JPH0339967B2 - - Google Patents
Info
- Publication number
- JPH0339967B2 JPH0339967B2 JP59253431A JP25343184A JPH0339967B2 JP H0339967 B2 JPH0339967 B2 JP H0339967B2 JP 59253431 A JP59253431 A JP 59253431A JP 25343184 A JP25343184 A JP 25343184A JP H0339967 B2 JPH0339967 B2 JP H0339967B2
- Authority
- JP
- Japan
- Prior art keywords
- mullite
- precipitate
- water
- organic solvent
- aqueous solution
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000002244 precipitate Substances 0.000 claims description 41
- 239000000843 powder Substances 0.000 claims description 37
- 239000007864 aqueous solution Substances 0.000 claims description 24
- 238000000034 method Methods 0.000 claims description 22
- 239000003960 organic solvent Substances 0.000 claims description 22
- 239000000203 mixture Substances 0.000 claims description 19
- RMAQACBXLXPBSY-UHFFFAOYSA-N silicic acid Chemical compound O[Si](O)(O)O RMAQACBXLXPBSY-UHFFFAOYSA-N 0.000 claims description 16
- 150000003754 zirconium Chemical class 0.000 claims description 16
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 11
- 238000004821 distillation Methods 0.000 claims description 10
- 238000004519 manufacturing process Methods 0.000 claims description 10
- AZDRQVAHHNSJOQ-UHFFFAOYSA-N alumane Chemical class [AlH3] AZDRQVAHHNSJOQ-UHFFFAOYSA-N 0.000 claims description 9
- 239000003513 alkali Substances 0.000 claims description 8
- 238000010304 firing Methods 0.000 claims description 8
- 239000002131 composite material Substances 0.000 claims description 7
- 238000010438 heat treatment Methods 0.000 claims description 7
- 229910052684 Cerium Inorganic materials 0.000 claims description 4
- GWXLDORMOJMVQZ-UHFFFAOYSA-N cerium Chemical compound [Ce] GWXLDORMOJMVQZ-UHFFFAOYSA-N 0.000 claims description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-M hydroxide Chemical compound [OH-] XLYOFNOQVPJJNP-UHFFFAOYSA-M 0.000 claims description 4
- 229910052727 yttrium Inorganic materials 0.000 claims description 3
- VWQVUPCCIRVNHF-UHFFFAOYSA-N yttrium atom Chemical compound [Y] VWQVUPCCIRVNHF-UHFFFAOYSA-N 0.000 claims description 3
- KZHJGOXRZJKJNY-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Si]=O.O=[Al]O[Al]=O.O=[Al]O[Al]=O.O=[Al]O[Al]=O KZHJGOXRZJKJNY-UHFFFAOYSA-N 0.000 description 67
- 229910052863 mullite Inorganic materials 0.000 description 67
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 46
- 239000002245 particle Substances 0.000 description 38
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 31
- 239000012071 phase Substances 0.000 description 16
- 238000005245 sintering Methods 0.000 description 16
- 239000000377 silicon dioxide Substances 0.000 description 15
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 12
- RVTZCBVAJQQJTK-UHFFFAOYSA-N oxygen(2-);zirconium(4+) Chemical compound [O-2].[O-2].[Zr+4] RVTZCBVAJQQJTK-UHFFFAOYSA-N 0.000 description 11
- 229910001928 zirconium oxide Inorganic materials 0.000 description 11
- 229910052782 aluminium Inorganic materials 0.000 description 10
- RKTYLMNFRDHKIL-UHFFFAOYSA-N copper;5,10,15,20-tetraphenylporphyrin-22,24-diide Chemical compound [Cu+2].C1=CC(C(=C2C=CC([N-]2)=C(C=2C=CC=CC=2)C=2C=CC(N=2)=C(C=2C=CC=CC=2)C2=CC=C3[N-]2)C=2C=CC=CC=2)=NC1=C3C1=CC=CC=C1 RKTYLMNFRDHKIL-UHFFFAOYSA-N 0.000 description 10
- 229910004298 SiO 2 Inorganic materials 0.000 description 8
- 230000002776 aggregation Effects 0.000 description 8
- 239000000243 solution Substances 0.000 description 8
- 239000011159 matrix material Substances 0.000 description 7
- 229910052710 silicon Inorganic materials 0.000 description 7
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 6
- LRHPLDYGYMQRHN-UHFFFAOYSA-N N-Butanol Chemical compound CCCCO LRHPLDYGYMQRHN-UHFFFAOYSA-N 0.000 description 6
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 6
- 239000002994 raw material Substances 0.000 description 6
- 239000000126 substance Substances 0.000 description 6
- BNGXYYYYKUGPPF-UHFFFAOYSA-M (3-methylphenyl)methyl-triphenylphosphanium;chloride Chemical compound [Cl-].CC1=CC=CC(C[P+](C=2C=CC=CC=2)(C=2C=CC=CC=2)C=2C=CC=CC=2)=C1 BNGXYYYYKUGPPF-UHFFFAOYSA-M 0.000 description 5
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 description 5
- 238000005054 agglomeration Methods 0.000 description 5
- 150000004703 alkoxides Chemical class 0.000 description 5
- QGZKDVFQNNGYKY-UHFFFAOYSA-N ammonia Natural products N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 5
- 235000011114 ammonium hydroxide Nutrition 0.000 description 5
- 238000001035 drying Methods 0.000 description 5
- 230000000694 effects Effects 0.000 description 5
- 239000000499 gel Substances 0.000 description 5
- 239000011521 glass Substances 0.000 description 5
- CMOAHYOGLLEOGO-UHFFFAOYSA-N oxozirconium;dihydrochloride Chemical compound Cl.Cl.[Zr]=O CMOAHYOGLLEOGO-UHFFFAOYSA-N 0.000 description 5
- 239000013078 crystal Substances 0.000 description 4
- 235000019441 ethanol Nutrition 0.000 description 4
- 238000002474 experimental method Methods 0.000 description 4
- 239000000047 product Substances 0.000 description 4
- 239000010703 silicon Substances 0.000 description 4
- -1 silicon alkoxides Chemical class 0.000 description 4
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 3
- BOTDANWDWHJENH-UHFFFAOYSA-N Tetraethyl orthosilicate Chemical compound CCO[Si](OCC)(OCC)OCC BOTDANWDWHJENH-UHFFFAOYSA-N 0.000 description 3
- 238000002441 X-ray diffraction Methods 0.000 description 3
- 238000004220 aggregation Methods 0.000 description 3
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 3
- 238000009835 boiling Methods 0.000 description 3
- 238000001354 calcination Methods 0.000 description 3
- 239000000919 ceramic Substances 0.000 description 3
- 238000001914 filtration Methods 0.000 description 3
- 239000010419 fine particle Substances 0.000 description 3
- 239000007791 liquid phase Substances 0.000 description 3
- 239000011259 mixed solution Substances 0.000 description 3
- IVORCBKUUYGUOL-UHFFFAOYSA-N 1-ethynyl-2,4-dimethoxybenzene Chemical compound COC1=CC=C(C#C)C(OC)=C1 IVORCBKUUYGUOL-UHFFFAOYSA-N 0.000 description 2
- 229910003902 SiCl 4 Inorganic materials 0.000 description 2
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 2
- 150000001242 acetic acid derivatives Chemical class 0.000 description 2
- 230000002378 acidificating effect Effects 0.000 description 2
- 238000005452 bending Methods 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 238000005119 centrifugation Methods 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 239000000084 colloidal system Substances 0.000 description 2
- 238000002485 combustion reaction Methods 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 2
- 238000005520 cutting process Methods 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 230000018044 dehydration Effects 0.000 description 2
- 238000006297 dehydration reaction Methods 0.000 description 2
- 230000006866 deterioration Effects 0.000 description 2
- 238000009472 formulation Methods 0.000 description 2
- 150000003840 hydrochlorides Chemical class 0.000 description 2
- 150000002500 ions Chemical class 0.000 description 2
- PHTQWCKDNZKARW-UHFFFAOYSA-N isoamylol Chemical compound CC(C)CCO PHTQWCKDNZKARW-UHFFFAOYSA-N 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 150000002823 nitrates Chemical class 0.000 description 2
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 2
- 230000000704 physical effect Effects 0.000 description 2
- 229910052573 porcelain Inorganic materials 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 239000003381 stabilizer Substances 0.000 description 2
- 238000003756 stirring Methods 0.000 description 2
- 150000003746 yttrium Chemical class 0.000 description 2
- 229910052845 zircon Inorganic materials 0.000 description 2
- OERNJTNJEZOPIA-UHFFFAOYSA-N zirconium nitrate Chemical compound [Zr+4].[O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O OERNJTNJEZOPIA-UHFFFAOYSA-N 0.000 description 2
- GFQYVLUOOAAOGM-UHFFFAOYSA-N zirconium(iv) silicate Chemical compound [Zr+4].[O-][Si]([O-])([O-])[O-] GFQYVLUOOAAOGM-UHFFFAOYSA-N 0.000 description 2
- ATRRKUHOCOJYRX-UHFFFAOYSA-N Ammonium bicarbonate Chemical compound [NH4+].OC([O-])=O ATRRKUHOCOJYRX-UHFFFAOYSA-N 0.000 description 1
- NLXLAEXVIDQMFP-UHFFFAOYSA-N Ammonium chloride Substances [NH4+].[Cl-] NLXLAEXVIDQMFP-UHFFFAOYSA-N 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 description 1
- 229910006501 ZrSiO Inorganic materials 0.000 description 1
- YKTSYUJCYHOUJP-UHFFFAOYSA-N [O--].[Al+3].[Al+3].[O-][Si]([O-])([O-])[O-] Chemical compound [O--].[Al+3].[Al+3].[O-][Si]([O-])([O-])[O-] YKTSYUJCYHOUJP-UHFFFAOYSA-N 0.000 description 1
- 238000005299 abrasion Methods 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 239000001099 ammonium carbonate Substances 0.000 description 1
- 235000012501 ammonium carbonate Nutrition 0.000 description 1
- 239000006227 byproduct Substances 0.000 description 1
- 125000004432 carbon atom Chemical group C* 0.000 description 1
- CETPSERCERDGAM-UHFFFAOYSA-N ceric oxide Chemical compound O=[Ce]=O CETPSERCERDGAM-UHFFFAOYSA-N 0.000 description 1
- 229910000420 cerium oxide Inorganic materials 0.000 description 1
- 229910000422 cerium(IV) oxide Inorganic materials 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000000975 co-precipitation Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 238000002425 crystallisation Methods 0.000 description 1
- 230000008025 crystallization Effects 0.000 description 1
- 230000000881 depressing effect Effects 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 239000012153 distilled water Substances 0.000 description 1
- 235000013305 food Nutrition 0.000 description 1
- 230000007062 hydrolysis Effects 0.000 description 1
- 238000006460 hydrolysis reaction Methods 0.000 description 1
- 230000003301 hydrolyzing effect Effects 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 238000009776 industrial production Methods 0.000 description 1
- 239000012212 insulator Substances 0.000 description 1
- 238000003754 machining Methods 0.000 description 1
- 239000012452 mother liquor Substances 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 239000002736 nonionic surfactant Substances 0.000 description 1
- BMMGVYCKOGBVEV-UHFFFAOYSA-N oxo(oxoceriooxy)cerium Chemical compound [Ce]=O.O=[Ce]=O BMMGVYCKOGBVEV-UHFFFAOYSA-N 0.000 description 1
- SIWVEOZUMHYXCS-UHFFFAOYSA-N oxo(oxoyttriooxy)yttrium Chemical compound O=[Y]O[Y]=O SIWVEOZUMHYXCS-UHFFFAOYSA-N 0.000 description 1
- 238000010587 phase diagram Methods 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 239000011164 primary particle Substances 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 230000035939 shock Effects 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 239000007858 starting material Substances 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 238000005728 strengthening Methods 0.000 description 1
- 150000003467 sulfuric acid derivatives Chemical class 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 230000004580 weight loss Effects 0.000 description 1
- DEXZEPDUSNRVTN-UHFFFAOYSA-K yttrium(3+);trihydroxide Chemical class [OH-].[OH-].[OH-].[Y+3] DEXZEPDUSNRVTN-UHFFFAOYSA-K 0.000 description 1
- 229910052726 zirconium Inorganic materials 0.000 description 1
Landscapes
- Compositions Of Oxide Ceramics (AREA)
- Oxygen, Ozone, And Oxides In General (AREA)
- Inorganic Compounds Of Heavy Metals (AREA)
- Silicates, Zeolites, And Molecular Sieves (AREA)
Description
〔産業上の利用分野〕
本発明は、緻密で耐熱性及び機械的強度の優れ
たムライト及びムライト系焼結体を製造するのに
最適な耐熱性複合酸化粉末の製造方法に関する。
〔従来技術〕
ムライトは、アルミナとシリカからなる複合酸
化物(3Al2O3・2SiO2)であり、化学量論的な組
成比は、重量比でAl2O3:SiO2=71.8:28.2であ
る。ところで、従来この構造からなるムライト
は、熱的に極めて安定しており、ムライトのみか
ら成る粉末を焼結し気孔のない高密度焼結体を得
ようとしても、これは極めて困難な事であつた。
このため、従来からムライト磁器と称されて来
たものは、ムライトの化学量論比よりも多くのシ
リカを含み、この余剰のシリカのマトリツクスで
ムライト粒子を結合させるという二相構造を有し
たものであり、ここにおけるシリカ分は40〜60重
量%含んでおり、シリカのガラスがムライトの粒
子を結合している状態となる。このような従来の
シリカ過剰のムライト磁器では、その熱的特性は
シリカのマトリツクス部に大きく支配され、従つ
て熱間強度、クリープ特性、耐熱温度の劣化につ
ながつていた。
そこで、従来の上記欠点を除去し、真のムライ
ト結晶同志の結合によつて熱的に安定な高純度ム
ライト焼結体を得るために、化学的な手段を用い
高純度ムライト粉末を製造する方法が検討され
た。その代表的方法として、アルコキシツド法が
ある。この方法は、アルミニウムとシリコンのア
ルコキシツドの混合溶液を加水分解し、生成した
水酸化物ゲルを別、乾燥、焼成する方法
(MazdiyasniおよびBrown、“ストイキオメトリ
ツクアルミニウムシリケート(ムライト)の合成
および機械的性質”Jornal of the American
Ceramics Society、Vol55、No.11、P548−552
(1972年)等)である。この方法以外に、最も簡
単に化学量論比の高純度ムライトを合成する方法
としては、高純度の結晶質アルミナとシリカを機
械的に混合した後、高温で反応させムライトを合
成する方法がある。しかし、この方法では、アル
ミナ粒子とシリカ粒子を反応させるのに非常な高
温が必要である。また、焼結に際しても1800℃以
上という高温が必要であり、かつガラス相のない
緻密な化学量論比のムライト焼結体を得るのは困
難である。
そこで、アルコキシツド法の様な方法が考えら
れたわけであるが、この方法の場合、アルミニウ
ムのアルコキシツドとシリコンのアルコキシツド
の加水分解の条件が異なるため、必ずしもアルミ
ニウムとシリコンが均一であるわけではない。さ
らに原料として用いるアルコキシツドは、非常に
高価であり、また反応操作も複雑なため、工業的
な製法としては利用し難いものである。例えば、
アルコキシツド法で原子オーダーで均一にアルミ
ニウムとシリコンが混合した加水分解物を得た場
合でも、加水分解物の乾燥、焼成という工程で析
出したアルミニウムシリケートの微粒子を凝集さ
せないようにしなければならない。ここで強固な
凝集が生ずる場合には、均一な粉末といえども、
緻密な焼結体を得るためには先のMazdiyasniの
文献の様に加圧焼結法を用いなければならない。
次に、近年Nils Claussenらの報告によつて、
アルミナなどのマトリツクス中に、主として正方
晶形粒子として存在するジルコニア粒子を分散さ
せた焼結体は、その破壊強度及び破壊靭性等が著
しく改良されることが知られている。しかし、こ
の方法は、マトリツクス自体が緻密に焼結できな
いセラミツクスでは十分な効果は得られず、この
緻密に焼結しにくいセラミツクスの代表にムライ
トがあげられる。このジルコニアの分散したムラ
イト焼結体を得る従来の方法としては、ムライト
粉末にジルコニア粉末を機械的に混合することが
一般的である。しかし、この方法では、ムライト
自身の焼結性が重要であり、さらに正方晶ジルコ
ニア粒子の粒径や分散性、結晶相を制御すること
が難しく、十分な性能を有した焼結体を得るには
困難である。そこで先に述べたNils Claussenら
は、(特開昭55−158173号)アルミナ(Al2O3)
とジルコン(ZrSiO4)を出発原料に用い、さら
にアルミナとジルコンの反応により、ムライト中
にジルコニア粒子を分散させた焼結体を得るとい
う、特殊な方法を提案している。しかし、この方
法では、ジルコニア粒子の含有量を変化させるこ
とが困難であるという欠点がある。
〔発明の目的〕
本発明の目的は、前述したムライト又はムライ
ト系粉末の欠点を克服した、優れた特性を有する
複合酸化物粉末、すなわち、ムライト粉末の製造
方法を提供するものである。
〔発明の概要〕
而してかかる目的を達成するための本発明の要
旨は、水溶性アルミニウム塩とシリカゾルからな
る水溶液(A)に、水溶性ジルコニウム塩または水溶
性ジルコニウム塩とイツトリウム若しくはセリウ
ムを含む水溶液(B)を混合し若しくは混合せずに、
アルカリを加えて沈澱を生成させ、該含水沈澱物
を有機溶剤の存在下で加熱蒸留により脱水した後
有機溶剤を分離し、沈澱物を乾燥後、さらに900
〜1600℃で加熱焼成することを特徴とする耐熱性
混合酸化物粉末の製造方法にある。
本発明は、原料として水溶性アルミニウム塩と
シリカゾルを用いることによつて、水溶液状態で
出来るだけ均一にAlイオンとSiO2粒子を混合し、
また生成した沈澱物の乾燥時に粒子の凝集を防ぐ
ため、有機溶剤中で共沸脱水させることにより、
沈澱粒子の囲りを有機溶剤で保護し粒子の凝集を
防ぐようにしたものである。このため焼成して得
られたムライト粉末は、凝集が少なく、かつAl
とSiが均一な粉末である。
本発明によりなる粉末の製造方法を更に具体的
に述べると以下のとうりである。
水溶性アルミニウム塩とシリカゾルを所定のム
ライト組成になるよう、蒸留水に加え十分に溶
解、混合する。この混合溶液(以下水溶液(A)とい
う)の濃度は、最終的に合成されるムライト粉末
のモル量で表現すると、0.005〜0.3mol/程度
が好ましく、理論比のムライトの場合、アルミニ
ウム塩の濃度は、0.03〜1.8mol/、シリカゾル
の濃度は、SiO2成分として0.01〜0.6mol/であ
る。本発明でいうムライトおよびムライト組成と
は、酸化アルミニウム含有量がムライトの化学量
論比である71.8重量%を中心に一定の組成範囲を
意味している。本発明者らのいうこの範囲は、酸
化アルミニウムの含有量が、65〜80重量%であ
る。このムライト組成は、ムライトの性質、特に
高温特性に大きな影響を持つている。すなわち、
Al2O3−SiO2系の状態図から、ムライトの一相領
域は、Al2O3の含有量にして約65〜80重量%の範
囲と考えられており、65重量%よりAl2O3が少な
くなると、シリカを主体としたガラス相が増加
し、焼結時の密度は上るが、高温特性(強度等)
が低下する。また、80重量%以上にAl2O3が増加
すると、ムライト相以外にAl2O3相が現われ、焼
結時の密度が上りにくくなる。ところで、いくら
化学組成がムライトの一相領域になるよう原料粉
末が調製されていても、Al2O3とSiO2が不均一で
あれば、ムライトの一相からなる焼結体を得るこ
とは出来ない。そこで本発明で述べるAlとSiを
均一にまぜた、一相領域の組成の粉末を合成する
必要がある。さらに一相領域の組成内でも、その
焼結体の高温特性は、Al2O3の多い側でより優れ
た特性を示すと考えられている。
本発明において使用する水溶性アルミニウム塩
としては、硝酸塩、硫酸塩、塩酸塩、酢酸塩等が
用いられる。またシリカゾルは、酸性、アルカリ
性の両方があり、コロイド粒子径、Naの含有量
など異なつたものがあるが、好ましくは、酸性で
かつ粒子径が出来るだけ小さく、Naの含有量の
低いものがよい。
SiO2源としては、他にエチルシリケート、
SiCl4Na2SiO3等が考えられるが、Na2SiO3はNa
が不純物となるため適当でなく、またエチルシリ
ケートは酸による加水分解に時間がかかり、しか
も析出してくるシリカが全てコロイドとして析出
するのではなくかなりの量が水に溶けた状態にあ
りゲル化し易い。従つて、アルカリ添加による共
沈には不適当である。また、高価であることが最
も大きな欠点である。
SiCl4は腐喰性のガスであり取扱いが不便であ
り、定量的に添加することが困難である。
シリカゾルは上記のSiO2源に比べて、微小な
シリカコロイド粒子(約100Å)であり、取扱い
も何んの不安もなく、定量的に添加ができ、安価
でもある。
次に、このアルミニウム塩とシリカゾルの混合
水溶液に、撹拌をしながらアルカリ水溶液を加え
PHが6〜8、好ましくは6.5〜7.5になるまで加え
る。このアルカリの水溶液は、好ましくは、アン
モニア水又は炭酸アンモニウム水溶液である。か
くして、アルミニウムイオンは、シリカのコロイ
ド粒子とともに水酸化物ゲルとして沈澱を生成す
る。
次に、沈澱を過、遠心分離等の適当な方法に
より母液から分離した後、更に沈澱物中に残留す
る溶液並びに沈澱に付着する生成物(例ば、硝酸
アルミニウムを用いた場合、NH4NO3である。)
を除去するため、沈澱の水洗を行うと良い。この
様にして得られた沈澱物は、多量の水分を含んで
おり、これをこのまま乾燥してしまうと、沈澱中
の微粒子が凝集し、続く焼成の工程において強固
に結合し、焼結用の微粉末としては好ましくな
い。そこで、これら沈澱物に有機溶剤を加え、沈
澱物を有機溶剤に分散させた状態で蒸留を行う。
この時、有機溶剤とともに、沈澱中の水分が流出
してくるので、一次粒子の凝集の原因となる沈澱
物中の水分を、有機溶剤で置換し、凝集を防ぎな
がら脱水が可能となる。この時、加える有機溶剤
の量は、沈澱物中の水分を十分に脱水するだけの
量加えなければならない(この量は、合成される
ムライト100gに対してブタノールの場合4以
上である。)。沈澱を過せずに、初期の沈澱を含
んだ水溶液に有機溶剤を加えて脱水する場合、多
量の有機溶剤が必要であり、また副生成物も残留
しており現実的な方法でない。この蒸留に使用す
る有機溶剤とは、炭素数3〜10のアルコールを少
なくとも1種類以上含んだアルコール、ベンゼン
等が用いられ、特にブタノール、及びイソアミル
アルコールなどが好ましいものとして言える。ま
た有機溶剤中に沈澱粒子の分散を促進するため
に、有機溶剤にノニオン系界面活性剤を少量加え
ることも可能である。蒸留は、溶剤と水との共沸
点、蒸留の程度等を考えて、通常沈澱物との混合
溶液の沸点から、有機溶剤単独の沸点までの温度
範囲で行う。蒸留後、冷却し液相中の浮遊物およ
び沈澱物を過、遠心分離等の手段により液相か
ら分離回収し、常圧又は減圧下で沈澱の乾燥を行
う。この乾燥は有機溶剤の沸点までの如熱乾燥で
十分である。
この乾燥物を好ましくは900〜1600℃で焼成す
ることにより、本発明の複合酸化物粉末すなわち
ムライト粉末を得る。
900℃以下の焼成では、まだ未分解物が少量残
留しており、焼結時にその未分解物が揮発し、焼
結体中に空〓を生じやすい。また1600℃以上の焼
成では、ムライト又はムライトとジルコニアの粒
子が結晶成長を起し、さらにこの粒子同志の凝集
が強固なものになり、焼結性が劣化してくる。
この場合、1200℃以下の温度での焼成ではムラ
イトの結晶化は、X線回折法では見られなく、こ
の焼成物は、非晶質、またはr−Al2O3の構造に
似た構造を持つているが、ムライトの焼結になん
ら影響しない。
次に、第3成分として水溶性ジルコニウム塩を
水溶性アルミニウム塩とシリカゾルの混合水溶液
に加える場合について述べる。水溶性ジルコニウ
ム塩は、硝酸塩、塩酸塩、酢酸塩等があるが、好
ましくは、オキシ塩化ジルコニウムと硝酸ジルコ
ニウムである。
また、このジルコニウム塩の添加量は、最終的
に得られるムライトとジルコニアの総体積に対し
て、ジルコニアが3〜40体積%になるようにすれ
ばよい。ここで、ジルコニアの体積割合が3%以
下の場合、正方晶ジルコニア粒子による効果は多
く望めないが、ムライトの緻密な焼結体を得るの
によい効果はある。また40%以上ジルコニア粒子
をムライトマトリツクス中に存在させることは難
しくなり、また高温での耐熱性がジルコニアの特
性に影響されやすくなり好ましくはない。
この水溶性ジルコニウム塩の添加は、合成した
ムライト粉末中に酸化ジルコニウムとして存在さ
せることに意味があるため、添加の方法は上記以
外にも可能である。例えば、水溶性ジルコニウム
塩の水溶液にアンモニア水を加えて生成した水酸
化ジルコニウムのゾルを、アルミニウム塩とシリ
カゾルの水溶液に所定量加えて混合する方法、ま
た、アルミニウム塩とシリカゾルの水溶液にアン
モニア水を加えて生成したゾルに、この水酸化ジ
ルコニウムのゾルを混合する方法、過後の沈澱
物、乾燥物等などに加えることも不可能でない。
このジルコニウム塩を添加する場合にはさらに安
定化剤を加えることができ、この安定化剤として
は、正方晶ジルコニア粒子を得やすいということ
からイツトリア若しくはセリアが好ましい。この
場合に、酸化ジルコニウムに対して酸化イツトリ
ウムが、1〜8モル%含まれるように、水溶性イ
ツトリウム塩をジルコニウム塩と同時に加えても
良い。また、イツトリウム塩の換りにセリウムの
水溶性塩を用いてもよく、その時の添加量は、酸
化ジルコニウムに対して酸化セリウムが1〜20モ
ル%含まれるようにすれば良い。
本発明によつて得られたムライト粉末を用いて
焼結体を製造した時、このムライト焼結体は、優
れた物性を示す。
すなわち本発明により得られた粉末は、Alと
Siが均一に分散し、かつ微粒子で凝集が弱い。そ
のため、焼結体を製造した時、シリカを主成分と
したガラス相をほとんど含んでいない、従来のム
ライトに比較し低温(1600〜1700℃)で緻密な焼
結体を得ることが可能である。
また、酸化ジルコニウム粒子を含んだムライト
粉末では、AlとSiイオンが均一であると同時に、
酸化ジルコニウム粒子を含むことによりさらにガ
ラス相の生成が少なく、焼結温度を酸化ジルコニ
ウム粒子を含んでいないものに比べ、50〜100℃
低下させる作用がある。このムライト粉末に含ま
れた酸化ジルコニウム粒子は、この粒末を焼結し
た時、ムライトマトリツクス中に均一に分散され
た主として正方晶粒子からなる酸化ジルコニウム
粒子として存在し、その焼結温度によつて粒径は
コントロールされる。この正方晶形の酸化ジルコ
ニウム粒子の存在が、ムライト焼結体の強度及び
その他の物性を優れたものにしている。従来報告
されているムライト単独での焼結体の強度は、最
高30Kg/mm2程度の曲げ強度であつた。しかし本発
明により得られた粉末を用いたジルコニアを10体
積%含んだムライト焼結体では、室温で50Kg/mm2
以上の曲げ強度を示し、また1300℃の高温でも40
Kg/mm2程度の強度のものが得られており、この事
は、高温構造材料として優れた耐熱性を持つと言
える。
〔発明の実施例〕
本発明を以下実施例に従つて具体的に説明する
が、本発明はこれらに限定されるものではない。
実施例 1
硝酸アルミニウム水溶液(Al2O3換算含有量9
重量%)800gとシリカゾル水溶液(シリカ含有
量20.0重量%)140gを混合し、5に希釈した。
この配合の組成は、Al2O3/SiO2重量比72/28の
ムライトになるよう調製した。この水溶液に撹拌
しながらアンモニア水を加え、生成したコロイド
状沈澱を過した後、この沈澱を4のn−ブタ
ノール中に分散し、加熱蒸留して沈澱物中の水分
を脱水し、沸点が105℃になつた所で加熱を停止
した。冷却後液相中の沈澱物を過し沈澱を回収
した。この沈澱を80℃で乾燥し、1300℃で1時間
焼成し約95gのムライト粉末を得た。この粉末の
X線回折パターンにより完全なムライトであるこ
とを確認し、また<100>面からの回折ピークか
ら求めた結晶子の粒径は、530Åであつた。この
粉末をエチルアルコールを用いて振動ボールミル
で8時間粉砕し、乾燥後成形用粉末とし、ラバー
プレスで圧力2t/cm2で直径20mm厚さ6mmの円板を
成形して1650℃3時間焼結を行つた。得られたム
ライトの密度は3.12g/c.c.であつた。焼結時の雰
囲気は大気であつた。
表1に上記の結果および上記と同じ沈澱物を使
用して焼成温度を変えたもの、また成形体の焼結
温度を変えたもの、焼結雰囲気を変えたものなど
の実験を行ないその結果を示した。
実施例 2
実施例1にまつたく同様な操作で、ムライトの
組成が異つた実験を行ないその結果を表1に示し
た。
実施例 3
硝酸アルミニウム水溶液(Al2O3換算含有量9.0
重量%)800gと、シリカゾル水溶液(シリカ含
有量20重量%)140g、それにオキシ塩化ジルコ
ニウム水溶液(ZrO2換算含有量19重量%)113g
を混合し、5に希釈した。以後実施例1と同様
に焼結体まで製造した。焼結は、1620℃、3時間
で行つた。得られた焼結体の密度は、3.43g/c.c.
であつた。また焼結体をX線回折によつて分析し
た所、ムライトとジルコニアの二相からなつてお
り、ジルコニアは、正方晶形80重量%、単斜晶20
重量%からなるものであり、走査型電子顕鏡の観
察からジルコニア粒子の粒径は約0.7μmであつ
た。そしてこのジルコニア粒子はムライトマトリ
ツクス中に均一に分散していた。
表2に上記の結果、および成形体の焼結温度を
変えた他は上記と同様に行なつた実験の結果を示
した。
実施例 4
実施例3と同様にして、異なつたムライト組成
の場合、異なつたオキシ塩化ジルコニウムの配合
の場合、沈澱の焼成、成形体の焼結条件の異なつ
た場合につき夫々実験を行ないその結果を表2に
記載した。また、オキシ塩化ジルコニウム水溶液
の中に水溶液中のZrO2換算したジルコニアに対
して3mol%の濃度になるようY2O3をYCl3の形で
加えた実験例も合せて記載した。
実施例 5
硝酸アルミニウム水溶液(Al2O3換算含有量9.0
重量%)800gとシリカゾル水溶液(シリカ含有
量20重量%)140gを混合し5に希釈した。次
にオキシ塩化ジルコニウム水溶液(ZrO2換算含
有量19重量%)113gにY2O30.81gをHCl20c.c.に
溶解したものを加え、この溶液を1に希釈し、
さらにアンモニア水を用いてジルコニウムとイツ
トリウムの水酸化物のゲルを調製した。このゲル
を先に調製していた硝酸アルミニウムとシリカゾ
ルの混合水溶液に加え十分撹拌した後この溶液に
さらにアンモニア水を加えPHを7.0に調整し、沈
澱を得た。以後前述の他の実施例と同様な工程を
行い、乾燥した沈澱を1300℃、1時間焼成した。
得た粉末は、ムライトと正方晶形ZrO2からなる
ものであつた。この粉末をエチルアルコールを用
いて振動ボールミルで5時間粉砕し、前記実施例
と同様に成形し、1600℃で焼結を行つた。得られ
た焼結体は、密度3.40g/c.c.、ジルコニア粒子径
0.6μm、ジルコニア粒子の正方晶形含有量96%で
あつた。
表2にジルコニウム塩、イツトリアの含有量の
異つた例について示した。イツトリアの含有量に
ついては、添加するジルコニウム塩から得られる
ジルコニアに対するモル%で示している。
[Industrial Application Field] The present invention relates to a method for producing a heat-resistant composite oxide powder that is optimal for producing mullite and mullite-based sintered bodies that are dense and have excellent heat resistance and mechanical strength. [Prior art] Mullite is a composite oxide (3Al 2 O 3 .2SiO 2 ) consisting of alumina and silica, and its stoichiometric composition ratio is Al 2 O 3 :SiO 2 = 71.8:28.2 by weight. It is. By the way, conventionally, mullite with this structure is extremely stable thermally, and it is extremely difficult to obtain a high-density sintered body without pores by sintering powder consisting only of mullite. Ta. For this reason, what has traditionally been called mullite porcelain has a two-phase structure in which it contains more silica than the stoichiometric ratio of mullite, and the mullite particles are bound together by a matrix of this excess silica. The silica content here is 40 to 60% by weight, and the silica glass bonds the mullite particles. In such conventional mullite porcelain with an excess of silica, its thermal properties are largely controlled by the silica matrix, leading to deterioration in hot strength, creep properties, and heat resistance. Therefore, in order to eliminate the above-mentioned drawbacks of the conventional method and obtain a thermally stable high-purity mullite sintered body through the bonding of true mullite crystals, there is a method for producing high-purity mullite powder using chemical means. was considered. A representative method is the alkoxide method. This method involves hydrolyzing a mixed solution of aluminum and silicon alkoxides, separating the resulting hydroxide gel, drying it, and calcining it (Mazdiyasni and Brown, “Synthesis and Mechanism of Stoichiometric Aluminum Silicates (Mullite)”). ”Jornal of the American
Ceramics Society, Vol55, No.11, P548−552
(1972) etc.). In addition to this method, the easiest way to synthesize stoichiometric high-purity mullite is to mechanically mix high-purity crystalline alumina and silica and then react at high temperature to synthesize mullite. . However, this method requires extremely high temperatures to cause the alumina particles and silica particles to react. Furthermore, sintering requires a high temperature of 1800° C. or higher, and it is difficult to obtain a mullite sintered body with a dense stoichiometric ratio and no glass phase. Therefore, methods such as the alkoxide method were considered, but in this method, the conditions for hydrolysis of aluminum alkoxide and silicon alkoxide are different, so aluminum and silicon are not necessarily homogeneous. do not have. Furthermore, the alkoxide used as a raw material is very expensive and the reaction operation is complicated, so it is difficult to use it in an industrial production method. for example,
Even when a hydrolyzate containing a uniform mixture of aluminum and silicon on the atomic order is obtained using the alkoxide method, it is necessary to prevent the fine particles of aluminum silicate that precipitate during the drying and firing process of the hydrolyzate from agglomerating. If strong agglomeration occurs here, even if the powder is uniform,
In order to obtain a dense sintered body, it is necessary to use the pressure sintering method as in the Mazdiyasni literature. Next, as reported in recent years by Nils Claussen et al.
It is known that a sintered body in which zirconia particles, which are mainly present as tetragonal particles, are dispersed in a matrix of alumina or the like has significantly improved fracture strength, fracture toughness, and the like. However, this method does not have a sufficient effect on ceramics whose matrix itself cannot be sintered densely, and mullite is a typical example of ceramics that are difficult to sinter densely. A conventional method for obtaining this zirconia-dispersed mullite sintered body is to mechanically mix zirconia powder with mullite powder. However, in this method, the sinterability of mullite itself is important, and it is difficult to control the particle size, dispersibility, and crystal phase of the tetragonal zirconia particles, making it difficult to obtain a sintered body with sufficient performance. It is difficult. Therefore, the aforementioned Nils Claussen et al .
We are proposing a special method in which alumina and zircon (ZrSiO 4 ) are used as starting materials, and a sintered body with zirconia particles dispersed in mullite is obtained through the reaction of alumina and zircon. However, this method has the disadvantage that it is difficult to change the content of zirconia particles. [Object of the Invention] An object of the present invention is to provide a method for producing a composite oxide powder, that is, a mullite powder, which overcomes the drawbacks of the above-mentioned mullite or mullite-based powder and has excellent properties. [Summary of the Invention] The gist of the present invention to achieve the above object is to include a water-soluble zirconium salt or a water-soluble zirconium salt and yttrium or cerium in an aqueous solution (A) consisting of a water-soluble aluminum salt and a silica sol. With or without mixing the aqueous solution (B),
Add an alkali to form a precipitate, dehydrate the water-containing precipitate by heating distillation in the presence of an organic solvent, separate the organic solvent, dry the precipitate, and further
A method for producing a heat-resistant mixed oxide powder, characterized by heating and firing at ~1600°C. The present invention uses water-soluble aluminum salt and silica sol as raw materials to mix Al ions and SiO 2 particles as uniformly as possible in an aqueous solution state,
In addition, in order to prevent particle agglomeration during drying of the generated precipitate, azeotropic dehydration is performed in an organic solvent.
The area surrounding the precipitated particles is protected with an organic solvent to prevent particle agglomeration. Therefore, the mullite powder obtained by firing has less agglomeration and Al
and Si are uniform powders. The method for producing the powder according to the present invention will be described in more detail below. Water-soluble aluminum salt and silica sol are added to distilled water and sufficiently dissolved and mixed so as to have a predetermined mullite composition. The concentration of this mixed solution (hereinafter referred to as aqueous solution (A)) is preferably about 0.005 to 0.3 mol/approximately 0.005 to 0.3 mol/molar amount of the mullite powder to be finally synthesized. is 0.03 to 1.8 mol/, and the concentration of silica sol is 0.01 to 0.6 mol/ as SiO 2 component. Mullite and mullite composition as used in the present invention mean a certain composition range in which the aluminum oxide content is centered around 71.8% by weight, which is the stoichiometric ratio of mullite. This range defined by the inventors is that the aluminum oxide content is 65 to 80% by weight. This mullite composition has a great influence on the properties of mullite, especially its high-temperature properties. That is,
From the phase diagram of the Al 2 O 3 −SiO 2 system, it is thought that the single phase region of mullite is in the range of about 65 to 80% by weight of Al 2 O 3 , and the content of Al 2 O When 3 decreases, the glass phase mainly composed of silica increases, and the density during sintering increases, but high-temperature properties (strength, etc.)
decreases. Furthermore, when Al 2 O 3 increases to 80% by weight or more, an Al 2 O 3 phase appears in addition to the mullite phase, making it difficult to increase the density during sintering. By the way, no matter how much the raw material powder is prepared so that the chemical composition is in the single phase region of mullite, if Al 2 O 3 and SiO 2 are non-uniform, it is impossible to obtain a sintered body consisting of the single phase of mullite. Can not. Therefore, it is necessary to synthesize a powder having a composition in the one-phase region, which is a uniform mixture of Al and Si as described in the present invention. Furthermore, even within the composition in the single-phase region, the high-temperature properties of the sintered body are thought to be better on the side with more Al 2 O 3 . As water-soluble aluminum salts used in the present invention, nitrates, sulfates, hydrochlorides, acetates, etc. are used. In addition, silica sol can be both acidic and alkaline, and there are different colloid particle sizes and Na content, but it is preferable to use one that is acidic, has as small a particle size as possible, and has a low Na content. . Other SiO 2 sources include ethyl silicate,
SiCl 4 Na 2 SiO 3 etc. are considered, but Na 2 SiO 3 is Na
It is not suitable because ethyl silicate becomes an impurity, and it takes time for ethyl silicate to be hydrolyzed by acid, and furthermore, the precipitated silica does not all precipitate as a colloid, but rather a considerable amount is dissolved in water and gels. easy. Therefore, it is unsuitable for coprecipitation by adding alkali. Moreover, the biggest drawback is that it is expensive. SiCl 4 is a corrosive gas that is inconvenient to handle and difficult to add quantitatively. Compared to the SiO 2 sources mentioned above, silica sol is a fine silica colloidal particle (approximately 100 Å), can be handled without any concerns, can be added quantitatively, and is inexpensive. Next, add an alkaline aqueous solution to this mixed aqueous solution of aluminum salt and silica sol while stirring.
Add until the pH is 6-8, preferably 6.5-7.5. This aqueous alkali solution is preferably an aqueous ammonia solution or an aqueous ammonium carbonate solution. Thus, the aluminum ions form a precipitate as a hydroxide gel with colloidal particles of silica. Next, after separating the precipitate from the mother liquor by an appropriate method such as filtration or centrifugation, the solution remaining in the precipitate and the products attached to the precipitate (for example, when aluminum nitrate is used, NH 4 NO 3 )
It is recommended to wash the precipitate with water to remove it. The precipitate obtained in this way contains a large amount of water, and if it is dried as it is, the fine particles in the precipitate will aggregate and bond firmly in the subsequent firing process, resulting in a sintering product. It is not preferred as a fine powder. Therefore, an organic solvent is added to these precipitates, and distillation is performed with the precipitates dispersed in the organic solvent.
At this time, water in the precipitate flows out together with the organic solvent, so the organic solvent replaces the water in the precipitate that causes aggregation of primary particles, making it possible to dehydrate while preventing aggregation. At this time, the amount of organic solvent added must be sufficient to sufficiently dehydrate the water in the precipitate (this amount is 4 or more in the case of butanol per 100 g of mullite to be synthesized). If an organic solvent is added to the aqueous solution containing the initial precipitate for dehydration without precipitation, a large amount of organic solvent is required and by-products remain, which is not a practical method. The organic solvent used in this distillation includes alcohol containing at least one type of alcohol having 3 to 10 carbon atoms, benzene, and the like, with butanol and isoamyl alcohol being particularly preferred. It is also possible to add a small amount of nonionic surfactant to the organic solvent in order to promote dispersion of the precipitated particles in the organic solvent. Distillation is usually carried out in a temperature range from the boiling point of the mixed solution with the precipitate to the boiling point of the organic solvent alone, taking into account the azeotropic point of the solvent and water, the degree of distillation, etc. After distillation, it is cooled, and suspended matter and precipitates in the liquid phase are separated and recovered from the liquid phase by means such as filtration or centrifugation, and the precipitates are dried under normal pressure or reduced pressure. For this drying, drying at a temperature up to the boiling point of the organic solvent is sufficient. The composite oxide powder of the present invention, that is, the mullite powder, is obtained by calcining this dried product preferably at 900 to 1600°C. When firing at temperatures below 900°C, a small amount of undecomposed substances still remain, and these undecomposed substances are likely to volatilize during sintering, creating voids in the sintered body. Furthermore, when firing at a temperature of 1600° C. or higher, crystal growth of mullite or mullite and zirconia particles occurs, and the agglomeration of these particles becomes strong, resulting in deterioration of sinterability. In this case, crystallization of mullite is not observed by X-ray diffraction when fired at temperatures below 1200°C, and the fired product is amorphous or has a structure similar to that of r-Al 2 O 3 . Although it has no effect on the sintering of mullite. Next, a case will be described in which a water-soluble zirconium salt is added as a third component to a mixed aqueous solution of a water-soluble aluminum salt and silica sol. Water-soluble zirconium salts include nitrates, hydrochlorides, acetates, etc., but zirconium oxychloride and zirconium nitrate are preferred. Further, the amount of the zirconium salt added may be such that the amount of zirconia is 3 to 40% by volume based on the total volume of mullite and zirconia finally obtained. Here, when the volume ratio of zirconia is 3% or less, the effects of the tetragonal zirconia particles cannot be expected to be great, but they are effective in obtaining a dense sintered body of mullite. Further, it becomes difficult to have 40% or more of zirconia particles present in the mullite matrix, and the heat resistance at high temperatures is easily influenced by the properties of zirconia, which is not preferable. Since the addition of this water-soluble zirconium salt is meaningful in that it is present as zirconium oxide in the synthesized mullite powder, methods of addition other than those described above are possible. For example, a method of adding a predetermined amount of zirconium hydroxide sol produced by adding aqueous ammonia to an aqueous solution of a water-soluble zirconium salt to an aqueous solution of aluminum salt and silica sol and mixing it; In addition, it is not impossible to mix the zirconium hydroxide sol with the sol produced, or to add it to the precipitate, dried material, etc. after filtration.
When adding this zirconium salt, a stabilizer can be further added, and as this stabilizer, itria or ceria is preferable since it is easy to obtain tetragonal zirconia particles. In this case, a water-soluble yttrium salt may be added at the same time as the zirconium salt so that yttrium oxide is contained in an amount of 1 to 8 mol % based on zirconium oxide. Further, a water-soluble salt of cerium may be used in place of the yttrium salt, and the amount of cerium oxide to be added may be 1 to 20 mol% relative to zirconium oxide. When a sintered body is produced using the mullite powder obtained according to the present invention, the mullite sintered body exhibits excellent physical properties. That is, the powder obtained by the present invention has Al and
Si is uniformly dispersed and has fine particles with weak aggregation. Therefore, when producing a sintered body, it is possible to obtain a dense sintered body at a lower temperature (1600 to 1700℃) than conventional mullite, which contains almost no glass phase mainly composed of silica. . In addition, in mullite powder containing zirconium oxide particles, Al and Si ions are uniform, and at the same time,
By containing zirconium oxide particles, the formation of glass phase is further reduced, and the sintering temperature can be lowered to 50 to 100°C compared to those that do not contain zirconium oxide particles.
It has a depressing effect. When the zirconium oxide particles contained in this mullite powder are sintered, they exist as zirconium oxide particles consisting mainly of tetragonal crystal particles uniformly dispersed in the mullite matrix, and depending on the sintering temperature, The particle size is then controlled. The presence of these tetragonal zirconium oxide particles makes the mullite sintered body excellent in strength and other physical properties. The strength of sintered bodies made of mullite alone that has been reported so far has a maximum bending strength of about 30 kg/mm 2 . However, in a mullite sintered body containing 10% by volume of zirconia using the powder obtained according to the present invention, the weight loss was 50Kg/mm 2 at room temperature.
It has a bending strength of over 40°C even at high temperatures of 1300°C.
A strength of approximately Kg/mm 2 was obtained, which indicates that it has excellent heat resistance as a high-temperature structural material. [Examples of the Invention] The present invention will be specifically described below with reference to Examples, but the present invention is not limited thereto. Example 1 Aluminum nitrate aqueous solution (Al 2 O 3 equivalent content: 9
(% by weight) and 140 g of an aqueous silica sol solution (silica content: 20.0% by weight) were mixed and diluted to 5.
The composition of this formulation was adjusted to be mullite with an Al 2 O 3 /SiO 2 weight ratio of 72/28. Aqueous ammonia was added to this aqueous solution with stirring, and the resulting colloidal precipitate was filtered out. This precipitate was then dispersed in n-butanol from step 4, and the water in the precipitate was removed by heating and distillation. Heating was stopped when the temperature reached ℃. After cooling, the precipitate in the liquid phase was filtered to collect the precipitate. This precipitate was dried at 80°C and calcined at 1300°C for 1 hour to obtain about 95g of mullite powder. The X-ray diffraction pattern of this powder confirmed that it was complete mullite, and the crystallite particle size determined from the diffraction peak from the <100> plane was 530 Å. This powder was pulverized using ethyl alcohol in a vibrating ball mill for 8 hours, dried and made into a powder for molding, molded into a disc with a diameter of 20 mm and a thickness of 6 mm using a rubber press at a pressure of 2 t/cm 2 and sintered at 1650°C for 3 hours. I went there. The density of the obtained mullite was 3.12 g/cc. The atmosphere during sintering was air. Table 1 shows the above results, as well as the results of experiments using the same precipitate as above but with different firing temperatures, different sintering temperatures for compacts, and different sintering atmospheres. Indicated. Example 2 Experiments were conducted in the same manner as in Example 1, but with different mullite compositions, and the results are shown in Table 1. Example 3 Aluminum nitrate aqueous solution (Al 2 O 3 equivalent content 9.0
weight%) 800g, 140g of silica sol aqueous solution (silica content 20% by weight), and 113g of zirconium oxychloride aqueous solution (ZrO 2 equivalent content 19% by weight)
were mixed and diluted to 5. Thereafter, a sintered body was manufactured in the same manner as in Example 1. Sintering was performed at 1620°C for 3 hours. The density of the obtained sintered body is 3.43g/cc
It was hot. Furthermore, when the sintered body was analyzed by X-ray diffraction, it was found to consist of two phases: mullite and zirconia, with 80% by weight of zirconia being tetragonal and 20% monoclinic.
% by weight, and the particle size of the zirconia particles was approximately 0.7 μm based on observation using a scanning electron microscope. The zirconia particles were uniformly dispersed in the mullite matrix. Table 2 shows the above results and the results of an experiment conducted in the same manner as above except that the sintering temperature of the compact was changed. Example 4 In the same manner as in Example 3, experiments were conducted with different mullite compositions, different zirconium oxychloride formulations, and different conditions for calcination of the precipitate and sintering of the compact, and the results were reported. It is listed in Table 2. Furthermore, an experimental example in which Y 2 O 3 was added in the form of YCl 3 to an aqueous zirconium oxychloride solution at a concentration of 3 mol % relative to zirconia in terms of ZrO 2 in the aqueous solution was also described. Example 5 Aluminum nitrate aqueous solution (Al 2 O 3 equivalent content 9.0
(% by weight) and 140 g of an aqueous silica sol solution (silica content: 20% by weight) were mixed and diluted to 5. Next, 0.81 g of Y 2 O 3 dissolved in 20 c.c. of HCl was added to 113 g of zirconium oxychloride aqueous solution (ZrO 2 equivalent content 19% by weight), and this solution was diluted to 1.
Furthermore, a gel of zirconium and yttrium hydroxides was prepared using aqueous ammonia. This gel was added to the previously prepared mixed aqueous solution of aluminum nitrate and silica sol and thoroughly stirred, and then aqueous ammonia was further added to this solution to adjust the pH to 7.0 to obtain a precipitate. Thereafter, the same steps as in the other examples described above were carried out, and the dried precipitate was calcined at 1300° C. for 1 hour.
The powder obtained consisted of mullite and tetragonal ZrO2 . This powder was pulverized using ethyl alcohol in a vibrating ball mill for 5 hours, molded in the same manner as in the previous example, and sintered at 1600°C. The obtained sintered body has a density of 3.40 g/cc and a zirconia particle size.
0.6 μm, and the tetragonal content of the zirconia particles was 96%. Table 2 shows examples with different contents of zirconium salt and itria. The content of ittria is expressed in mol% relative to zirconia obtained from the zirconium salt added.
【表】【table】
【表】【table】
本発明は、以上説明したように、優れた特性を
持つムライト焼結体を与える原料粉末の製造方法
である。この発明の効果を以下具体的に示す。
AlとSiが均一で、緻密な焼結体を得ること
のできる粉末を製造できる。そのため、焼結体
中には、ガラス相をほとんど含まない、耐熱性
並びにクリープ特性は著しく良好である。
ムライト焼結体中に第2相として、酸化ジル
コニウム等を微細にかつ均一に分散させた焼結
体を得ることの出来る粉末を製造出来る。その
ため、正方晶形で存在する酸化ジルコニウム粒
子は、応力誘起変態強化機構により、焼結体の
強度を高める。
アルコキシツドなどの原料に比較し、安価で
取扱いの簡単な原料を用いることができる。
室温及び高温での強度、クリープ特性、耐熱
衝撃性、耐薬品性、耐摩耗性などに優れている
ため、以下の用途等への利用が可能である。
ガスタービンエンジンなどの燃焼室やケーシン
グおよびタービン翼等部材、レシプロエンジン部
材、例えばタペツト、カム、副燃焼室、ピストン
ヘツド等、耐酸耐アルカリ性の産業機器、例えば
耐薬品性のポンプ、メカニカルシール、食品加工
用機械部品、精密測定機器、切削、切断用の刀
物、ダイス類、耐摩耗部材、製鉄用のスキツドボ
タン、ベアリングおよび摺動部材、医療機器の部
材、絶縁性ガイシ。ただしこれらの例は、本発明
の用途範囲を限定したものではないことは言うま
でもない。
As explained above, the present invention is a method for producing a raw material powder that provides a mullite sintered body with excellent properties. The effects of this invention will be specifically shown below. It is possible to produce powder that has uniform Al and Si content and can yield a dense sintered body. Therefore, the sintered body contains almost no glass phase and has extremely good heat resistance and creep properties. It is possible to produce a powder capable of obtaining a sintered body in which zirconium oxide or the like is finely and uniformly dispersed as a second phase in a mullite sintered body. Therefore, the zirconium oxide particles existing in the tetragonal form increase the strength of the sintered body through a stress-induced transformation strengthening mechanism. Compared to raw materials such as alkoxides, raw materials that are cheaper and easier to handle can be used. It has excellent strength at room and high temperatures, creep properties, thermal shock resistance, chemical resistance, abrasion resistance, etc., so it can be used for the following purposes. Gas turbine engine components such as combustion chambers, casings, and turbine blades; reciprocating engine components such as tappets, cams, auxiliary combustion chambers, and piston heads; acid- and alkali-resistant industrial equipment; chemical-resistant pumps, mechanical seals, and food products. Machining machine parts, precision measuring instruments, cutting and cutting knives, dies, wear-resistant parts, skid buttons for steel manufacturing, bearings and sliding parts, medical equipment parts, and insulating insulators. However, it goes without saying that these examples do not limit the scope of use of the present invention.
Claims (1)
水溶液(A)に、アルカリを加えて沈澱を生成させ、
該含水沈澱物を有機溶剤の存在下で加熱蒸留によ
り脱水した後、有機溶剤を分離し、沈澱物を乾燥
後、さらに900〜1600℃で加熱焼成することを特
徴とする耐熱性複合酸化物粉末の製造方法。 2 水溶性アルミニウム塩とシリカゾルからなる
水溶液(A)と、水溶性ジルコニウム塩または水溶性
ジルコニウム塩とイツトリウム若しくはセリウム
を含む水溶液(B)とを混合し、アルカリを加えて沈
澱を生成させ、該含水沈澱物を有機溶剤の存在下
で加熱蒸留により脱水した後、有機溶剤を分離
し、沈澱物を乾燥後、さらに900〜1600℃で加熱
焼成することを特徴とする耐熱性複合酸化物粉末
の製造方法。 3 水溶性ジルコニウム塩とシリカゾルからなる
水溶液(A)と、水溶性ジルコニウム塩または水溶性
ジルコニウム塩とイツトリウム若しくはセリウム
を含む水溶液(B)にアルカリを加えて調整した水酸
化物のゲルとを混合し、これにさらにアルカリを
加えて沈澱を生成させ、該水酸化物を有機溶剤の
存在下で加熱蒸留により脱水した後、有機溶剤を
分離し、沈澱物を乾燥後、さらに900〜1600℃で
加熱焼成することを特徴とする耐熱性複合酸化物
粉末の製造法。[Claims] 1. Adding an alkali to an aqueous solution (A) consisting of a water-soluble aluminum salt and silica sol to form a precipitate,
A heat-resistant composite oxide powder characterized in that the water-containing precipitate is dehydrated by heating distillation in the presence of an organic solvent, the organic solvent is separated, the precipitate is dried, and then further heated and calcined at 900 to 1600°C. manufacturing method. 2. Mix an aqueous solution (A) consisting of a water-soluble aluminum salt and silica sol, and an aqueous solution (B) containing a water-soluble zirconium salt or a water-soluble zirconium salt and yttrium or cerium, add an alkali to form a precipitate, and add the water-soluble Production of heat-resistant composite oxide powder, characterized in that the precipitate is dehydrated by heating distillation in the presence of an organic solvent, the organic solvent is separated, the precipitate is dried, and then further heated and calcined at 900 to 1600°C. Method. 3 Mix an aqueous solution (A) consisting of a water-soluble zirconium salt and silica sol and a hydroxide gel prepared by adding an alkali to the water-soluble zirconium salt or the aqueous solution (B) containing the water-soluble zirconium salt and yttrium or cerium. , further add alkali to this to form a precipitate, dehydrate the hydroxide by heating distillation in the presence of an organic solvent, separate the organic solvent, dry the precipitate, and further heat at 900 to 1600 ° C. A method for producing a heat-resistant composite oxide powder, which comprises firing.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59253431A JPS61132510A (en) | 1984-11-30 | 1984-11-30 | Method for producing heat-resistant composite oxide powder |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59253431A JPS61132510A (en) | 1984-11-30 | 1984-11-30 | Method for producing heat-resistant composite oxide powder |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS61132510A JPS61132510A (en) | 1986-06-20 |
JPH0339967B2 true JPH0339967B2 (en) | 1991-06-17 |
Family
ID=17251300
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP59253431A Granted JPS61132510A (en) | 1984-11-30 | 1984-11-30 | Method for producing heat-resistant composite oxide powder |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS61132510A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20200032515A (en) * | 2018-09-18 | 2020-03-26 | 주식회사 엘지화학 | Method for manufacturing aluminosilicate nanoparticles |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61286264A (en) * | 1985-06-11 | 1986-12-16 | 株式会社ニッカト− | Furnace center pipe for heating furnace and manufacture |
JPS623069A (en) * | 1985-06-25 | 1987-01-09 | 株式会社ニッカト− | Heat treating vessel and manufacture |
JPS63231907A (en) * | 1986-08-26 | 1988-09-28 | 日揮株式会社 | Manufacture of ceramic composition |
JPS63159254A (en) * | 1986-12-23 | 1988-07-02 | 株式会社ニッカト− | Manufacture of mullite base electric insulating material |
US5032556A (en) * | 1989-02-21 | 1991-07-16 | Tosoh Corporation | Preparation method for zircon powder |
JPH0497942A (en) * | 1990-08-17 | 1992-03-30 | Chichibu Cement Co Ltd | Production of mullite-zirconia composite ceramics |
JP5013695B2 (en) * | 2005-09-28 | 2012-08-29 | 富士フイルム株式会社 | Silica dispersion and method for producing the same |
-
1984
- 1984-11-30 JP JP59253431A patent/JPS61132510A/en active Granted
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20200032515A (en) * | 2018-09-18 | 2020-03-26 | 주식회사 엘지화학 | Method for manufacturing aluminosilicate nanoparticles |
Also Published As
Publication number | Publication date |
---|---|
JPS61132510A (en) | 1986-06-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4520114A (en) | Production of metastable tetragonal zirconia | |
Mori et al. | Preparation of high‐purity ZrSiO4 powder using sol–gel processing and mechanical properties of the sintered body | |
Hirata et al. | Characterization and Sintering Behavior of Alkoxide‐Derived Aluminosilicate Powders | |
US5055434A (en) | Sinterable pulverulent raw material based on aluminum titanate, a process for its preparation and the sintered bodies produced therefrom and their use | |
JPH0339967B2 (en) | ||
JP3038047B2 (en) | Production method of high purity mullite | |
JPS61275163A (en) | Manufacture of high temperature strength alumina silica baseceramic sintered body | |
US4774068A (en) | Method for production of mullite of high purity | |
JPS5939367B2 (en) | Manufacturing method of zirconium oxide fine powder | |
JPS6357383B2 (en) | ||
JPS62202813A (en) | Production of mullite fine powder containing uniformly dispersed zirconia | |
JPS61281013A (en) | Production of mullite powder of high purity | |
Shi et al. | Synthesis and characterization of ultrafine zircon powder | |
US5316752A (en) | Process for preparing mixed oxides | |
JPH05147924A (en) | Production of alumina-silica powder | |
JPH06219828A (en) | Production of mullite-silicon carbide combined ceramics | |
JPH0497942A (en) | Production of mullite-zirconia composite ceramics | |
JP2791441B2 (en) | Zirconia fine powder and zirconia sintered body | |
JPS62143810A (en) | Method for producing heat-resistant composite oxide powder | |
JP2616772B2 (en) | Method for producing proton conductive ceramics | |
JPS61281065A (en) | Manufacturing method of alumina-silica ceramic sintered body with excellent high-temperature strength | |
JPH03265600A (en) | Production of mullite whisker | |
Wang et al. | Crystallization in seeded zirconia precipitates | |
JPH03164408A (en) | Manufacture of composite material of metal oxide, composite powder material of metal oxide and ceramic material | |
JPH03247557A (en) | Method for producing alumina-silica ceramic sintered body with excellent high-temperature strength |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
EXPY | Cancellation because of completion of term |