and X, and predetermined amounts of TiO2, Sio, and metal fluoride (F conversion) as flux.
This includes the following: Cr: Cr is an element that has an effect on corrosion resistance, and when added in an amount of 10% or more, it becomes particularly good. However, if it exceeds 35', the toughness deteriorates significantly, so the Cr content is set to 10 to 35%. Note that Cr can be added to both the metal sheath and the flux, and when added to the flux, Cr powder, Fe-Cr
It can be added in the form of powder. Nb: Adding Nb to flux-cored rewire for Cr-based stainless steel 11I welding stabilizes the ferrite phase of the weld metal structure, suppresses the precipitation of the martensitic phase, and centralizes the hardness of the weld metal, as described above. , the cracking property is improved. This effect is achieved by adding 0.3% or more of Nb. However, when added in excess of 1.2%,
Ferrite crystal grains become coarse and toughness deteriorates significantly. Furthermore, the addition of Nb, even in a small amount as described above, promotes slab seizure and deteriorates the slag removability, but this can be countered by the addition of metal fluoride, which will be described later. Therefore, Nbi is set to 0.3 to 1.2%. Note that Nb is mostly added from flux in the form of Fe-Nb or the like. Metal fluoride: While carrying out various experiments, the present inventor found that the addition of metal fluoride to the flux is very effective in preventing slag seizure caused by the above-mentioned Nb addition. That is, the amount of metal fluoride added is F/Nb≧0.2 in terms of F.
The effect will appear by satisfying the following. However, if more than 1.5% is added in terms of F, spatter will increase. Significantly deteriorates welding workability. Note that the effect of adding metal fluorides is the same regardless of the type thereof, and examples thereof include aluminum fluoride, barium fluoride, lithium fluoride, sodium silicate, and potassium silicate. Among these, sodium silicofluoride particularly improves arc stability and improves welding workability. T, LO,: TiO2 primarily acts as a slag former, protecting the weld metal from atmospheric oxidation and improving bead shape. The appropriate amount is 1 to 8%. However, if it is less than 1%, it has no effect, and if it is added in excess of 8%, the viscosity of the slag increases significantly, making welding defects such as poor fusion more likely to occur. 5in2: Sio2 also mainly acts as a slag forming agent and also improves the bead shape. The appropriate amount is 0.2 to 4%. However, less than 0.2% has no effect, and 4%
If added in excess of 10%, the viscosity of the slag will increase, making welding defects such as poor fusion more likely to occur. With the above configuration, it is possible to obtain a weld metal with good welding workability, a stable ferrite phase in the structure, and excellent crack resistance. Furthermore, by adding appropriate amounts of the following components (optional additions) to the metal shell or flux, a weld metal with significantly superior toughness can be obtained. C: C is a martensite-forming element, but if it is less than 0.01%, the crystal grain size becomes large and the toughness deteriorates.
If it is added in excess of 12%, the martensite phase tends to precipitate and the cracking resistance deteriorates, so the amount of C should be 0.01%.
~0.12%. Note that C can be added to both the metal shell and the flux, but when added to the flux, it can be added in the form of high-C Mn, chromium carbide, or the like. A4: Adding Afl refines the crystal grains and improves toughness. However, if it is less than 0.05%, it has no effect, and if it exceeds 2%, spatter will increase and welding workability will be significantly deteriorated, so AQIJ is 0.0.
It is set at 5-2%. Note that AQ can be added to both the metal shell and the flux, but when added to the flux, it can be added in the form of Afl powder, Fe-AQ powder, etc. T1: Ti refines crystal grains and improves toughness. However, 0
.. If it is less than 0.5%, there is no effect, and if it is added in excess of 2%, the crystal grains will become coarser and the toughness will deteriorate.
The amount of Ti is 0.05 to 2%. Note that Ti can be added to both the metal shell and the flux, but when it is added to the flux, it can be added mainly in the form of Fe-Ti powder. N: N refines crystal grains and improves toughness. However, 0.
If it is less than 0.02%, it has no effect, and if it is added in excess of 0.06%, blowholes will occur and the pore resistance will deteriorate. Note that N can be added to both the metal shell and the flux, but when added to the flux, it can be added mainly in the form of chromium nitride or the like. In addition, as the metal outer shell, mild steel and 409.410.4
30 series Cr stainless steel or the like can be used. The cross-sectional shape of the wire to be inserted into the franks can be any suitable cross-sectional shape, with the shape shown in FIG. 1 as an example, and the wire diameter, flux filling rate, etc. are not particularly limited. Of course, the applicable Cr stainless steels include various compositions,
Needless to say, various compositions are possible. Next, examples of the present invention will be shown. (Example) Flux-cored test wires with the compositions shown in Tables 1 and 2 were prepared, and their welding workability, crack resistance, X-ray performance, and toughness were evaluated using the procedures and evaluation criteria described below. went. The results are also listed in Tables 1 and 2. ■Welding workability Bead-on-plate welding was performed on a 5US410 steel plate (20 mm thick) under the conditions shown in Table 3, and the welding workability was evaluated. Although there are two types of shielding gas as shown in Table 3, the evaluation results of welding workability tended to be the same. ■Crack resistance, Xi performance, toughness In accordance with J4S Z 3323 (stainless steel arc welding flux-cored wire), the inside of the groove of the 5M41B test plate was battered in three layers with the sample wire (ill contact conditions: Table 2, but Weld metal was prepared using only 100% CO3 shielding gas, and tests were conducted. Crack resistance was evaluated by microstructure observation, X-ray performance was tested according to JIS Z 3106, and toughness was evaluated by Charpy impact test. The evaluation criteria for each are shown in Table 4. In Tables 1 and 2, Na 1 to Na 9 are comparative examples, and Na 10 to Na 3 are examples of the present invention, which will be discussed as follows. Comparative Example 41 has a martensitic phase precipitated in the structure due to the lack of Nb, resulting in poor cracking resistance. Furthermore, in Comparative Example Nα2, due to excessive Nb, the ferrite grains become coarse and the toughness is poor. Comparative Example Nα3 lacks Tie, resulting in poor slag coverage, poor welding workability, and poor bead shape. Furthermore, in Comparative Example &4, the amount of Tie is excessive, resulting in poor fusion and poor X-ray performance. Comparative Example Nα5 has an excessive amount of metal fluoride, so spatter occurs frequently and welding workability is poor. Moreover, Comparative Example Nα6 lacks metal fluoride, so slag removability is poor and welding workability is poor. Comparative example Na 7 is. Since the metal fluoride is even more deficient than in 〉7α6, the slag removability is extremely poor and the welding workability is poor. In Comparative Example Nα8, since Sio is insufficient, slag coverage is poor and welding workability is poor. Also, comparative example Nα9
Because of excess Sio2, poor fusion occurs and the X-ray performance is poor. On the other hand, inventive examples &10 to Nn31 are all excellent in welding workability such as slag removability, slag coverage, and spatter generation, and also excellent in crack resistance and X-ray performance. However, since the present invention example Na L O has a small amount of C, and the present invention example Xα11 has a large amount of C, the toughness is slightly inferior. Inventive examples ' and +112 have a small amount of AQfi, and inventive example Na 13 has a large amount of AIl, so they are both slightly inferior in toughness. Inventive example Na 4 has a small amount of Ti, and inventive example Na 15 has a large Ti amount, so they are both slightly inferior in toughness. Since the present invention example & 16 has a small amount of N, the present invention example N
Since α17 has a large amount of N, its toughness is slightly inferior.

【以下余白】[Left below]

(9!明の効果) 以上詳述したように1本発明によれば、Cr系ステンレ
ス鋼溶接用フラックス入リすイヤにおいて、特にNb添
加と共に金属弗化物を適量添加して組成を調整したので
、溶接作業性が優れ、特に良好なスラブ剥離性を有し、
また優れた耐割れ性と更に靭性を持った溶着金属が得ら
れるので、各種Cr系ステンレス鋼溶接用として適し、
特にガスシールドアーク溶接用として好適である。
(9! Bright effect) As detailed above, according to the present invention, in a flux-filled ear for welding Cr-based stainless steel, the composition is adjusted by adding an appropriate amount of metal fluoride in addition to Nb. , has excellent welding workability and particularly good slab removability,
In addition, it is possible to obtain a deposited metal with excellent crack resistance and toughness, making it suitable for welding various Cr-based stainless steels.
It is particularly suitable for gas shielded arc welding.

【図面の簡単な説明】 第1図(a)〜(d)はフラックス入りワイヤの断面形
状の一例を示す図である。
BRIEF DESCRIPTION OF THE DRAWINGS FIGS. 1(a) to 1(d) are diagrams showing examples of cross-sectional shapes of flux-cored wires.

Claims (2)

【特許請求の範囲】[Claims] (1)金属外皮にフラックスを充填してなるワイヤにお
いて、ワイヤ全重量に対してCr:10〜35%及びN
b:0.3〜1.2%を含み、かつ、フラックスとして
、ワイヤ全重量に対してTiO_2:1〜8%及びSi
O_2:0.2〜4%と、金属弗化物をF量換算にてF
/Nb≧0.2、F≦1.5%を満足するように含むフ
ラックスを用いたことを特徴とするCr系ステンレス鋼
溶接用フラックス入りワイヤ。
(1) In a wire whose metal sheath is filled with flux, Cr: 10 to 35% and N based on the total weight of the wire.
b: 0.3 to 1.2%, and as a flux, TiO_2: 1 to 8% and Si based on the total weight of the wire.
O_2: 0.2 to 4%, metal fluoride converted to F amount
A flux-cored wire for welding Cr-based stainless steel, characterized in that it uses a flux that satisfies /Nb≧0.2 and F≦1.5%.
(2)金属外皮にフラックスを充填してなるワイヤにお
いて、ワイヤ全重量に対してCr:10〜35%、Nb
:0.3〜1.2%、C:0.01〜0.12%、Al
:0.05〜2%、Ti:0.05〜2%及びN:0.
02〜0.06%を含み、かつ、フラックスとして、ワ
イヤ全重量に対してTiO_2:1〜8%及びSiO_
2:0.2〜4%と、金属弗化物をF量換算にてF/N
b≧0.2、F≦1.5%を満足するように含むフラッ
クスを用いたことを特徴とするCr系ステンレス鋼溶接
用フラックス入りワイヤ。
(2) In a wire whose metal sheath is filled with flux, Cr: 10-35%, Nb based on the total weight of the wire
:0.3~1.2%, C:0.01~0.12%, Al
:0.05-2%, Ti:0.05-2% and N:0.
02 to 0.06%, and as a flux, TiO_2: 1 to 8% and SiO_
2: 0.2 to 4%, F/N of metal fluoride in terms of F amount
A flux-cored wire for welding Cr-based stainless steel, characterized in that a flux containing b≧0.2 and F≦1.5% is used.
JP17537089A 1989-07-05 1989-07-05 Flux-cored wire for welding Cr-based stainless steel Expired - Fee Related JP2628754B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17537089A JP2628754B2 (en) 1989-07-05 1989-07-05 Flux-cored wire for welding Cr-based stainless steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17537089A JP2628754B2 (en) 1989-07-05 1989-07-05 Flux-cored wire for welding Cr-based stainless steel

Publications (2)

Publication Number Publication Date
JPH0342195A true JPH0342195A (en) 1991-02-22
JP2628754B2 JP2628754B2 (en) 1997-07-09

Family

ID=15994909

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17537089A Expired - Fee Related JP2628754B2 (en) 1989-07-05 1989-07-05 Flux-cored wire for welding Cr-based stainless steel

Country Status (1)

Country Link
JP (1) JP2628754B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06210491A (en) * 1992-11-16 1994-08-02 Lincoln Electric Co:The Flux core gas shield electrode
US5914061A (en) * 1995-11-07 1999-06-22 Kabushiki Kaisha Kobe Seiko Sho High nitrogen flux cored wire for all position welding of Cr-Ni type stainless steel

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06210491A (en) * 1992-11-16 1994-08-02 Lincoln Electric Co:The Flux core gas shield electrode
US5914061A (en) * 1995-11-07 1999-06-22 Kabushiki Kaisha Kobe Seiko Sho High nitrogen flux cored wire for all position welding of Cr-Ni type stainless steel

Also Published As

Publication number Publication date
JP2628754B2 (en) 1997-07-09

Similar Documents

Publication Publication Date Title
KR880002508B1 (en) Flux cored wire for gas shielded arc welding
JP4255453B2 (en) Low alloy steel weld metal and flux cored wire
EP2868425A1 (en) Ni based alloy flux cored wire
EP3208030B1 (en) Flux-cored wire for arc welding of duplex stainless steel
KR20080030936A (en) Wire with gas shielded arc welding flux for high tensile steel
JP4209913B2 (en) Flux-cored wire for gas shielded arc welding
KR20190037286A (en) Flux cored wire and weld metal for gas shield arc welding
EP0688630B2 (en) Flux-cored wire for gas shielded arc welding
JP2024167274A (en) Ni-based alloy flux-cored wire
US5272305A (en) Girth-welding process for a pipe and a high cellulose type coated electrode
US20030015257A1 (en) Flux cored wire for gas shielded arc welding of high tensile strength steel
JP3579610B2 (en) Weld metal with excellent low temperature toughness
JP2756084B2 (en) Flux-cored wire for gas shielded arc welding
JP2687006B2 (en) Flux-cored wire for gas shielded arc welding for refractory steel
WO2018047880A1 (en) Flux-cored wire for gas shield arc welding, and weld metal
JP7031271B2 (en) Flux-cored wire for vertical electrogas arc welding and welding joint manufacturing method
JP2002361480A (en) Iron based consumable welding material having excellent fatigue strength in welded joint part and welded joint
JPS632592A (en) Flux cored wire for low alloy heat resistant steel welding
JPH0342195A (en) Flux-cored wire for cr-base stainless steel welding
JP2756088B2 (en) Flux-cored wire for gas shielded arc welding
KR20190035827A (en) Flux cored wire and weld metal for gas shield arc welding
JPH08257791A (en) Low-hydrogen coated arc welding rod
CN111886110B (en) Flux-cored wire
JPS60261690A (en) Coated electrode for cr-mo low alloy steel
JPH08206877A (en) Submerged arc welding wire for stainless clad steel

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees